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Abstract

Sepsis is life-threatening systemic dysfunction caused by a deregulated host response to an 

infectious insult. Currently, the treatment of sepsis is limited to the use of antibiotics, fluids, and 

cardiovascular/respiratory support. Despite these interventions, septic mortality remains high, with 

reduced life quality in survivors. For this reason, the identification of novel drug targets is a 

pressing task of modern pharmacology. Based on recent research, it appears that P2 purinergic 

receptors, which can regulate the host’s response to infections, have been identified as potential 

targets for treatment of sepsis. Among P2 receptors, the P2X4 receptor has recently captured the 

attention of the research community owing to its role in protecting against infections, 

inflammation, and organ injury. The present review provides an outline of the role played by P2X4 

receptors in the modulation of the host response to sepsis and the promise that targeting this 

receptor holds in the treatment of sepsis.’

Introduction

In 2016, the 3rd International Consensus Conference for Sepsis and Septic Shock defined 

sepsis as a life-threatening multiorgan dysfunction arising from a dysregulated host response 

to an infection, which has a high risk of death [1]. According to early estimates in this 

millennium, there are about 751,000 cases of sepsis (3.0 per 1,000 people) each year, 

resulting in over 200,000 deaths in the United States of America [2]. More recent studies 

indicate that sepsis causes, or contributes to, from one-third to one-half of all deaths 

occurring in hospitals in the United States, with the majority of patients presenting to 

hospital with sepsis rather than acquiring sepsis in hospital [3]. The overall sepsis-related 

health care cost in the US has been estimated to be $16-25 billion annually [4]. Taking into 
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account the rapid expansion of the elderly population, which is affected disproportionately 

by sepsis due to physiologic frailty and immune senescence, the prevalence of sepsis and the 

associated health care costs are expected to rise significantly over the next two decades [5]

Several risk factors contribute to the development of sepsis, including chronic diseases 

impairing the immune system (e.g., acquired immunodeficiency syndrome, chronic 

obstructive pulmonary disease, cancers) and treatment with immunosuppressive drugs [6]. In 

addition, age, sex, race and ethnic group are important determinants of sepsis prevalence, as 

it occurs more frequently in infants and elderly persons than in other age groups, at higher 

rates in males than in females, and at increased frequencies in African Americans as 

compared to Caucasians [7].

The clinical signs of sepsis are highly variable, depending on the initial site of infection, the 

pathogen, the pattern of acute organ dysfunction, as well as the underlying health status of 

the patient, and the interval before initiation of treatment [8]. Septic patients frequently 

display fever, shock, and respiratory failure [9]. Our understanding about the 

pathophysiological mechanisms underlying the onset and development of sepsis has evolved 

over the time. Initially, the development of sepsis was ascribed to a hyper-inflammatory 

condition characterized by an unrestrained immune response (systemic inflammatory 

response syndrome or SIRS) with a systemic cytokine storm, which is the result of an 

overproduction of several pro-inflammatory molecules including TNF-α, IL-1β, IL-2, IL-6, 

IL-8, and IFN-γ [9]. Subsequent hypotheses refined this original view, and proposed that 

sepsis develops through a sequential or parallel (SIRS)[10] and compensatory anti-

inflammatory response syndrome (CARS), a condition with suppresses immunity and 

enhances the susceptibility to secondary infections[11].

Despite over 100 clinical trials conducted on sepsis, no FDA-approved treatment options 

exist that can improve sepsis survival [12]. For this reason, the identification of novel 

pharmacological approaches to manage sepsis is of extreme interest to the scientific 

community. Over the past two decades, increasing attention has been paid to the involvement 

of the purinergic system in the pathophysiology of sepsis [13-19]. The purine ATP is a well-

recognized signaling molecule released at sites of infection, inflammation and cell injury. In 

this setting, extracellular ATP acts as a “danger” signal, which, through the activation of P2 

receptors plays a critical role in immune cell migration, chemotaxis, and cytokine release 

[19-21].

In this brief review article, we have delineated the role of one of the P2 receptors, the P2X4, 

in regulating immunity during infections, inflammation and sepsis.

Purinergic signalling: receptors, enzymes, transporters

Purinergic signaling is initiated by the release of nucleotides into the extracellular space 

through volume regulated anion channels, maxi-anion channels, transporters, connexins and 

pannexins [22], as well as exocytotic pathways and membrane damage (Fig. 1) [23]. Once 

released into the extracellular space, the nucleotides, which include ATP, ADP, UDP, and 

UDP-glucose, can trigger a series of cellular responses through the engagement of P2 

receptors. These are classified into ionotropic P2X (P2X1–7) and metabotropic P2Y 
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(P2Y1,2,4,6,11–14) receptors (Fig. 1) [23]. P2X receptors display a trimeric structure, where 

each monomer has two transmembrane domains. They are ion channels and gate primarily 

Na+, K+ and Ca2+, and, in some cases, Cl− [24]. The stimulation of Gq/11-coupled P2Y1,2,4,6 

and P2Y11 receptors causes the activation of phospholipase C, leading to the downstream 

production of inositol-(1,4,5)-trisphosphate and diacylglycerol (DAG) [25]. Inositol-(1,4,5)-

trisphosphate increases intracellular Ca2+ levels were DAG stimulates protein kinase C 

(PKC) [25]. Moreover, P2Y11 receptor activation can stimulate whereas P2Y12,13 receptor 

engagement can inhibit, adenylate cyclase [25]. As asserted above, in addition to ATP, UTP 

and its degradation product, UDP, can play important regulatory roles also in modulating the 

immune cell activities (i.e. neutrophil and monocyte chemotaxis, activation of granulocytes, 

dendritic cells, monocytes, neutrophils and lymphocytes)[26]. Indeed, UTP, UDP and UDP-

glucose act as agonists on four P2Y receptor subtypes (P2Y2, P2Y4, P2Y6 and P2Y14), 

whereas no affinity has been observed for P2X receptors [26]. In general, the engagement of 

P2 receptors has been shown to facilitate immune cell function.

Following their release into the extracellular space, ATP and/or ADP are quickly converted 

by CD39 (ecto-nucleoside triphosphate diphosphohydrolase 1, E-NTPDase1) into AMP, and 

then, via CD73 (ecto-5'-nucleotidase) AMP is dephosphorylated into adenosine [27]. The 

latter is a purine nucleoside, which exerts its cellular actions through the engagement of 

specific G protein-coupled receptors classified as A1, A2A, A2B and A3. In particular, A1 and 

A3 receptors are coupled to Gi, Gq and Go proteins, while the A2A and A2B receptors 

activate adenylyl cyclase via Gs or Golf [28] (Fig. 1). The stimulation of A2B receptors can 

trigger also phospholipase C via Gq [28,29]. In general adenosine exerts immunosuppressive 

effects [28,29]. Of note, since the CD39/CD73 enzyme axis is critical in the degradation of 

ATP, ADP, and AMP into adenosine, it can be considered as a an “immunological switch” 

which is able to shift an ATP-driven pro-inflammatory immune cell response toward an anti-

inflammatory environment steered by adenosine [23] [27,30,31] (Fig. 1).

It is interesting to note that P1 and P2 purinergic receptors have distinct and divergent effects 

on immunity and inflammation regulation [32]. Whereas adenosine-mediated P1 purinergic 

receptor activation dampens inflammation and attenuate immune-mediated tissue injury 

overall [14,15,33], P2 purinergic receptor activation by ATP drives inflammasome activation 

and stimulates bacterial killing [34,35]. These divergent effects of P1 and P2 purinergic 

receptors on immunity and inflammation is clinically significant as sepsis is a disease 

characterized by initial hyper-inflammatory phase followed by hypo-immune state where the 

subject succumbs from immune paralysis [36]. Depending on the immune state of the septic 

subject, one can tailor therapy with either P1 (to dampen inflammation) or P2 (to promote 

immunity) purinergic receptors.

P2X4 receptor: structure and molecular biology

P2X receptors are a family of non-selective trimeric ligand-gated channels, permitting Na+, 

K+ and Ca2+ ion fluxes upon binding extracellular ATP [37]. Seven subtypes of P2X 

receptors have been cloned and classified as P2X1 to P2X7, with functional channels 

assembled as homo- or heterotrimers [37]. Each monomer comprises two transmembrane 

domains linked by a large extracellular loop and intracellularly located N- and C-termini 

Antonioli et al. Page 3

Curr Opin Pharmacol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[38]. The activity of P2X receptors is modified by several factors including the extracellular 

concentration of ions (Zn2+, Cu2+, Hg2+, Ni2+, Cd2+), protons, lipids, steroids, and ethanol 

[39].

The P2X4 receptor is one of the most sensitive purinergic receptors, as it is activated by 

nanomolar concentrations of extracellular ATP [39]. Of note, the Ca2+ permeability of P2X4 

is the highest among the P2X family [40].

Immunoprecipitation studies have revealed that the P2X4 subtype can heteromerically 

assemble with other P2X members, including P2X1, P2X2 and P2X6 [41,42]. In addition, 

structural interactions have been reported between P2X4 and P2X7 receptors [41,43]. In this 

regard, Schneider et al. [44] recently demonstrated that P2X4 and P2X7 subunits can form 

heterotrimeric P2X4/P2X7 receptors. Of note, the P2X4 and P2X7 subunit isoforms are 

widely co-expressed particularly on immune/inflammatory cells [45].

P2X4 receptors are distributed throughout the body [46]. Indeed, they are widely expressed 

in central and peripheral neurons, microglia, and various glandular tissues such as pancreatic 

acinar cells and salivary glands as well as endothelial cells [47]. They are expressed also 

throughout the gastrointestinal tract, liver, lung, kidney and reproductive system [23][24]. At 

the cellular level, the P2X4 receptor is located on plasma membrane, but also in intracellular 

compartments, such as lysosomes, vesicles, vacuoles and lamellar bodies[48].

Acute kidney injury and inflammation is a major complication of sepsis and has extremely 

high mortality (>70% in severe sepsis) [49]. Although several renal cells express P2X4 

purinergic receptor, the role for P2X4 receptor in acute kidney injury and inflammation is 

unclear unlike the better-characterized pro-inflammatory role of P2X7 receptor [50]. It 

appears that P2X4 dampens renal fibrosis response during recovery from kidney injury as 

mice deficient in P2X4 receptors have exacerbated renal fibrosis in a mouse model of 

chronic interstitial inflammation [51]. Furthermore, renal tubular P2X4 receptor activation 

may promote kidney injury in early sepsis by promoting NOD-like receptor 3 inflammasome 

activation and facilitating IL-1β and IL-18 maturation [52].

P2X4 receptor and immune system

All immune cells, whether from the myeloid or lymphoid lineage, express at least one P2X 

or P2Y receptor subtype (see Table 1) [53]. Consistently with this knowledge, an increasing 

body of evidence supports the critical role played by both P2X and P2Y receptors in 

immune cell biology [54-57]. In accordance with its wide distribution, the P2X4 receptor has 

been shown to regulate a variety of pathophysiological processes, such as neuropathic pain 

and autoimmune diseases [39,58,59]. Many of these modulating roles are mediated by cells 

of the immune system.

Monocytes, and macrophages.—Monocytes and macrophages play a pivotal role in the 

immune response against micro-organisms and the pathogenesis of sepsis [60] [61]. These 

cells phagocyte and kill micro-organisms, release cytokines, and present pathogens to T 

cells, thus triggering both cellular and humoral immune responses [60]. All monocyte and 

macrophage cell types have been found to express P2X and P2Y receptors. In monocytes, 
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the most abundant P2X receptor transcripts are P2X4, followed by transcripts for P2X7 and 

P2X1 [62], thus suggesting an important role for these receptor subtypes in monocyte 

functions.

Murine peritoneal macrophages express functionally active P2X4 and P2X7 receptors 

[63,64]. In particular, the exposure of these cells to low concentrations of ATP evoked a 

small P2X4-driven ion current, while higher ATP concentrations evoked a large P2X7-driven 

ion current [64]. However, the physiological role of the P2X4 receptor-driven current was 

not explored in this study [64]. P2X4 expression has been detected also on both human and 

rat alveolar macrophages [65], and the authors described a dynamic regulation of P2X4 

receptors during distinct phases of macrophage activation [65]. In resting macrophages, 

functional P2X4 receptors as measured using ATP-evoked currents were maintained at very 

low levels, whereas they underwent a rapid up-regulation in response to phagocytosis [65]. 

By contrast, classical activation of macrophages elicited by their incubation with IFN- γ and 

TNF-α or IFN- γ and LPS, reduced the surface expression of P2X4 receptors and decreased 

ATP-evoked currents without altering total P2X4 receptor protein levels [65]. Of note, the 

alternative activation of these cells with IL- 4 or IL- 13 did not alter the total surface or the 

functional expression of these receptors [65]. Based on these observations, the authors 

hypothesized a scenario in which an initial bacterial or inflammatory stimulus elicits rapid 

trafficking of P2X4 receptors to the macrophage cell surface causing increased Ca2+ influx, 

thus promoting their activity [65]. After the termination of macrophage activation, a 

feedback mechanism develops to curb P2X4 receptor trafficking to the cell membrane and 

function, probably aimed at facilitating the resolution inflammation [65].

Recent observations highlighted molecular and functional interactions between P2X4 and 

P2X7 receptors on macrophages [66-68]. In particular, a physical protein–to protein 

interaction takes place between P2X4 and P2X7 receptors, where the two receptors are 

bridged by the C-terminus of P2X7 receptor [66]. This physical interaction was facilitated by 

the presence of extracellular ATP [66]. Kawano et al. provided evidence about a role of 

P2X4 receptor in modulating P2X7 receptor-dependent inflammatory functions [67]. Indeed, 

by means of in vitro assay, it was observed that treatment of RAW264.7 cells with ATP 

elicited a P2X7-dependent release of HMGB1 and IL-1β [67]. Of note, this event was 

blunted by the genetic ablation of P2X4 receptor via short hairpin RNA transfection as well 

as by removing extracellular Ca2+[67], thus confirming a functional interplay between P2X4 

and P2X7 receptors, driven by a modulation of intracellular Ca2+ concentrations.

The P2X4/P2X7 linkage has been shown to hold a critical role also in eliciting macrophage 

death[68]. In particular, the recruitment of P2X7 receptors in RAW264.7 cells with high 

concentrations of ATP determined an increase in Ca2+ influx, pore formation, and activation 

of ERK1/2 and p38MAPK, thus leading to cell death [68]. In this context, despite the 

activation of P2X4 receptor alone did not induce cell death, the P2X4 receptor-dependent 

acute-phase Ca2+ influx, elicited by the high levels of ATP, contributed to P2X7 receptor-

dependent cell death in activated macrophages [68].

Recently, our experiments revealed a role of ATP in regulating bacterial killing in 

macrophages via P2X4 receptors [18]. We observed that the selective P2X4 receptor 
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antagonist 5-BDBD and the shRNA-mediated receptor silencing, prevented the stimulant 

effect of ATP on E. coli killing by macrophages [18]. In addition, in macrophages isolated 

from P2X4 receptor knockout mice, ATP failed to stimulate bacterial killing [18]. Thus, we 

concluded that P2X4 receptors augment bacterial killing by macrophages. Mechanistically, 

we found that P2X4 receptor activation specifically increased mitochondrial, but not cellular, 

ROS production, which was a likely mediator of the antibacterial effect of P2X4 receptor 

activation [18].

In parallel, using the murine cecal ligation and puncture model, considered by several 

investigators as the “gold standard” mouse model of sepsis [69], we demonstrated also that 

macrophage P2X4 receptors control bacterial spread and inflammation in sepsis [18]. That 

is, P2X4 receptor knockout mice showed an increased bacterial load and a decreased survival 

in comparison with wild type animals [18], indicating that endogenous ATP released during 

sepsis, exerts a protective effect through P2X4 receptor engagement [18]. Of note, we also 

provided evidence that protective effect of P2X4 receptor activation was mediated though 

P2X4 receptor signaling on macrophages, as both adoptive transfer of P2X4
−/− receptor 

macrophages or myeloid-specific P2X4
−/− receptor mice emulated the deleterious phenotype 

of P2X4 deficient animals.

Dendritic cells.—Dendritic cells (DCs) are the primary antigen-presenting cells in the 

body and therefore they are pivotal in linking innate and adaptive immunity [70]. Dendritic 

cell function is compromised during sepsis [71,72] and sepsis is associated with widespread 

dendritic cell depletion [73,74]. DCs are endowed with both P2Y receptors (P2Y1, P2Y2, 

P2Y4, P2Y6, P2Y11 and P2Y14) and P2X receptors (P2X1, P2X4, P2X7) [75,76]. Our 

understanding of the role of P2X4 receptors in regulating dendritic cell function is in its 

infancy. Sakaki et al. demonstrated recently that P2X4 receptor activation elicited a rapid and 

substantial initial Ca2+ influx in dendritic cells. This Ca2+ influx was required for optimal 

P2X7-dependent IL-1β and IL-18 release from DCs [77]. Clearly, further studies are 

required to unravel the precise role of P2X4 receptors in regulating DC function during 

immune responses and sepsis.

Neutrophils.—Neutrophils are professional phagocytes that play a central role in host 

defense against extracellular bacteria and fungi [78]. These cells are endowed with a unique 

capacity to very efficiently and rapidly engulf and thereby eliminate pathogens and cell 

debris [79]. Patients with sepsis display aberrant neutrophil activity, characterized by an 

impaired recruitment of these cells to sites of infection, abnormal longevity, and 

overproduction of toxic mediators leading to bystander organ injury [80].

A substantial body of evidence supports the notion that ATP regulates tightly several 

neutrophil functions, such as chemotaxis, rolling, adhesion, transmigration, phagocytosis, 

oxidative burst, extracellular trap formation, degranulation and apoptosis [56]. The role of 

P2X4 receptors in neutrophils is incompletely understood. The only study dealing with this 

issue showed that P2X4 knockout mice demonstrated reduced infiltration of neutrophils to 

the injury site in a murine spinal cord injury model [81]. It was however unclear from this 

study whether P2X4 receptor signaling in neutrophils was required for optimal neutrophil 

infiltration or P2X4 signaling indirectly affected neutrophil infiltration.
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Considering our data, showing a stimulant role of P2X4 receptors on macrophages in 

bacterial killing [18], it would be interesting to test whether P2X4 receptors have a similar 

role in neutrophils.

T lymphocytes.—Sepsis results in a deluge of pro- and anti-inflammatory cytokines and 

immunosuppressive mediators, leading to CD4+ and CD8+ T cell dysfunction and death 

[82]. Although the precise mechanisms, underlying this condition of T cell suppression, are 

not well defined, several lines of evidence indicate that purinergic signaling may control T 

cells during sepsis in many different ways [20,83]. Indeed, the release of ATP via 

pannexin-1 pores during lymphocyte activation, enhances IL-2 release, in an autocrine 

manner, through the engagement of P2X1, P2X4 and P2X7 receptors [84,85]. 

Mechanistically, ATP elicits Ca2+ influx through these receptors and stimulates the nuclear 

factor of activated T cells and MAPK signaling resulting in increased IL-2 production 

[84,86,87]. The accumulation of several purinergic components, including pannexin 1 

channels, P2X1 and P2X4 receptors, at the immune synapse facilitates T cell–accessory cell 

communication, antigen recognition and T cell activation [87]. Mitochondria also translocate 

to the immune synapse where by directly providing the ATP to be released, fuel the 

autocrine purinergic signaling in the synaptic cleft [87]. P2X4 receptors colocalize with 

mitochondria in clusters at the front of cells, facilitating the Ca2+ influx to maintain local 

mitochondrial ATP production at the levels needed for cell migration [88].

In patients with sepsis, purinergic signaling appears defective [89]. Indeed, resting cells from 

septic patients lack the autocrine purinergic feedback loops that maintain basal cytosolic 

Ca2+ levels and mitochondrial function thus, leading to a condition of cellular paralysis that 

impairs vigilance and precludes proper functional responses to T cell stimulation [89]. 

However, the suppression of purinergic signaling is not due to a reduction of P2X receptor 

expression, since the mRNA levels of these receptors appear unchanged (P2X4 and P2X7) or 

elevated (P2X1) in patients with sepsis [89]. Further studies will be needed to unravel the 

precise role of purinergic signaling in T cells in sepsis.

Conclusions

Although antibiotic therapy still represents an irreplaceable part of sepsis management, this 

therapeutic approach is facing hard challenges due to the development of multi-resistant 

bacterial strains [90,91]. In addition, antibiotic treatment does not prevent the various 

immune abnormalities occurring during sepsis. For these reasons, it is necessary to foster an 

integrated approach in the treatment of sepsis, which might take advantage of our increasing 

understanding of the role of purinergic signaling is sepsis [92].

So far, in the arena of purinergic research much attention has been focused on P2X7 

receptors, as they have been shown to be involved in a plethora of inflammatory disorders 

(i.e. osteoarthritis, rheumatoid arthritis, chronic obstructive pulmonary disease, and Crohn’s 

disease), and thus they appear to be one of the most appealing potential drug target [93]. 

However, recently there has been also growing interest on the P2X4 receptors. Indeed, this 

receptor subtype, which is widely investigated in the context of pain transmission [94,95], 

also has a role in mediating the effects of ATP in shaping immune/inflammatory responses. 
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For this reason, it is striking that the P2X4 receptor, which is being widely expressed on cells 

of both the innate and adaptive arms of the immune system (see Table 1) remains poorly 

characterized in sepsis. Our pioneering preclinical studies demonstrated that P2X4 receptor 

engagement is critical in limiting the dissemination of bacteria by enhancing killing of these 

pathogens[18]. This indicates that P2X4 receptors are a potential target for antibacterial drug 

discovery. Unfortunately, the study of P2X4 receptors has been seriously hindered by the 

lack of selective pharmacological tools. Indeed, for a long time, researchers had to rely on 

non-selective P2X receptor antagonists such as paroxetine, TNP-ATP, and BBG to 

characterize P2X4 receptors (Fig. 2). We are hopeful that in the coming years medicinal 

chemists will generate selective and potent ligands for P2X4 receptors
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Highlights

• Sepsis is an organ dysfunction caused by a deregulated immune response to 

an infection

• At present, no approved treatment options exist that can improve sepsis 

survival

• Increasing attention has been paid to the role of the purinergic system in 

sepsis pathophysiology
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Figure 1. 
Once released into the extracellular environment, through channels or other extrusion 

systems, ATP, ADP, AMP, and adenosine, are metabolized by a set of nucleotidases 

[nucleoside triphosphate diphosphohydrolases, ecto-ATPase, NTPD-1 (CD39), 

ecto-5’nucleotidase (CD73), purine nucleoside phosphorylase PNP), xanthine oxidase], 

leading to their sequential dephosphorylation and subsequent generation of other bioactive 

metabolites, which selectively interact with purinergic P1 (A1, A2A, A2B and A3) or P2 (P2X 

and P2Y) receptors. Several cell types are endowed with nucleoside transporters (NT), 

which operate the uptake of extracellular adenosine, thus actively participating to the careful 

regulation and termination of adenosine signaling.
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Figure 2. 
Schematic structure of the P2X4 receptor and the main commercially available ligands 

acting on this receptor subtype with indicated the IC50 and EC50 values.
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Table 1.

Expression of P2 receptors on immune cells

Immune cell population Purinergic receptors References

Monocyte/macrophage P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14 P2X1, P2X4, P2X7 [55,96]

Dendritic cells P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y14, P2X1, P2X4, P2X7 [76,97]

Neutrophils P2Y1, P2Y4, P2Y6, P2Y11 P2X1, P2X4, P2X7 [56]

Eosinophils P2Y1, P2Y4, P2Y6, P2Y11, P2Y14, P2X1, P2X4, P2X7 [98,99]

Mast cells P2Y1, P2Y12, P2Y13, P2Y14 P2X1, P2X3, P2X4, P2X7, [100,101]

T lymphocytes P2Y1, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14, P2X1, P2X4, P2X7 [102]

B lymphocytes P2Y1, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14 P2X1, P2X4, P2X7 [57]

Natural killer cells P2Y11, P2X1, P2X4, P2X7 [103]
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