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Abstract

Obesity is a disease that results from an imbalance between energy intake and energy expenditure. 

Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities 

associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose 

metabolism. Multiple studies have shown that activation of BAT using either pharmacological 

treatments or cold exposure had an acute effect to increase metabolic function and reduce 

adiposity. Recent preclinical investigations have explored whether increasing BAT mass or 

activation through transplantation models could improve glucose metabolism and metabolic 

health. Successful BAT transplantation models have shown improvements in glucose metabolism 

and insulin sensitivity, as well as reductions in body mass and decreased adiposity in recipients. 

BAT transplantation may confer its beneficial effects through several different mechanisms, 

including endocrine effects via the release of ‘batokines’. More recent studies have demonstrated 

that beige and brown adipocytes isolated from human progenitor cells and transplanted into mouse 

models result in metabolic improvements similar to transplantation of whole BAT; this could 

represent a clinically translatable model. In this review we will discuss the impetus for both early 

and recent investigations utilizing BAT transplantation models, the outcomes of these studies, and 

review the mechanisms associated with the beneficial effects of BAT transplant to confer 

improvements in metabolic health.
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1. Introduction

The obesity epidemic is increasing at an alarming rate; over the last several decades obesity 

rates have tripled (WHO Obesity Fact Sheet, 2018). In fact, over 50% of the world’s 

population has been classified as overweight or obese. With the striking escalation of this 

pandemic there is a great need to define and identify therapeutic tools to combat obesity and 

the increased risk of its associated comorbidities including type 2 diabetes, cardiovascular 
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disease, and cancer. Obesity is a disease that results from an imbalance in energy intake and 

energy expenditure. An important tissue involved in both energy intake and energy 

expenditure is adipose tissue, an essential organ involved in maintaining systemic metabolic 

function (Cohen and Spiegelman, 2016; Scherer et al., 1995; Stanford et al., 2013; Thomou 

et al., 2017)

2. Adipose Tissue

Adipose tissue is composed of various cell types including adipocytes, preadipocytes, 

adipose-derived stem cells (ADSC’s), and immune cells. During periods of chronic positive 

energy imbalance adipose tissue expands primarily through an increase in the size of 

existing mature adipocytes (hypertrophy) and to some extent via an increase in preadipocyte 

and adipocyte numbers (adipogenesis) (Prins and O’Rahilly, 1997; Rosen and Spiegelman, 

2000). However, in the obese state excessive energy intake over a prolonged period 

overwhelms this capacity resulting in insulin resistance, inflammation, and dysregulation of 

adipose tissue (McLaughlin et al., 2007; Tchoukalova et al., 2007).

There are two types of adipose tissue in rodents and humans, white adipose tissue (WAT) 

and brown adipose tissue (BAT). WAT functions to store energy in the form of triglycerides 

and release energy during fasting or physical activity (Frayn, 2010). WAT is characterized by 

large unilocular lipid droplets, limited mitochondria and is innervated by the sympathetic 

and parasympathetic nervous systems (Bamshad et al., 1998; Bartness and Bamshad, 1998; 

Bowers et al., 2004; Youngstrom and Bartness, 1995). WAT exists in multiple locations in 

the body and has two major subtypes; visceral and subcutaneous. Visceral WAT (vWAT) is 

located surrounding the internal organs and is associated with insulin resistance, an 

increased risk for type 2 diabetes, altered lipid profile, increased incidences of 

atherosclerosis, and overall mortality (Carey et al., 1997; Nicklas et al., 2006; Ross et al., 

2008; Wang et al., 2005). Due to its anatomical location, vWAT directly drains into the 

portal vein, which allows direct delivery of free fatty acids and cytokines/adipokines to the 

liver. Additionally, vWAT is more metabolically active than subcutaneous WAT (scWAT) 

when normalized by total mass (Kraunsoe et al., 2010) and has an increase in lipolytic flux 

compared to scWAT (Arner, 1995; Lemieux and Despres, 1994).

Subcutaneous WAT (scWAT) is a peripherally located depot and is associated with increased 

insulin sensitivity and decreased rates of type 2 diabetes, dyslipidemia, and atherosclerosis 

(Misra et al., 1997; Snijder et al., 2003; Tanko et al., 2003). Healthy scWAT contains small, 

insulin sensitive adipocytes (Choe et al., 2016) which have a greater affinity for lipid 

sequestration, thus preventing ectopic lipid storage and insulin resistance in other tissues 

(Marin et al., 1992; Misra and Vikram, 2003). Studies have also shown functional 

differences in scWAT and vWAT; transplantation of scWAT into the visceral cavity improves 

whole-body glucose metabolism and insulin sensitivity but increasing the amount of vWAT 

into the same depot had no effect (Tran et al., 2008).

The second type of adipose tissue is brown adipose tissue (BAT). In contrast to WAT, BAT is 

involved in energy expenditure (Lowell and Spiegelman, 2000). BAT is a thermogenic tissue 

that functions to generate heat in response to cold exposure (Bartelt et al., 2011; Gesta et al., 
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2007; Rothwell and Stock, 1983; van Marken Lichtenbelt et al., 2009). It does this by 

uncoupling oxidative phosphorylation in mitochondria through the uniquely expressed 

uncoupling protein 1 (UCP1) (Aquila et al., 1985; Heaton et al., 1978). BAT is characterized 

by high levels of mitochondria (Cannon and Nedergaard, 2004), multilocular lipid droplets 

(Rothwell and Stock, 1983), a high degree of vascularization (Fawcett, 1952), and 

sympathetic innervation (Cannon and Nedergaard, 2004). UCP1 creates a ‘leaky’ proton 

channel (Matthias et al., 2000) in the mitochondria that uncouples mitochondrial proton 

pumping from ATP production, resulting in increased release of heat as part of the process 

of non-shivering thermogenesis. Activated BAT increases sympathetic signaling through 

norepinephrine, which stimulates β3-adrenergic receptors (Collins and Surwit, 2001) and 

initiates lipolytic processes to liberate free fatty acids in the cytosol (Bieber et al., 1975; 

Kuusela et al., 1986; Nedergaard and Lindberg, 1979). While there are three major types of 

beta-adrenergic receptors exist: β1, β2 and β3, β3 is the one predominantly expressed in 

BAT, and thus the most likely to mediate activation by beta-adrenergic stimulation (Collins 

and Surwit, 2001; Lowell and Flier, 1997; Mund and Frishman, 2013; Muzzin et al., 1991).

A subtype of adipocytes has been identified in both rodents and humans (Ishibashi and 

Seale, 2010; Min et al., 2016; Nedergaard and Lindberg, 1979; Petrovic et al., 2010; Wu et 

al., 2012) termed ‘beige’ or ‘brite’ (brown in white) adipocytes. Beige adipocytes express 

UCP1 and have some functional overlap between WAT and BAT. Beige adipocytes have 

similar morphology to brown adipocytes but express unique cell surface markers including 

Tmem26 and Cd137 (Wu et al., 2012). These cells are derived from the Myf5- lineage as 

opposed to BAT, which is derived from the Myf5+ lineage (Seale et al., 2008; Wu et al., 

2012). Various physiological stressors induce beiging of WAT in rodent models including 

cold exposure (Berry et al., 2017; Hui et al., 2015; Petrovic et al., 2010; Zhu et al., 2016), 

exercise training (Bostrom et al., 2012; Stanford et al., 2015; Sutherland et al., 2009; 

Trevellin et al., 2014), intermittent fasting (Li et al., 2017), and noradrenergic stimulation 

using p3 agonists such as CL316243 (Himms-Hagen et al., 2000; Jiang et al., 2017).

Traditionally, BAT was thought to exist only in rodents and infant humans; the BAT depot 

was thought to dissipate upon maturation in adult humans. In 2009, multiple retrospective 

studies using data collected from 18F-fluorodeoxyglucose (18F-FDG) positron emission 

tomography (PET) and computer tomography (CT) led to the ‘rediscovery’ of BAT in adult 

humans. These seminal studies identified functional BAT in adult humans, concentrated to 

the neck, supraclavicular, mediastinal, paraspinal, and suprarenal area (Cypess et al., 2009; 

Li et al., 2017; Nedergaard et al., 2007; Saito et al., 2009; van Marken Lichtenbelt et al., 

2009; Virtanen et al., 2009; Zingaretti et al., 2009). These studies also determined a negative 

correlation with BAT and BMI, fasting glucose, and age, suggesting that young, lean human 

subjects had the most active BAT (Cypess et al., 2009; Saito et al., 2009). Interestingly, 

obese patients with high BAT activity had improved glucose tolerance (Timmons and 

Pedersen, 2009). Together, these data indicated that BAT is an important tissue to regulate 

glucose metabolism and adiposity, and a potential therapeutic tool to combat obesity.
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3. Increasing BAT mass and activity by transplantation

Strategies harnessing the therapeutic potential of BAT in clinical settings have focused on 

pharmacological treatment (Baskin et al., 2018; Cypess et al., 2015; Loh et al., 2018) and 

cold exposure (Chondronikola et al., 2014; Hanssen et al., 2015; Hanssen et al., 2016; Lee et 

al., 2014b; van der Lans et al., 2013). BAT activation via cold exposure increases glucose 

uptake in BAT (Chondronikola et al., 2014; van der Lans et al., 2013) and improves whole 

body insulin sensitivity (Chondronikola et al., 2014; Hanssen et al., 2015; Lee et al., 2014b) 

in lean and obese subjects (Hanssen et al., 2016) and subjects with type 2 diabetes (Hanssen 

et al., 2015). Cold exposure in humans (up to 6 weeks) increases BAT activity and energy 

expenditure with concomitant improvements in body composition (Yoneshiro et al., 2013). 

These clinical treatments have been centered on activating BAT in humans to take advantage 

of its metabolic benefits.

Although cold exposure has been shown to be effective in improving metabolism in humans, 

this treatment is often uncomfortable and requires a considerable time commitment for 

patients. Importantly, while several studies have looked at the immediate effects of long term 

exposure to cold, to our knowledge none have conclusively determined how long these 

beneficial effects of cold on and metabolism persist. Thus, determining how to activate BAT 

in a safe, sustainable manner to maximize the therapeutic potential of BAT to combat 

obesity and metabolic disease is of great interest and importance, leading to the idea of 

increasing BAT mass and activity through a transplantation model.

The first study investigating BAT transplantation took place in the 1960’s, and was primarily 

conducted to delineate BAT function in vivo (Ferren, 1966). In this study, BAT was isolated 

from the interscapular region of donor mice and transplanted under the kidney capsule for a 

period of 8–15 days (Ferren, 1966). Histological analysis of the transplanted BAT revealed 

that the transplanted tissue survived, but both cell and lipid droplet sizes increased. 

Interestingly, both unilocular and multilocular cells were seen in the transplanted BAT. 

Several decades later, a study examined the effects of transplanting undifferentiated hamster 

BAT into the anterior eye chamber of adult hamsters (Nechad and Olson, 1983). After 20 

days the transplants became revascularized and reinnervated by the nerves of the host’s iris 

and displayed cellular features of BAT including multilocular lipid droplets and highly 

developed mitochondrial networks. Although the transplanted BAT had low nerve fiber 

density, it retained the characteristics of BAT (multilocular droplets) and maintained 

sympathetic innervation. An additional study revealed that transplantation of BAT into lean 

or obese recipients re-established sympathetic innervation in the transplanted BAT 3 months 

after transplantation (Ashwell et al., 1986). While these studies did not investigate the 

metabolic effects of BAT transplantation, such early models indicated that BAT transplant 

was a viable model and showed that the improved metabolic phenotype in response to BAT 

transplantation was at least partly related to re-establishment of sympathetic innervation.

4. BAT transplantation reverses type 1 diabetes in a mouse model

The rediscovery of BAT in humans indicated that BAT played an important role in glucose 

regulation, but the exact role of BAT in whole-body energy balance had not been 
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established. To address this, multiple studies have investigated the effects of BAT 

transplantation on glucose metabolism and insulin sensitivity to ascertain its therapeutic 

potential to regulate metabolic diseases such as diabetes (Figure 1A) (Gunawardana and 

Piston, 2012, 2015; Liu et al., 2015; Liu et al., 2013; Stanford et al., 2013; Zhu et al., 2014).

Some of the first studies to investigate the role of BAT on glucose metabolism used a 

preclinical model of type I diabetes (Gunawardana and Piston, 2012, 2015). Embryonic BAT 

was transplanted into both immune competent and immune deficient streptozotocin-treated 

recipient mice that had severely impaired glucose tolerance and dramatic loss of WAT. 

Increasing BAT improved fasting glucose and normalized glucose tolerance, reduced 

adipose tissue inflammation, and reversed several clinical markers of diabetes including 

polyuria, polydipsia, and polyphagia over a 6-month period post-transplantation 

(Gunawardana and Piston, 2012). Because of the model used, these effects were independent 

of insulin concentration and insulin sensitivity. Inhibiting the insulin receptor diminished the 

effects of the BAT transplant, indicating the importance of the insulin receptor in this model. 

Circulating IGF-1, leptin, and adiponectin were all increased as a result of the BAT 

transplantation. Since IGF-1 directly activates the insulin receptor, the authors hypothesized 

that BAT-released IGF-1 was a primary mechanism to improve glucose homeostasis in this 

model. In a follow up study (Gunawardana and Piston, 2015), embryonic BAT was 

transplanted into non-obese diabetic mice. This transplantation resulted in the complete 

reversal of type I diabetes in parallel with a rapid and enduring improvement in glucose 

homeostasis for 3–6 months after transplantation. In both models, transplantation of 

embryonic BAT increased IGF-1, which may be an important mechanism to improve 

glucose homeostasis.

5. BAT transplantation improves glucose metabolism and insulin 

sensitivity

Other investigations examined the role of BAT transplantation to combat obesity and 

improve glucose metabolism (Liu et al., 2013; Misra and Vikram, 2003; Stanford et al., 

2013; Zhu et al., 2014). In our laboratory, we transplanted BAT from wild-type donor mice 

into the visceral cavity of chow fed wild-type recipient mice (Stanford et al., 2013). Twelve 

weeks after transplantation recipient mice had a marked improvement in glucose tolerance 

and insulin sensitivity. Insulin-stimulated glucose uptake was increased into endogenous 

BAT, visceral WAT, and the heart. Circulating IL-6 and FGF21 were increased in mice 

receiving BAT. In order to elucidate the role of IL-6 to improve glucose metabolism, BAT 

from IL-6−/− mice was transplanted into wild-type recipient mice. Transplantation of BAT 

from IL-6−/− mice into recipients did not confer the same metabolic improvements compared 

to transplantation of wild-type BAT, indicating that IL-6 is necessary for the marked 

improvements in glucose homeostasis and insulin sensitivity.

Transplantation of wild-type BAT into the visceral cavity of mice fed a high-fat diet revealed 

that increasing BAT could negate the detrimental effects of a high-fat diet. Transplantation 

of BAT into mice fed a high-fat diet resulted in a complete reversal of insulin resistance, 

improved glucose tolerance, decreased body weight, and reduced fat mass. These data 
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establish the role of BAT to regulate glucose tolerance and insulin sensitivity and 

demonstrate its potential to act as a therapeutic tool to ameliorate the detrimental effects of 

obesity.

Other studies investigated the role of BAT transplantation as a tool to prevent obesity. (Liu et 

al., 2013; Timmons and Pedersen, 2009; Zhu et al., 2014). In one study BAT was 

transplanted into the dorsal interscapular region of recipient mice and then the mice were 

immediately placed on a high-fat diet for 20 weeks (Liu et al., 2013). Mice that received 

BAT transplantation had a reduction in weight gain and adiposity, decreased liver mass, and 

improved glucose tolerance and insulin sensitivity compared to sham-operated mice. Mice 

receiving BAT also had elevated oxygen consumption rates and an increased expression of 

genes involved in fatty acid oxidation in endogenous BAT and skeletal muscle. In another 

study the ability of BAT transplant to prevent weight gain in a high-fat diet model was 

confirmed (Zhu et al., 2014). The authors determined an amplified sympathetic drive to 

skeletal muscle and WAT in the mice receiving BAT, indicating a role for BAT to increase 

energy expenditure in response to both cold exposure and a norepinephrine challenge.

To further elucidate the mechanisms associated with BAT transplantation, BAT from wild-

type mice was transplanted into leptin deficient (ob/ob) mice. Mice transplanted with BAT 

had a reduced weight gain, decreased fat mass, improved insulin sensitivity, and decreased 

liver steatosis compared to sham-operated mice (Liu et al., 2015). Additionally, this model 

resulted in higher oxygen consumption rates and increased expression of genes involved in 

fatty acid oxidation markers in WAT.

In each of these studies, the transplanted BAT was re-vascularized and re-innervated in the 

recipient mouse (Liu et al., 2013; Stanford et al., 2013; Zhu et al., 2014), similar to what had 

been observed in previous studies (Ashwell et al., 1986; Nechad and Olson, 1983). Re-

innervation of transplanted BAT was confirmed by IHC staining of tyrosine hydroxylase, an 

essential enzyme for the production of catecholamines. Importantly, these improvements in 

glucose metabolism and energy expenditure were observed regardless of strain 

(Gunawardana and Piston, 2012; Liu et al., 2015), rodent species (mice, rat, or hamster) 

(Gunawardana and Piston, 2012; Nechad and Olson, 1983; Stanford et al., 2013; Yuan et al., 

2016), gender (Gunawardana and Piston, 2012, 2015; Stanford et al., 2013) and location of 

transplant (Gunawardana and Piston, 2012; Nechad and Olson, 1983; Stanford et al., 2013). 

In our study, markers of BAT (UCP1, PRDM16, citrate synthase activity) and glucose uptake 

into BAT, were detected in the transplanted BAT, but reduced compared to that of 

endogenous BAT. Additionally, the transplanted BAT had fewer multilocular droplets over 

time as evidenced by histological staining (Stanford et al., 2013), similar to what was 

observed in previous studies (Ashwell et al., 1986; Ferren, 1966). To confirm that the 

transplanted BAT still retained its thermogenic capacity, both sham-operated mice and mice 

transplanted with BAT underwent a cold challenge. Mice transplanted with BAT were more 

cold-tolerant compared to sham-operated mice, indicating that the transplanted BAT still 

maintained some of its thermogenic activity.

Collectively, these BAT transplant models demonstrate that increasing BAT mass through 

transplantation improves glucose metabolism, increases insulin sensitivity, and reduces 
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adiposity and body mass. The mechanism through which BAT transplantation improves 

metabolic health is not clear, but data indicate that IL-6 (Stanford et al., 2013) or IGF-1 

(Gunawardana and Piston, 2012, 2015) could be potential drivers of this phenotype. 

Regardless, these data indicate that BAT is an important therapeutic target to improve 

glucose metabolism and combat obesity.

6. BAT and ‘Batokines’

Adipokines released from BAT have been termed ‘batokines’ (Stanford et al., 2013; 

Townsend and Tseng, 2012) that in addition to other functions, play a major role in the 

contribution of BAT to metabolic health through improved glucose and lipid homeostasis. 

Batokines can act in several ways and possess autocrine, paracrine, and endocrine functions. 

Models of BAT transplantation have indicated that the improvements in body mass, glucose 

control, and insulin sensitivity are likely a result of an endocrine effect from the transplanted 

tissue (Gunawardana and Piston, 2012, 2015; Marin et al., 1992; Stanford et al., 2013). Here, 

we will discuss factors that: 1) are released from multiple tissues, including BAT; ‘Batokines 

that have been shown to affect BAT activity (FGF21, IL-6, VEGFA); 2) are secreted from 

BAT, considered ‘batokines’ and can affect other tissues (IGF-1, NRG4, BMPs). These 

factors have all been identified to be increased after BAT transplantation, or have the 

potential to be released from BAT and could be important regulators of glucose metabolism 

in a transplantation model (Figure 1B).

6.1 Fibroblast Growth Factor 21 (FGF21)

FGF21 is a peptide hormone secreted by several organs, including BAT, and has the ability 

to regulate systemic metabolism. FGF21 is a complicated protein to study in metabolism due 

to its plethora of metabolic effects and its ability to function in an autocrine, paracrine, and 

endocrine manner. Specifically, FGF21 functions to increase glucose uptake in adipose 

tissue and increase fatty acid oxidation in the liver (Fisher and Maratos-Flier, 2016). While 

the liver is the main source of systemic FGF21, activated brown adipocytes can release 

significant amounts of this peptide (Chartoumpekis et al., 2011; Hondares et al., 2011) and 

contribute to systemic FGF21 levels. Interestingly, mice that are cold exposed have an 

increase in FGF21 release from BAT, and a decrease in liver FGF21 expression (Hondares et 

al., 2011). In BAT, cAMP-related mechanisms simultaneously regulate the expression and 

release of FGF21 and induce thermogenic gene expression (Hondares et al., 2011). FGF21 

was identified as an important batokine after BAT transplantation (Stanford et al., 2013), and 

increased FGF21 production from activated BAT may be a key mechanism of BAT 

transplant models as FGF21 metabolic effects such as improving glucose intolerance and 

increased free fatty acid levels are consistent with the metabolic benefits of activated BAT.

FGF21 is one of the few batokines that has been investigated in humans and was found to be 

highly expressed in human BAT (Di Franco et al., 2016). In a clinical model, FGF21 in the 

plasma increases upon cold exposure (Lee et al., 2014a); additionally, several investigations 

have attempted to link FGF21 plasma levels to BAT activity. Since FGF21 can be released 

from multiple sources, additional research is needed to confirm whether human BAT is the 

major source of increases in plasma FGF21 upon cold exposure.
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6.2 Interleukin-6 (IL-6)

IL-6 has traditionally been viewed as a pro-inflammatory cytokine linked to certain disease 

states and pathological mechanisms. However, that view was altered in the early 2000’s 

when IL-6 was discovered to be released from contracting skeletal muscle (Febbraio and 

Pedersen, 2002), functioned to promote glucose uptake in skeletal muscle (Glund et al., 

2007) and impacted hepatic gluconeogenesis after an acute bout of exercise (Coker et al., 

2001). As a response to this work and the identification of IL-6 as a major player in 

metabolism, this adipokine is now considered distinct from traditional pro-inflammatory 

cytokines. IL-6 appears to play a major endocrine role in the effects of BAT transplant on 

improving metabolic health (Stanford et al., 2013). Both cold exposure and noradrenergic 

stimulation of BAT increase IL-6 gene expression and secretion (Burysek and Houstek, 

1997; Hanssen et al., 2015). Data from our previous work reveals that the metabolic effects 

of BAT transplant when performed with IL-6−/− mice were lost compared to transplant with 

wild type mice (Burysek and Houstek, 1997; Stanford et al., 2013). Furthermore, 

transplantation of IL-6−/− BAT diminished the associated FGF21 plasma increase seen with 

the wild type mice.

6.3 Insulin-like Growth Factor 1 (IGF-1)

IGF-1 is a batokine that acts in an endocrine manner (Gunawardana and Piston, 2012, 2015). 

In rats, cold exposure increases IGF-1 gene expression and IGF-1 peptide content in BAT 

(Duchamp et al., 1997), however cold-exposure did not increase IGF-1 in humans (Cypess et 

al., 2012). In both genetic and pharmacological mouse models of type 1 diabetes, 

transplantation of BAT reverses diabetes and improves glucose metabolism, effects 

attributed to an increase in IGF-1 (Gunawardana and Piston, 2012, 2015). IGF-1 mediates 

glucose metabolism through modulation of the insulin receptor in BAT because inhibition 

the insulin receptor after BAT transplantation negated the improvement in glucose 

metabolism (Gunawardana and Piston, 2012).

6.4 Neuregulin 4 (NRG4)

NRG4 is a member of the epidermal growth factor (EGF) family of extracellular ligands. In 

addition to its paracrine effects NRG4 has also been shown to have substantial endocrine 

effects. NRG4 is most highly expressed in BAT (Pfeifer, 2015). When NRG4 is released 

from BAT, it can target the liver and increase hepatic fatty acid oxidation and repression of 

de novo lipogenesis (Wang et al., 2014), therefore potentially providing protection from 

nonalcoholic fatty liver disease (NAFLD). Transgenic overexpression of NRG4 in mice fed a 

high-fat diet resulted in a decrease in weight gain and improved glucose tolerance and 

insulin sensitivity (Wang et al., 2014). To this point, studies investigating the effects of BAT 

transplantation on metabolic health have not measured NRG4 but it is possible that it could 

be an important driver of improved metabolic health.

6.5 Bone Morphogenetic Proteins

One of the most well studied batokines with a major role in BAT function is bone 

morphogenetic protein 7 (BMP7). BMP7 is an extracellular signaling protein and is a 

member of the transforming growth factor β (TGFβ) family (Zamani and Brown, 2011). 
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Production of BMP7 is largely attributed to stromal vascular cells in BAT (Schulz et al., 

2011) and results in increased expression of PRDM16 and PGC1α (Seale et al., 2009). 

Genetic models elegantly illustrated the importance of this batokine in regards to brown 

adipocyte differentiation (Tseng et al., 2008); the absence BMP7 reduces BAT mass and 

function while overexpression leads to increased metabolic rate and a reduction in body 

weight. In addition to its role in differentiation, BMP7 has important functions in regards to 

thermogenesis including activating mitochondrial networks to enhance fatty acid oxidation 

in differentiated mature adipocytes, a role that is dependent on fatty acid transporters CD36 

and CPT1 (Townsend et al., 2013).

Bone morphogenetic protein-4 (BMP4) was previously thought to regulate WAT 

differentiation (Bowers and Lane, 2007), however, a recent study indicated that BMP4 is 

also an important regulator of beige fat differentiation (Qian et al., 2013). BMP4 is secreted 

from preadipocytes during differentiation (Bowers and Lane, 2007) and treatment of 

adipose-derived progenitor cells with BMP4 can induce BAT development in both mouse 

(Xue et al., 2014) and human (Elsen et al., 2014) in vitro models. Overexpression of BMP4 

in mice induces a beiging of subcutaneous WAT, while BMP4 knockout mice have enlarged 

adipocytes in WAT and increased insulin resistance (Qian et al., 2013). Future studies are 

needed to investigate the role of BMP7 or BMP4 to mediate the effects of BAT 

transplantation.

6.6 Vascular Endothelial Growth Factor A (VEGFA)

VEGFA is a batokine that regulates BAT function and can induce thermogenesis. Secreted 

VEGFA promotes vascularization (Asano et al., 1999; Xue et al., 2009). Interestingly, 

VEGFA has been shown to increase in WAT in response to exercise in both mice (Ludzki et 

al., 2018; Stanford et al., 2015) and humans (Van Pelt et al., 2017). Increased perfusion 

through elevated vascularization has been show to increase thermogenic activity in BAT in 

both rodent (Foster and Frydman, 1979) and human models (Orava et al., 2011). Genetic 

models clearly show the importance of this secreted factor in the activation of 

thermogenesis; overexpression of BAT-VEGFA increases vascularization in BAT and UCP1, 

thus increasing thermogenesis during cold exposure (Sun et al., 2014). Additionally, 

adipocyte specific overexpression of VEGFA also results in beiging of WAT indicating a 

potential role in increased thermogenesis, although this has not been thoroughly examined 

(Sun et al., 2012). In contrast, VEGFA-null mice have impaired thermogenic capacity 

(Mahdaviani et al., 2016). Studies have shown that the transplanted BAT becomes re-

vascularized (Stanford et al., 2013), but the role of VEGFA has not been established.

6.7 Other Endocrine Factors

Other factors are released from BAT in response to various stimuli, such as cold or exercise. 

These include retinol binding protein 4 (RBP4) (Rosell et al., 2012), angiopoietin-like 8 (Fu 

et al., 2013) and angiopoietin-like 6 (Verdeguer et al., 2015) (ANGPTL8 and ANGPTL6), 

growth/differentiation factor 15 (GDF15), neuromedin B, and nesfatin (Verdeguer et al., 

2015), myostatin (Kong et al., 2018), as well as the lipokine 12,13-diHOME (Lynes et al., 

2017; Stanford et al., 2018). Further work is required to determine if these factors are 
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released from BAT after transplantation of the tissue, and how they work to affect metabolic 

health.

7. Beige and Brown Adipocyte Implantation: A Translational Model of BAT 

Transplant

BAT transplant studies indicate that in a rodent model, increasing BAT mass and activity 

have a striking effect to improve glucose tolerance, insulin sensitivity, and combat obesity. 

The potential translational relevance is exceedingly important. Recent studies have 

investigated the effects of adipocyte implantation, which may represent a more clinically 

translatable therapeutic tool. Human beige adipocytes are found in lean, metabolically 

healthy humans (Nedergaard et al., 2007) and their precursor cells are associated with 

expanding capillary networks (Min et al., 2016). Due to the high yield of progenitor cells 

that exist in adipose tissue depots, it is possible that even a small amount of biological 

material acquired from a patient could provide material for human adipocyte implantation 

therapies.

One potential BAT-centered therapeutic treatment that is gaining prominence is the 

utilization of an ex vivo cellular approach to develop beige and brown adipocytes from 

human precursor cells and re-implant them into the donor to increase thermogenic capacity. 

The impetus for this treatment stems from previous work performed in rodents involving 

transplantation of preadipocytes or adipose-derived progenitor cells from WAT, as well as, 

BAT cell implantation studies that have already been conducted in rodent models (Kishida et 

al., 2015; Lee et al., 2017; Min et al., 2016; Silva et al., 2014).

Several clinically translatable models exist for the implantation of thermogenic adipocytes 

into mice. In one investigation, beige progenitors were isolated from the capillary network of 

human adipose tissue fragments and differentiated in vitro with the use of the adenylate 

cyclase activator forskolin (Min et al., 2016; van der Lans et al., 2013). Forskolin activation 

increased Ucp1-positive gene expression in the beige progenitors, and transplantation of 

these cells into either normal chow-fed and high-fat fed NOD-sciJ IL2rgnul1 (NSG) mice 

improved glucose tolerance. Another study utilized adipose-derived stem cells isolated from 

human mediastinal adipose tissue. Cells were isolated and differentiated in porous 

extracellular matrix-derived scaffolds fabricated from human WAT depots and subsequently 

transplanted into normal weight diabetic/severe combined immunodeficiency (NOD/SCID) 

mice fed a high-fat diet. The scaffolds remained functional for a period of up to 6 weeks and 

resulted in a reduced body weight and improved glucose levels (Silva et al., 2014). The 

mechanism for the improvements in body weight and glucose tolerance has not been 

identified.

In another study, human adipose-derived stem cells were injected into mice every other week 

over a 10-week period. These human cells were differentiated into brown adipocytes with 

rosiglitazone and then injected into high-fat fed, wild-type mice (Lee et al., 2017). Injection 

of the thermogenic cells reduced body weight and improved glucose tolerance. Importantly, 

this model may be the closest representation of how a clinical model would function in 

humans as WAT progenitor cells could be isolated from a human adipose tissue biopsy, 
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thermogenically enhanced in vitro, and re-implanted into the recipient. Together these 

exciting data indicate that transplantation of beige or brown adipocytes improves metabolic 

health, thus increasing the translational relevance of BAT transplantation.

8. Conclusions and Future Perspectives

There is growing evidence for BAT as a potential therapeutic target in the prevention or 

treatment of obesity and diabetes and the associated metabolic derangements of insulin 

resistance, glucose intolerance, and hyperlipidemia. Transplantation of BAT, regardless of 

the type of BAT (embryonic or adult), or the location of the transplantation (visceral or 

subcutaneous cavity), consistently results in dramatic improvements in glucose tolerance and 

reductions in adiposity in recipient mice. These improvements are mediated, at least in part, 

through the release of various batokines that act in an endocrine manner to improve 

metabolic health. The clinical relevance of this model has increased with the successful 

transplantation of brown or beige adipocytes which also improve glucose metabolism and 

reduce adiposity in recipient mice.

As the rates of obesity and type 2 diabetes reach epidemic levels, the development of new 

therapies and treatments to combat obesity become increasingly important. BAT is a unique 

tissue with the potential to improve whole-body metabolism. Increasing BAT mass via 

transplantation of BAT or of beige/brown adipocytes is an important therapeutic tool to 

improve metabolic health.
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Figure 1. Effects of BAT transplantation on metabolic health.
(A) BAT tissue and cell transplantation causes systemic effects on metabolism (B) 

Endocrine activity of ‘Batokines’ to directly affect BAT and other tissues.”
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