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To repurpose compounds for diffuse large B cell lymphoma (DLBCL),
we screened a library of drugs and other targeted compounds
approved by the US Food and Drug Administration on 9 cell lines
and validated the results on a panel of 32 genetically characterized
DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective
against 50% of DLBCL cell lines, as well as against in vivo xenografts.
Dasatinib was more broadly active than the Bruton kinase inhibitor
ibrutinib and overcame ibrutinib resistance. Tumors exhibiting
dasatinib resistance were commonly characterized by activation
of the PI3K pathway and loss of PTEN expression as a specific
biomarker. PI3K suppression by mTORC2 inhibition synergized
with dasatinib and abolished resistance in vitro and in vivo. These
results provide a proof of concept for the repurposing approach
in DLBCL, and point to dasatinib as an attractive strategy for
further clinical development in lymphomas.
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Diffuse large B cell lymphoma (DLBCL) is the most frequent
B cell non-Hodgkin lymphoma, accounting for 22,000 new

cases per year in the United States. The current first-line ther-
apeutic approach involves the combination of an anthracycline-
based regimen with CD20-targeted antibodies [cyclophospha-
mide, doxorubicin, vincristine, and prednisone plus rituximab
(R-CHOP)] and is curative in 60% of cases (1), with better out-
come for the germinal center B cell-like (GCB), than the activated
B cell-like (ABC) subtype (2). Patients who fail to respond to R-
CHOP usually are resistant to other chemotherapies and have a
dismal prognosis. As a consequence, a number of targeted drugs
have been developed for DLBCL, including the irreversible Bruton
tyrosine kinase (BTK) inhibitor ibrutinib (3), which has been shown
to be active against a subset of ABC-DLBCLs carrying CD79A/B
gene mutations (4). However, resistance to ibrutinib has been
observed, and in indolent B-NHLs, it is commonly driven by
mutations involving the BTK 481 cysteine, the residue binding
to ibrutinib (5).
Inhibitors of the phosphatidylinositol-3-kinase (PI3K) pathway

have also emerged as an important class of therapeutic agents in
DLBCL (6). PI3K signaling is the sole requirement for BCR-
dependent survival signals in normal germinal center B cells (7)
and in a subset of DLBCLs (8). In addition, inactivating mutations
and copy loss of phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) (9), whose enzymatic activity counteracts
PI3K, are frequently found in a subset of GCB-DLBCLs. How-
ever, the scope and benefit of PI3K-targeted therapy is still limited
to a subset of patients with DLBCL (10).
Overall, the incomplete success in curing DLBCL underscores

the need for additional efforts to identify novel compounds active
in this disease. Toward this end, we reasoned that the hundreds of
drugs and targeted compounds approved by the US Food and
Drug Administration and in various stages of clinical development
represent a very rich armamentarium of drugs that may include
some capable of targeting known or novel pathway dependencies

in DLBCL. Therefore, testing these drugs for efficacy in DLBCL
may reveal new pathogenetic mechanisms in this disease and, in
addition, would make them readily testable in the clinical setting
without the long time and significant resources involved in de novo
drug development.
Here we report that a DLBCL-directed repurposing effort,

involving a large number of drugs and other targeted compounds
approved by the US Food and Drug Administration, has led to the
identification of the multikinase inhibitor dasatinib as active in a
major subset of DLBCLs. In particular, we show that dasatinib,
which is in clinical use for the treatment of chronic myelogenous
leukemia (11), is active against 50% of DLBCLs and acts in-
dependent of BTK in ABC-DLBCL. In addition, using in vitro
and in vivo preclinical evidence, we identify the mechanism and a
biomarker associated with dasatinib resistance, as well as a com-
binatorial regimen that can revert it.

Results
Screen for Repositioning Compounds Identifies Dasatinib as the Lead
DLBCL-Active Drug. To identify compounds of potential value for
repurposing in DLBCL, we screened 2 libraries including a total
of 2,160 compounds representative of drugs approved for clinical
use in the United States, Japan, and Europe; natural products;
and targeted compounds at various stages of clinical testing. Using
an ATP-based assay (12), we first high-throughput tested these
compounds for their ability to suppress GCB-DLBCL (n = 3),
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ABC-DLBCL (n = 3), or mantle cell lymphoma (MCL; n = 3) cell
lines, focusing on disease-specific activities as an indication of
pathway specificity and lack of general toxicity. Compounds that
were active against at least 1 cell line (∼14%) were subsequently
validated in a secondary screen across a 4-concentration log range
(0.01–10 μM). We defined for each compound and cell line a
sensitivity area by fitting 5-point logistic curves to the response
data and calculating the area complementary to the area under the
curve of the dose–response function (13) (SI Appendix, Materials
and Methods). We then generated a sensitivity plot in which the
position of each drug indicates the relative effect for each of the 3
subtypes (SI Appendix, Fig. S1 and Table S1).
This screen identified the Src/Abl tyrosine kinase inhibitor

dasatinib as the most potent and specific compound in DLBCL
(Fig. 1A). Dasatinib displayed activity in 5 of 6 DLBCL lines,
with no preferential activity in GCB versus ABC subtypes and no
significant activity against MCL cell lines (Fig. 1B). Of note, other
8 multikinase inhibitors included in the screen were poorly effec-
tive or nonspecific (Fig. 1A), suggesting that the activity of dasatinib
is not due to global suppression of tyrosine phosphorylation.
These results were confirmed in a larger panel of 32 DLBCL

lines, showing that dasatinib is toxic to a significant subset of
DLBCL lines, regardless of subtype. Specifically, 48% (11 of 23)
GCB-DLBCL and 56% (5 of 9) ABC-DLBCL cell lines were
found to be sensitive to dasatinib, using a sensitivity threshold
corresponding to a 125-nM IC50 (14) (Fig. 1C). Notably, dasatinib
was active also in vivo, as it suppressed the growth of xenografts, as
assessed by luciferase imaging and tumor volume measurements in
the luciferized HBL1 and WSU-NHL DLBCL cell lines with no
overt toxicity at a dose previously used in several preclinical
models of Bcr-Abl-driven leukemias (15–17) (Fig. 2 and SI Ap-
pendix, Fig. S2). These results provide preclinical evidence of the
activity of dasatinib against a large subset of DLBCL cases rep-
resentative of both subtypes of this disease.

Dasatinib Activity Is Independent of BTK and Overcomes BTK
Resistance in DLBCL. Since the dasatinib inhibition profile includes
BTK, a key signal transducer in the BCR chronically active ABC-
DLBCL subtype and the target of the drug ibrutinib (4), we in-
vestigated whether dasatinib and ibrutinib activities overlap in
DLBCL. We compared the responses of the 32-cell line panel to
both drugs, using sensitivity areas generated from dosage-dependent
responses as described earlier, and used a sensitivity threshold for
ibrutinib corresponding to a 87 nM IC50 (18). We identified 3
groups of response: a subset comparably sensitive to ibrutinib and
dasatinib, which includes the 3 cell lines carrying CD79A/B mu-
tations (LY10, TMD8, HBL1); a second cluster including DLBCL
lines significantly more sensitive to dasatinib than ibrutinib; and a
third cluster comprising lines resistant to both drugs (Fig. 3A).
These data indicate that dasatinib has a range of activity broader
than ibrutinib, and preliminarily suggested that dasatinib activity is
not restricted by BTK inhibition alone.
To directly test the role of BTK in dasatinib sensitivity, we

took advantage of the BTK C481S mutant, which confers ibru-
tinib resistance by impairing ibrutinib binding. We transduced
LY10, TMD8, and HBL1 cells (CD79A/B mutant ABC-DLBCLs)
with vectors encoding wild-type BTK (BTKWT) or C481S mutant
BTK (BTK C481S) or empty vector as control (EV). As expected,
BTK C481S conferred resistance to ibrutinib, while BTK WT did
not. In contrast, dasatinib was equally effective against BTK WT
and C481S cells. (Fig. 3 B–D). These results were confirmed in vivo
(SI Appendix, Fig. S3).
To understand whether dasatinib is effective in suppressing the

activation of BTK C481S, we tested the auto-phosphorylation of
BTK WT and C481S at tyrosine 223 after treatment with dasatinib
or ibrutinib (15 nM). As expected, phosphorylation of BTKWT, but
not BTK-C481S, was suppressed by ibrutinib. However, dasatinib was
equally ineffective in suppressing BTK-C481S autophosphorylation

(Fig. 3 E–G). Taken together, these results indicate that the ac-
tivity of dasatinib in suppressing DLBCL line growth is in-
dependent from BTK activity and mutational status, and provide
preclinical evidence for the use of dasatinib against ibrutinib-
resistant tumors (Discussion).

FYN as a Major Dasatinib Target in DLBCL. Since the above results
suggest that dasatinib may act through non-BTK targets, we
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Fig. 1. A screen for repositioning compounds identifies dasatinib as the
lead DLBCL-specific agent. (A) Specificity plot of 302 compounds tested for
activity in ABC-DLBCL, GCB-DLBCL, and MCL lines (n = 3, each). Dasatinib,
red; other multikinase inhibitors are indicated in blue (n = 8; dovitinib,
lenvatinib, masitinib, nilotinib, ponatinib, saracatinib, sunitinib, and tandu-
tinib). (B) Dose–response curves to dasatinib of ABC-DLBCL, GCB-DLBCL, and
MCL (n = 3 each). (C) Distribution of dasatinib sensitivity in ABC- (red; n = 9)
or non-ABC DLBCL (GCB, blue; n = 23) and MCL (green; n = 4) lines. Hori-
zontal lines represent averages. Dotted line represents sensitivity threshold
for dasatinib (3.125).
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examined its activity against members of the family of Src/Abl
family kinases (SFKs), which are known to be inhibited by dasatinib.
In particular, we examined the 3 SFKs (LYN, FYN, and BLK)
that are associated with proximal BCR signaling, as shown by
CD79A/B coimmunoprecipitation approaches (19). To test which
SFK needs to be suppressed for dasatinib to exert its action, we
took advantage of gatekeeper mutants (GK) of each SFK. The GK
residue is important for binding of type I/II TK inhibitors to the
target kinase, and its mutation confers resistance by decreasing
accessibility to the inhibitor (20, 21). We then transduced dasatinib-
sensitive DLBCL cell lines (HBL1: ABC-DLBCL, CD79-mutated;
and WSU-NHL: GCB-DLBCL, CD79-wild type) with WT or GK
cDNAs for each of the 3 SFKs, alone or in combination, and tested
their ability to induce resistance to dasatinib. This experiment
revealed that when expressed alone, FYN GK was the most ef-
fective in inducing dasatinib resistance, both in HBL1 and in WSU-
NHL cells. In ABC-DLBCL cells, FYN GK-induced resistance was
further increased by the presence of LYN or BLK GK, while the
combination of the 3 GK together did not confer further resistance
in both cell lines (Fig. 4).

PTEN Loss and PI3K Activation as Biomarkers of Dasatinib Resistance.
To dissect the mechanisms of dasatinib resistance, we searched
for correlations between specific genetic lesions found in the cell
line panel and dasatinib sensitivity. We initially identified PTEN
loss by inactivating mutations and/or deletions as the top

candidate feature of resistant cells, being detectable in 25% (4 of
16) resistant lines (Fig. 5 A and B). In addition, PTEN protein
was undetectable by Western blot analysis in 5 additional re-
sistant lines that do not harbor PTEN genetic alterations, sug-
gesting that PTEN is also targeted by epigenetic mechanisms
(22) (Fig. 5B). Overall, 56% (9 of 16) of the resistant lines
showed PTEN protein loss compared with 13% (2 of 16; P =
0.02) of the sensitive cell lines (Fig. 5C).
PTEN inactivation was matched by AKT S473 phosphoryla-

tion (Fig. 5B), which was easily detected in all PTEN-null
DLBCLs and in 2 additional resistant lines (DB, SUDHL10).
As sensitive cell lines also show residual AKT phosphorylation,
we asked whether dasatinib activity was dependent on its ability
to suppress AKT phosphorylation, and was prevented by the
absence of PTEN-mediated negative regulation. We treated all
AKT-positive resistant cell lines (n = 11), as well as 6 sensitive
cell lines, with 2 different doses of dasatinib (1 and 10 nM), and
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Fig. 2. Dasatinib suppresses DLBCL growth in vivo. (A) Luciferase imaging of
NOD/SCID mice s.c. transplanted with HBL1 cells carrying a Luciferase To-
mato expressing vector (HBL1 LTS) and treated with dasatinib (10 mg/kg
twice daily) or vehicle only (n = 4/group). (B) Resection of s.c. tumors from
mice treated with dasatinib or vehicle at day 10. Magnification bar, 10 mm.
Fold change of diameter (C and D) and flux over time, relative to time 0, for
dasatinib-treated (red) or vehicle only (black) HBL1-LTS xenotransplants.
Error bars represent SDs (***P < 0.001, t test; n = 8 mice per group). Statistics
refer to day 10 measurements.
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Fig. 3. Dasatinib overcomes ibrutinib resistance resulting from the C481S
BTK mutation and acts independent of BTK. (A) Sensitivity plot of ibrutinib
(y axis) and dasatinib (x-axis) across 32 DLBCL lines (GCB, blue; ABC, red;
FARAGE, DLBCL/PMBL) classified as dasatinib-sensitive (n = 16, violet circle),
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probed them for AKT S473 phosphorylation. One-hour dasatinib
treatment abrogated AKT phosphorylation in all sensitive cell
lines, while S473 phosphorylation persisted in PTEN-negative
resistant lines (Fig. 6). Based on this data, we conclude that it
is the PTEN-dependent inability to suppress AKT activity, rather
than the level of AKT phosphorylation, that drives resistance to
dasatinib.
Since PTEN is a negative regulator of the PI3K pathway, we

directly tested whether activation of this pathway is responsible
for the induction of dasatinib resistance. PTEN suppression by
the inhibitor SF1670 induced a modest but significant increase
in AKT S473 phosphorylation and dasatinib resistance in 2
dasatinib-sensitive lines (SI Appendix, Fig. S4). Since this modest
effect of PTEN inactivation may be due to the need for addi-
tional PI3K activation to activate AKT, we directly tested the
effect of PI3K activation by transducing 3 dasatinib-sensitive
DLBCL lines (WSU-NHL, FARAGE, and HBL1) with vectors
encoding either WT PIK3CA (PIK3CA WT) or a constitutively
active PIK3CA mutant (PIK3CA H1047R), and tested these
isogenically engineered cell lines for dasatinib sensitivity. The
results showed that PIK3CA H1047R-expressing cells were sig-
nificantly more resistant to dasatinib than PIK3CA WT cells (SI
Appendix, Fig. S5 A–C, Left). Consistently, dasatinib treatment
led to rapid suppression of AKT S473 phosphorylation in
PI3KCA WT cells, while the same phosphorylation persisted in
PIK3CA H1047R cells (SI Appendix, Fig. S5 A–C, Middle and
Right). Treatment of xenotransplants of luciferized HBL1 cells
expressing either PI3K WT or PI3K H1047R in NOD/SCID
mice confirmed these results in vivo by showing that PI3K
H1047R HBL1 tumors did not respond to dasatinib, as docu-
mented by luciferase imaging and tumor volume measurement
(SI Appendix, Fig. S5 D–G). Finally, these results were confirmed
in PDX-derived cultures, which showed that the PTEN-negative

YLL did not respond to dasatinib, while other PTEN-positive
ones did (SI Appendix, Fig. S6). Overall, these data indicate that
activation of PI3K signaling induces resistance to dasatinib.

PI3K Inhibition by Targeting mTOR Synergizes with Dasatinib. These
results led us to explore the potential of inhibitors of the PI3K/
AKT/mTOR pathway for treating dasatinib-resistant DLBCLs.
Thus, we first screened a set of compounds including PI3KCD/
PI3KCG inhibitors [CAL-101 (23) and IPI-145 (24)], the AKT
inhibitor MK-2206 (25), the mTORC1 inhibitor rapamycin (26),
and mTOR kinase inhibitors [mTORKi, OSI-027 (27) and INK-
128 (28)] for their ability to suppress AKT activation in PTEN-
negative, dasatinib-resistant cell lines (n = 4). We identified the
mTORC inhibitor INK-128 as the most effective in suppressing
AKT activation in all the cell lines tested (Fig. 7A). Consistent
with suppression of AKT S473 phosphorylation, INK-128 was
effective on all 9 PTEN-negative, dasatinib-resistant cell lines (SI
Appendix, Fig. S7), as shown by dose-dependent response curves
and phospho-S473 AKT immunoblots.
While these results support the use of mTOR inhibitors for

dasatinib-resistant cases, their therapeutic use would be limited by
the potential toxicities, which have been observed in preclinical
practice when used as single agent (29). We thus explored whether
dasatinib and INK-128 could synergize, and therefore be used at
lower dosages, allowing for both reduced toxicity and suppres-
sion of dasatinib-resistant lymphomas. Consistent with this hy-
pothesis, dasatinib and INK-128 showed synergic effect in 3
PTEN-negative dasatinib-resistant lines (Fig. 7B). Accordingly,
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combinatorial treatment of dasatinib (10 mg/kg twice daily) and
INK-128 (0.75 mg/kg 3 times a week) in vivo was effective in
suppressing the growth of KARPAS 422 xenografts, as measured
by luciferase imaging and tumor volume (Fig. 7 C–F). Finally, we
detected a 3-fold progression-free survival benefit of the com-
bined treatment compared with single or untreated controls (Fig.
7G). Overall, these results provide preclinical in vitro and in vivo
evidence for the use of mTOR inhibitors/dasatinib combinatorial
treatments in dasatinib-resistant DLBCL.

Discussion
Dasatinib has been previously examined for its potential activity
against non-Hodgkin lymphoma in a phase 1/2 clinical trial in-
cluding 33 patients with heterogeneous B- and T-NHL histologies
(30). Although it showed a limited number of both partial and
complete responses with acceptable toxicities, this study included
only 8 DLBCLs and did not explore the status of PI3K/AKT/
mTOR activation in these cases. These limitations, together with
the preclinical results presented here, suggest that the clinical activity
of dasatinib against DLBCL should be reexamined by addressing an
informative series of patients and using the biomarkers of sensitivity
and resistance shown here.
A second aspect of our study involves the potential use of

dasatinib for cases resistant to BTK-targeting agents such as
ibrutinib. A recent study has explored the preclinical activity of
various multi-TK inhibitors and concluded that masitinib may be
more effective than dasatinib against ibrutinib-resistant DLBCL
(31). We note, however, that the authors defined resistance using
micromolar concentration of ibrutinib in BCR-stimulated lym-
phomas irrespective of their subtype and genetics. In addition,
masitinib was effective in DLBCL lines only at nonclinically
relevant micromolar concentrations. Our study demonstrates
that native, unstimulated DLBCL cell lines of defined genetic/
epigenetic features can be killed by nanomolar, pharmacologi-
cally relevant concentrations. These observations, together
with the fact that dasatinib is already approved for clinical use,
point to this drug as a strong candidate for DLBCL treatment.

Although not directly addressed here, several observations
suggest that dasatinib may be active against a significantly ex-
panded spectrum of B cell malignancies. First, we show that
dasatinib kills cells by a mechanism that is independent of BTK
targeting, suggesting that this drug may act on B-NHLs that re-
spond initially to ibrutinib but acquire resistance after mutation
of BTK cysteine 481 (5). Accordingly, we preliminary show that a
PDX derived from a patient with Richter syndrome treated with
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ibrutinib and evolved into ibrutinib resistance in vivo responded
to dasatinib in ex vivo cultures (SI Appendix, Fig. S6). Second, the
spectrum of malignant conditions that carry ibrutinib-sensitive ge-
netics is rapidly expanding, and now includes chronic lymphocytic
leukemia, Waldenstrom macroglobulinemia, and 75% of pri-
mary central nervous system lymphomas (32). In all these dis-
eases, dasatinib could serve as a first-line or as a second-line
treatment option in the event of acquired ibrutinib resistance.
The mechanism by which dasatinib kills DLBCL cells remains

partially unknown. Previous work has reported that dasatinib
decreases the phosphorylation of several molecules including
IκB-alpha, AKT, ERK, and LYN (4). Our results clearly show a
central role for AKT targeting, but also point to FYN as a major
target, whose activity in response to dasatinib cannot be surro-
gated by LYN. This apparently contrasting observation may be
explained by the fact that previous conclusions were based on
loss-of-function approaches (33). Conversely, our approach in-
volves the use of dasatinib-resistant (gatekeeper) mutations and
may be more effective in identifying the molecules that are more
prominent in sustaining BCR signaling and determining dasatinib
activity. Overall, additional studies are needed to comprehensively
identify the key targets of dasatinib activity, since the results could
have important implications for the clinical use of this drug.
Despite its broad spectrum of activity, which includes ABC-

DLBCL as well as a fraction of GCB-DLBCL, a subset of cases
remains resistant to dasatinib. We identify loss of PTEN ex-
pression due to genetic or epigenetic mechanisms as a predictor
of dasatinib resistance in 55% of resistant cell lines tested.
Consistently, PTEN suppression (SI Appendix, Fig. S4) and PI3K
activation induced resistance to dasatinib (SI Appendix, Fig. S5),
indicating that the balance between PI3K and PTEN activities

determines dasatinib sensitivity. This conclusion prompted the
testing of several inhibitors of the PI3K pathway as potential
partners that could eliminate dasatinib resistance. Our results
show that mTOR inhibitors, such as INK-128, can counteract
deregulated PI3K activity more efficiently than direct gamma/
delta-specific PI3K or AKT inhibitors because of the ability of
mTOR inhibitors to suppress mTOR-mediated AKT activation
and, most likely, because AKT activation is more directly con-
trolled by mTOR than by PI3K in these cells. Of note, pan-PI3K
inhibitors have been shown to be effective in B-NHLs (10, 34) and
may offer alternative venues to interfere with deregulated PI3K
activity in PTEN-negative DLBCLs. A relevant aspect of the INK-
128/dasatinib combination is their clear synergistic effect, which
suggests its potential clinical use at lower doses, thus alleviating
the toxicities that have been reported for dasatinib and especially
for mTOR inhibitors (35).

Materials and Methods
Detailed methods for drug screens, drug specificity assessment, identification
of predictors of resistance, dose–response assays, combinatorial studies, cell
lines, lentivirus production, Western blot assays, animal studies, and statis-
tical analysis are available in the SI Appendix.
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