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Abstract

The basic principles of Magnetic Resonance have been understood for over 70 years and a 

mainstay of medical imaging for over 40. At this point, it’s no longer about simply porting these 

principles to medical imaging. But we are by no means confined to simply polishing either. 

Significant innovation and even revolution can come to old technologies. The recent revolution in 

optical microscopy shattered the resolution constraint imposed by a seemingly fundamental 

physical law (the diffraction limit) and reinvigorated a 500-year-old modality. Progress comes 

from re-examining old-ways and sidestepping underlying assumptions. This is already underway 

for MRI; and is fueled by advances in image reconstruction. Reconstruction increasingly employs 

sophisticated general models often using subtle and hopefully innocuous prior knowledge about 

the object. This allows a careful re-examination of some basic prerequisites for MRI such as 

uniform static fields, linear encoding fields, full Nyquist sampling, or even a stationary object. 

These powerful reconstruction tools are driving changes in acquisition strategy and basic 

hardware. The scanner of the future will know more about itself and its patient and his/her biology 

than ever before. This strategy emboldens relaxed hardware constraints and more specialized 

scanners, hopefully expanding the reach and value offered by MR imaging.
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Introduction

The future of MRI technology appears to rest on a number of evolving directions that have 

moved us away from a slavish devotion to Fourier encoding to a more general model. In a 

modern accelerated parallel imaging acquisition the Nyquist sampling “limit” is merely a 

suggestion which is now rarely followed. The vast minority of the kspace samples are 
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actually encoded by the RF reception system not the gradients. The immediate benefit is a 

substantial increase in acquisition speed, quality and information extraction. These benefits 

have opened of the flood-gates to sophisticated image reconstruction methods that 

manipulate the data to a degree that would have been found discomforting a generation ago. 

Prior knowledge can creep into image generation in subtle ways, but with such remarkable 

benefits that it’s impossible to argue against that path, although a wary eye on unwanted side 

effects is needed.

Simultaneous with the advance of the signal processers, increasingly sophisticated hardware 

optimization strategies are being developed to increase performance. Perhaps more 

importantly, the optimization targets are changed. As the ability of image reconstruction 

improves, acquisition and hardware targets shift to maximally exploit the algorithm’s ability, 

and old constraints are relaxed. The latter provides elbow-room for the hardware designer to 

contemplate either expanding in the faster/ stronger/ see-more direction, or the cheaper more 

portable path. But, as engineering challenges fall, new biological challenges rise, from the 

static, switched field and RF field issues as well as from patient motion. Fortunately, 

biological effects can also be brought under the lens of model-based optimized design and 

influenced by image reconstruction improvements. MR system engineering considerations 

are expanding from traditional engineering of B field generation/shaping to intimately 

incorporating biological models and constraints. As biology becomes firmly entrenched in 

the engineering, the creation and exploitation of new degrees of freedom is needed to 

navigate these biological constraints.

This article briefly reviews three broad areas seen in the (somewhat murky) “crystal ball” as 

the start of a lengthy path toward the “ultimate MRI.” The first is entitled “Scanner, know 

thyself”, which describes the liberating effect of an improved forward model for image 

reconstruction. This includes a coordinated acquisition and reconstruction strategy; an idea 

of seemingly obvious benefit but underappreciated for years. The second section is entitled 

“Know your patient” which touches on some of the well-known benefits of incorporating 

prior knowledge about the image and/or imaging subject for accelerating the acquisition, or 

extracting. The Machine Learning (ML) tidal wave appears well poised to maximally exploit 

these “priors”, perhaps without even telling us what they are. Finally, the article briefly 

addresses the potential of these two paths to expand the concept of what a scanner looks like 

and does, with an eye toward extending the reach of MR.

Scanner, know thyself

An old physics proverb states: “if you can measure a systematic error, you can fix the 

systematic error.” Often, the “error” is calculated from a measurable property of the 

instrument. E.g. image distortion is predictable from a measured B0 field deviation map and 

knowledge of the acquisition bandwidths. The effect on the recorded data is easily modeled, 

suggesting that the image reconstruction also be based on this model. A “forward-model” 

describing how to generate the data given the image is intrinsic to even the earliest MR 

image reconstructions. Lauterbur’s original reconstruction assumed the data consisted of 

projections formed from linear gradients (1) and the Aberdeen group’s elegant spin-warp 

model (2) and the latter kspace picture (3) included a similarly idealized model of the 
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acquisition. Currently, the term “model-based reconstruction” usually implies a more 

general forward model describing how to estimate the raw data based on the object followed 

by some form of iterative search to invert that relationship to find the object giving; the “best 

fit” to the data, possibly subject to constraints.(4) (5, 6) This approach has gradually 

replaced attempts to “fix” the data to adhere to the standard discrete Fourier transform 

(DFT) model, for example by re-gridding (7, 8) or “correct” the image after simple 

reconstruction for things like B0 off-resonance (9, 10) or (B1
−) receive coil shading (11).

The basic formalism of the forward model is show in Figure 1. Each digitized data point is a 

weighted sum of the pixel values, with complex weights imposed by the encoding fields. On 

a pixel by pixel basis, the encoding phase factors are easy to calculate as are spin relaxation 

and coil reception profile magnitude factors. The summation implicit in the matrix 

multiplication is provided by the receive coil. Thus, the forward model is a simple linear 

matrix equation with vectorized sampled (raw) data and image pixels. In a uniformly 

sampled spin-warp framework, the encoding matrix is the discrete Fourier transform (DFT) 

and the image would be solved one coil at a time by applying its well-known inverse. For 

anything more complicated, the encoding matrix is no longer the DFT or even guaranteed to 

have an inverse and good luck finding an inverse matrix given E’s size (almost 1016 

elements for a 256-cube image with 32 receive channels.) But the image vector can be 

iteratively estimated as a least-squares optimization problem minimizing the “data 

consistency”, i.e. the difference between the measured and expected data points using 

methods such as the conjugate gradient method (12) or the LSQR solver (13). Other 

approaches have been explored such as Minimum Likelihood formalisms useful when more 

difficult noise models must be accomodated. (4, 14)

Extracting information from the coil profiles

The power of the method lies in its ability to generalize and take into account any 

imperfection that can be described in the forward model; it is extendible in virtually any 

direction imaginable. A second advantage, discussed in the next section, is the ability to 

regularize the optimization, imposing prior knowledge constraints or penalties such as 

scarcity in some domain. One of the first glimpses of the power of the forward model arises 

from simply adding the multiplicative B1
− receive coil profile to the model and stacking the 

sampled “kspace” data vectors and encoding matrices from the individual coils in a phased 

array (as in Fig. 1). Note, at some point we should probably stop referring to the data-vector 

as “kspace” since E now deviates from the DFT matrix. The “tall, skinny” E matrix 

immediately screams “over-determined” and suggests that samples could be omitted. The 

B1
− receive coil profiles, previously viewed as a nuisance shading of the final image, are 

recast as valuable spatial encoding fields. They modulate the signal similar to the gradient 

field’s role (although with non-orthogonal patterns). If the under-sampling pattern is regular 

(e.g. every other kspace line), then we immediately recognize the SENSE method (15).

Fixing acquisition imperfections

The complete flexibility and general nature of the model-based approach positions it well for 

future innovation. Any sort of spatial modulated can be applied to the spins and we now 

know how to reconstruct the image as long as E is well conditioned. Extensions have 
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included non-rectilinear kspace trajectories (5, 16), non-linear encoding fields (17, 18), 

gradient nonlinearity, (19) pre-characterized eddy current and measured gradient 

imperfections(20), quadratic encoding from RF excitations patterns (21, 22), and 

temperature related permanent magnet field drift (23). The scanner of the future will have an 

extensive pre-characterization and even dynamic selfassessment of its fields and utilize this 

information within a generalized image reconstruction framework. Additionally, even if a 

pre-characterization of a gradient is not known, it is possible to try to describe the 

miscalibration (nuisance parameters) in the model by including them in the forward model 

as a small number of unknowns and jointly estimate them with the image. (24)

Patient Motion is defeated

Mitigating patient motion, the mother of all nuisance parameters, is an important, although 

not fully realized extension of the formalism. Motion corruption of MRI is currently 

estimated to cost $1.4B USD yearly in the US alone (25). For the case of rigid-body head 

motion, the image is rendered artifact free if forward model is successfully placed in the 

coordinate system of the object, ideally including a model of spin-history effects. Non-rigid 

body motion is more difficult but has been approached through an image entropy cost 

function. (26, 27) The rigid body forward model contains rotation and translation matrices in 

front of E, allowing a different object position for each sample point. Artifact-free images 

follow from the inversion of this custom, motion-inclusive, E matrix. Inverting the model is 

straight-forward when the position information at each sample time is known, e.g. from a 

navigator acquisition or external tracking system.(28, 29) The problem becomes harder, but 

perhaps not intractable, if the position information is not known but is left for the iterative 

reconstruction to estimate. Estimation of the position parameters is plausible given that a 

multielement coil array, in effect, encodes head position. I.e. the signals from the elements 

are modulated in a predictable way as the head moves closer to some elements and farther 

from others.(30)

Thus the motion information has been embedded in our data all along, waiting for a smart 

search algorithm to find it. Considerable progress has been made toward stabilizing this non-

convex search using a data-consistency cost function (31-33) and also an image entropy cost 

function.(26, 27) But the result is a difficult non-convex optimization problem and more 

needs to be done to ensure speedy convergence to a high-quality image. Additional book-

keeping is needed to help mitigate spin history effects and convergence could be aided by 

perhaps regularizing the motion (i.e. imposing smooth motion, or piece-wise continuous 

position parameters). In such a non-convex joint-optimization (image + motion parameters), 

aiding the optimization is about more than just speeding up the search; it often leads to a 

better solution (removes more artifact). To this end, neural-net based machine learning 

appears well-poised to assist in the difficult non-convex search problem, either by directly 

relying on a CNN trained to identify motion artifact(34), or indirectly using this training to 

facilitate the search process in the forward model formalism(35). Figure 2 shows results 

from a CNN supported data-consistency driven reconstruction of a moving head using only 

data from a conventional multi-shot RARE T2 acquisition, perhaps the most common 

clinical brain sequence. The CNN improved convergence speed, provided more artifact 

mitigation, and allowed extension of the model to include motion within the shot. (35)
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This and other promising results suggest that motion can be mitigated without the added 

complexity of trackers or navigators. But why stop with motion? A host of other biological 

nuisances corrupt our images, such as respiration and pulsatile flow, both of which are 

parameterized with relatively few (unknown) parameters. As more physiological sensors are 

built into the patient bed, incorporating their information into the reconstruction is likely 

beneficial.

Finally, the vast success of model-based reconstructions has implications for the choice of 

acquisition protocol. This started with parallel imaging driving the proliferation of 

multichannel arrays; today, virtually all clinical images are detected with phased array coils. 

The next step was tailoring the sampling patterns to improve accelerated imaging by 

controlling aliasing patterns (36-38) or random sampling (39). Other studies have optimized 

flip angle schemes, for example to optimize performance of MR fingerprinting parameter 

mapping. (40)

Know your patient

The flexibility outlined above provides a strong push toward the adaptation of generalized 

reconstruction methods. But, additional benefits arise from adding prior knowledge about 

the object, for example as a simple regularization term in the cost function. Of course, if you 

already know what the object looks like, why bother imaging it? A valid question, but 

impressive results can be obtained from innocuous seeming assumptions about the object. 

Compressive sensing assumes that the object is sparse in a chosen domain and achieves 

impressive ability to de-noise or further increase undersampling (which speeds up the 

acquisition). (39) Other popular regularizers include Tikhonov regularization toward a 

reference image or simply a uniform image, quadratic roughness, and total variation (TV). 

(4)

Of course, the real benefit of the regularization occurs when you have a pretty good idea 

what you are looking for. This occurs most naturally when performing time-series imaging 

or stepping through image contrast parameters (for T1 or T2 mapping). In this case, the 

previous image makes a good regularizer and allows exploitation of the high degree of 

mutual information in the series. Namely, an image series with only small temporal changes 

is naturally very sparse in time domain. Figure 3 shows the incredible improvements 

achieved in reconstructing a sparsely sampled, un-gated cardiac time-series using a 

combined low-rank and sparse model.(41) Contrast mapping exams are another area where 

good priors can easily be found. Two images with slightly different TEs acquired in the 

same patient have considerable joint information, thus reconstructing this data jointly has 

benefits. (42, 43) MR scanners have traditionally reconstructed, a patient’s scan as if it did 

not know anything about the scan of the same anatomy completed 5 minutes earlier. Joint 

reconstruction of all the images from an exam makes a good deal of sense and the 

generalized framework (perhaps with small patient position changes explicitly modeled) 

appears both doable and desirable. Maximum benefit will be derived when the acquisition 

scheme is also fully coordinated to take advantage of the joint reconstruction.
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Finally, its impossible to talk about the revolution in image reconstruction without 

addressing the newly born 900 lb gorilla in the room; Machine Learning (ML). The term ML 

itself is poorly defined, but the main flavor in use by the MRI community is supervised 

learning based on a Convolutional Neuronal Networks (CNN) trained on example data. The 

application of the trained network to a new (unknown) data set is computationally fast, and 

evidence suggests that the CNN can generalize sufficiently to reconstruct data not in the 

training set. (44-47) This approach, in effect, throws out the detailed physics used in the 

forward models discussed above and replaces it with a completely generic model; the 

convolutional neural net. By finding the weights for the net in the training process, the 

network is “learns” all it needs to know to produce reconstructions similar to the training 

data. In most MR work with CNNs, a “physics-based” forward model is used to generate the 

training data, implying that the CNN “model” will only be as good as the original forward 

model. This does not feel like an advance, although applying the CNN is computationally 

faster and perhaps achieves a more optimum regularizer against noise. But some control is 

lost, both in knowledge about what it is happening to the data, especially in terms of blurring 

and the strength of the regularization applied.

The limited methods for understanding and controlling what the network is doing has 

generated some skeptics.(48) Nonetheless, the CNN has many nice features such as built in 

image translational invariance (49) and commonalities with well known methods like spline 

interpolation.(50) If Compressed Sensing is occasionally derided as “intelligent smoothing”, 

then it is fair to describe ML reconstructions as “intelligent interpolation.” Viewing it as a 

fancy interpolation tool, it is safest if the unknown data is well represented by the training 

data (limiting interpolation and avoiding extrapolation.) Nonetheless, the successes of the 

ML approach speak for themselves, and it appears to be a powerful tool, perhaps best 

employed where we do not have a good model to guide us, as is the case for removal of 

complex artifacts such as from motion or for use within a more traditional model; i.e. 

employ the CNN within a forward model framework (35, 46, 51, 52).

Breath and reach of MR expands

The hardware designer of the future should feel liberated by the reconstruction revolution. 

First and foremost, the system designer can rest assured that there is a path to image 

reconstruction for any crazy idea s/he comes up with. The ability to reconstruct images with 

relaxed acquisition hardware constraints (for example B0 uniformity or gradient linearity) 

provides two possible paths. One path is toward increased performance capabilities. 

Stronger/faster gradients are possible if you relax the linearity constraint (a primary 

determinant of the Peripheral Nerve Stimulation (PNS) ceiling). Similarly, improved ability 

to handle eddy currents during reconstruction could boost gradient efficiency. Another path 

is toward scanners that are cheaper and easier to site and operate, significantly increasing the 

impact of MRI.

Relaxing engineering constraints is paramount for reducing costs, and the improved 

reconstructions allow every aspect of the system to be re-evaluated. First and foremost, 

successful denoising strategies enable lower field systems with concomitant benefits in cost 

and siting. Gradient efficiency and thus amplifier and water cooling costs can be impacted 
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when changes to the encoding fields can be managed. Magnets become cheaper, lighter and 

shorter when the field homogeneity constraint is relaxed. (53) Even in high-income countries 

the cost of MRI shapes when and how it is used. In countries with limited scanner access the 

impact could be still greater.(54) The introduction of low-cost, and/or truly portable scanners 

could also enable new point-of-care and monitoring applications which are not feasible for 

today’s scanners in centralized settings. As lower fields become practical, unconventional 

designs including extremely portable and single-sided designs can be contemplated. (23, 

55-57)

In conclusion, the image reconstruction revolution is significantly changing the look and feel 

of MRI scanners. The scanner seen in the crystal ball knows more about itself and its patient 

and has elegant ways to utilize this information which hopefully will translate into new 

benefits.
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Highlights

• As MRI is moving toward a more generalized approach with added degrees of 

freedom in the RF reception, transmission and encoding fields, and 

generalized model based reconstructions that can reconstruct from just about 

anything.

• Model-based reconstructions, together with their streamlined approach to 

adding prior knowledge will increase opportunities for faster imaging and 

imaging with relaxed hardware constraints, ultimately extending the 

performance and reach of MRI.
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Fig. 1: Linear forward model approach to MR image encoding and reconstruction.
For a raw-data signal sampled at time t, an applied magnetic field modulates the proton spin 

phase with a simple e−iγΔB(x,y,z,t)t phase factor where ΔB(x,y,z) is the deviation from a 

uniform field due to any source, e.g. an applied encoding field, magnet inhomogeneity, eddy 

current, or truck passing by. Other modulations such as relaxation effects and detection coil 

sensitivity profiles also appear as multiplicative factors in front of each pixel’s value. The 

detection process simply sums the weighted values from all pixels, allowing the entire 

process to be described as a matrix multiplication. In most MRI scanners, a good deal of 

work ensures that E is very nearly the discrete Fourier matrix, with its well-behaved 

properties and a known inverse, where as the “inverse problem” of estimating the image 

based on the data and forward model is more burdensome, requiring an iterative search.
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Fig. 2: Jointly solving for motion.
In this reconstruction of a RARE style clinical T2 brain acquisition, the forward model 

included head rotation and translation unknowns, both between shots of the RARE sequence 

and within the shot. No tracking or navigator information was used, instead a joint search 

was performed for the head position parameters and the image based on only the kspace data 

from the array. A machine learning method was employed within the search to improve the 

non-convex optimization, but the final image derives only from the forward model inversion 

(using the best estimate of the motion parameters). From Haskell et al. (35)
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Fig. 3: Prior knowledge in the reconstruction.
In this example, data from a highly undersampled non-gated cardiac time-series in a rat was 

reconstructed using a combined Sparse + low rank model of the spatial temporal data. From 

Zhao et al. (41)

Wald Page 14

J Magn Reson. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Scanner, know thyself
	Extracting information from the coil profiles
	Fixing acquisition imperfections
	Patient Motion is defeated

	Know your patient
	Breath and reach of MR expands

	References
	Fig. 1:
	Fig. 2:
	Fig. 3:

