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Abstract

The human microbiome plays a number of critical roles, impacting almost every aspect of human 

health and well-being. Conditions in the microbiome have been linked to a number of significant 

diseases. Additionally, revolutions in sequencing technology have led to a rapid increase in 

publicly-available sequencing data. Consequently, there have been growing efforts to predict 

disease status from metagenomic sequencing data, with a proliferation of new approaches in the 

last few years. Some of these efforts have explored utilizing a powerful form of machine learning 

called deep learning, which has been applied successfully in several biological domains. Here, we 

review some of these methods and the algorithms that they are based on, with a particular focus on 

deep learning methods. We also perform a deeper analysis of Type 2 Diabetes and obesity datasets 

that have eluded improved results, using a variety of machine learning and feature extraction 

methods. We conclude by offering perspectives on study design considerations that may impact 

results and future directions the field can take to improve results and offer more valuable 

conclusions. The scripts and extracted features for the analyses conducted in this paper are 

available via GitHub: https://github.com/nlapier2/metapheno
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1. Introduction

The human body is home to a highly complex and densely populated microbial ecosystem, 

the so-called “human microbiome” [1, 2]. The microbes in the human body outnumber 

human cells and play a critical role in almost every aspect of human health and functioning 

[2]. The advent of High Throughput Sequencing (HTS) has enabled the direct study of 

microbial environments, forming the rich field of metagenomics. As sequencing becomes 

cheaper, vastly increased amounts of metagenomic sequencing data are becoming publicly 

available, including large-scale efforts such as the Human Microbiome Project, which aims 
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to understand the microbial environments in different human body sites [3]. We can 

interrogate this data to answer two key questions about the microorganisms in a community: 

who is there, and what are they doing [1]? By studying the taxonomic composition and 

metabolic activities of the microbes, we can begin to decipher how these properties 

contribute to human health and disease.

One recent development is the availability of a large amount of metagenomic shotgun 

sequence data matched to patients with labeled disease phenotypes, sometimes called 

“metagenome-wide association studies” or MGWAS [4]. This has in turn motivated 

computational researchers to develop machine learning methods to predict patient phenotype 

from their metagenomic sequence data. These models rely on extracting “features” from the 

sequence data. These features can represent different aspects of the microbiome, for 

instance, taxonomic composition or functional profiles. Ideally, the most informative 

features can provide insights into how the microbiome relates to the disease. The methods 

for extracting the features from the raw sequence data and the methods for predicting the 

disease based on the features are both important to the performance of the model.

An important step forward in this effort was perhaps the first machine learning meta-analysis 

of publicly-available MGWAS data, performed by Pasolli et al. [5]. In this study, the authors 

used a method called MetaPhlAn2 [6] to predict the composition of the patient’s 

microbiome based on the sequence data. Using the predicted microorganisms and their 

abundances as features, they applied several well-known classical machine learning 

algorithms such as Support Vector Machines (SVMs) and Random Forests (RFs) to predict 

the patient’s disease status. These approaches performed well at predicting some patient 

diseases such as liver cirrhosis, colorectal cancer, and inflammatory bowel disease, but 

poorly on the others, such as type 2 diabetes and obesity [5].

Since the publication of the meta-analysis, several other papers have emerged, attempting to 

use different machine learning methods to improve upon the original results [7, 8, 9] or 

apply machine learning to different types of data such as 16S rRNA [10]. Many of these 

methods have involved the use of deep learning [11], a powerful class of machine learning 

methods that have achieved record results in a number of domains, and has recently seen 

great success in biological prediction problems [12, 13, 14]. Briefly, deep learning uses a 

network of so-called “neurons” (inspired by real neural networks in the brain) to learn 

complex functions mapping input data, such as sequencing data, to an output value, such as 

a prediction of the disease status.

Here, we review recent methodological advancements in the prediction of disease from 

metagenomic data, with a particular focus on deep learning methods. These are discussed in 

Section 3. Readers who are unfamiliar with machine learning or deep learning may want to 

first read our review of these subjects in Section 2. In Section 4, we present the reported 

results on the data from the Pasolli et al. meta-analysis, as it serves as a common basis for 

comparison among recent methods. In Section 5, we present an in-depth analysis of a type 2 

diabetes dataset from the meta-analysis that has eluded improved results. We apply a number 

of machine learning methods, including an autoencoder-pretrained neural network that we 

developed, to the data, and also explore an alternate k-mer-based feature extraction method. 
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In Section 6, we offer perspectives gained from the review, including considerations for 

study design and interpretability, and possible avenues to improve results in the future. 

Section 7 briefly summarizes the conclusions.

2. Overview of Machine Learning and Deep Learning Methods

2.1. Primer on Machine Learning

Machine learning, broadly defined, involves the use of computer algorithms to find the 

structure in data. In this study we focus on so-called “supervised learning”, in which a 

mapping is learned from input data to an output label. Here, the “structure” of the data is 

represented as a set of features, extracted from the input data. In the context of this paper, the 

input data is metagenomic sequence reads, the extracted features are taxonomic or functional 

annotations, and the output label is the binary disease status prediction.

A crucial aspect of machine learning is ensuring that the learned model can work well not 

only on the available dataset but also on examples not included in the dataset. This is often 

called the “generalizability” of a model. To achieve this, the model is learned on a subset of 

the data, called “training data”, and then evaluated on the rest of the data, called “testing 

data”, which is held out from the training process. The testing data serves as a proxy for data 

outside the study.

A common way to split the data into training and testing is k-fold cross-validation (k-fold 

CV) [15]. The data is partitioned into k equally-sized subsets, called “folds”. Each fold is 

used once as the testing data, and the model is trained on the rest of the data. The 

performance of the model is the average of the results for all k folds. In some cases, there 

may be a large imbalance of labels between two classes of data, for instance, many more 

case examples than control examples. For such cases, a slight variation in the k-fold CV 

technique can be used, in which each fold has the same case-to-control ratio as the entire 

dataset. This is called “stratified k-fold cross-validation”. Finally, there is a specific case of 

k-fold cross-validation called “Leave One Out Cross-Validation (LOOCV)”, in which k 
equals the number of individuals in the dataset. Thus, each individual is used as the test set 

once and the model is trained on the rest of the individuals.

Each machine learning model has a set of properties that can be set by the user prior to the 

training process, called “hyperparameters”. For instance, before learning a decision tree, a 

hyperparameter can be set to limit the depth of the tree. The performance of the machine 

learning model can vary significantly based on the settings of hyperparameters [16, 17], so it 

is important to set them optimally. The traditional and most comprehensive way to do this is 

to perform a “grid search”. Based on a user-specified set of hyperparameters and possible 

settings of them, the grid search exhaustively enumerates each combination of these settings. 

The grid search selects the best settings as measured by cross-validation [18].

2.2. Classical Machine Learning Algorithms

Two classical machine learning methods are commonly used in metagenome-based disease 

prediction: Support Vector Machines (SVMs) [19] and Random Forests (RFs) [20]. SVMs 

can be thought of as representing the input data as points in space, and their objective is to 
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learn a decision boundary to maximally separate different classes. To do this, SVMs search 

for the points in each class that are the closest to the decision boundary. Those points are 

called “support vectors”. RFs are an example of ensemble learning, in which a complex 

model is made by combining many simple models. In this case, the simple models are 

decision trees [20]. RFs take many random subsamples of the complete dataset. For each of 

these subsamples, a decision tree is learned. The final output of a RF is the most common 

prediction of the individual decision trees. As these are well-studied methods, they are used 

as baselines for comparison in many studies. Additionally, both SVMs and RFs can output 

the most informative features to the predictive model. In the context of metagenome-based 

disease prediction, these features are the microbes or the functional elements that contribute 

most to the disease prediction, enhancing the interpretability of the model [5, 9, 7, 21].

Several new methods have been proposed to improve upon these classical methods. eX-

treme Gradient Boosting (XGBoost) [22] is similar to RFs, in that it builds an ensemble of 

decision trees. The main difference is that trees are sequentially built to reduce the errors of 

the previous trees. Another variant of the forest approach, called multi-Grained Cascade 

Forest (gcForest) or “deep forest” [23], performs an ensemble of forests, i.e. an ensemble of 

ensembles.

2.3. Deep Learning Algorithms

Deep learning is a powerful class of machine learning algorithms consisting of artificial 

neural networks (ANN) with many layers. These neural networks are inspired by biological 

neural networks in the human brain. They are composed of one or more inter-connected 

“layers”, each of which consists of separate simple computational units called “neurons”. 

The input information flows through the network as follows: each layer receives input data 

for each of its neurons, each neuron then executes a simple user-defined function, and then 

the output of the neuron is transmitted as input to neurons in the next layer. Two neurons are 

said to be connected if a neuron in one layer sends output to the other neuron in the next 

layer. The connections are weighted, reflecting the contribution to the prediction. The 

learning process of a neural network is the updating of these connection weights, based on 

prediction errors made with training data. By composing the numerous simple functions 

executed by each neuron in a network structure, complex relationships between inputs and 

their relevance to the output can be learned [11]. Networks with more layers can learn more 

complex functions, thus explaining the power of deep learning [11]. However, since the 

input features are sent through a complex network of functions, it is difficult to pinpoint the 

most informative features. This confounds the interpretability of the model [24]. 

Nevertheless, deep learning models have achieved record-breaking results in the fields of 

natural language processing [11], image classification [25, 26], and speech recognition [27]. 

The successes of these applications have encouraged the exploration of this approach in the 

field of bioinformatics [12, 28], including the analysis of metagenomic data [8, 9].

We review three main types of deep learning architectures in this paper: fully-connected 

feedforward deep neural networks (which we simply refer to as DNNs) [29, 30, 31], 

convolutional neural networks (CNNs) [32, 25], and auto-encoders (AEs) [33]. DNNs are 

general-purpose architectures, CNNs are specialized for image-based tasks, and AEs are 
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used for dimensionality reduction (see below). Another common architecture, Recurrent 

Neural Networks (RNNs) have thus far not often been used in metagenome-based disease 

prediction, so we do not review them in this paper.

As the name of DNNs suggests, every neuron in one layer is connected to every neuron in 

the next layer without backward connections. DNNs are sometimes also referred to as 

multilayer perceptrons (MLP) [29]. However, MLP can have a more general definition that 

includes other types of architectures, so we use DNNs to avoid ambiguities here.

CNNs are designed specifically to process images with spatial information. CNNs focus on 

summarizing local information with a mathematical function, called “convolution”, which 

greatly reduces the computational burden. For example, when analyzing a pixel in an image, 

the nearby pixels are the most relevant and there is no need to incorporate distant pixels. 

Because CNNs are very powerful for image processing, researchers have developed methods 

for encoding different types of information as images for a variety of applications, including 

metagenome-based disease predictions. Methods that leverage the CNNs architecture are 

discussed in Section 3.

AEs represent a different type of deep learning. In this case, the goal is not to predict an 

output value, but rather to find a more compressed representation of the input data [33]. This 

is also referred to as “dimensionality reduction” of the feature space. Dimensionality 

reduction addresses a common issue of deep learning, called overfitting. Overfitting refers to 

learning a model that is very specific to the training data but will not generalize well to the 

testing data. This is a concern when there are more features than samples, as is often the case 

in metagenome-based disease prediction [34]. AEs take a set of input features and learn a 

smaller set of latent features that capture the same amount of information. This is done by 

ensuring that the original set of features can be recovered from the smaller set with minimal 

loss [33]. By first applying AEs to obtain a reduced set of features, which are then used as 

input to DNNs, the model can avoid overfitting and generalize better [11, 33].

3. Current Methods in Metagenome-Based Disease Prediction

3.1. Feature Extraction

In disease phenotype prediction, there are three types of commonly used features extracted 

from metagenomic sequence reads: the abundances of different microbes, functional 

annotation of the metagenomic samples, or the k-mer abundances from raw reads.

Given the metagenomic sequence data, one of the key questions is to identify and quantify 

the presence of different microorganisms. Under the assumption that microbiome 

composition is different between healthy and diseased individuals, the profiles of microbial 

abundances are widely used as a type of feature in disease prediction. MetaPhlAn2 [6] is a 

popular tool to estimate the relative abundance of microbial taxa. It uses a set of clade-

specific marker genes to assign reads to microbial clades. It then estimates the relative 

abundance of each taxon based on the read coverage. The majority of the metagenome-based 

disease predictive models in this paper leverage MetaPhlAn2 profiles for the underlying 

features [5, 8, 9]. Met2Img [8] uses the species abundances as the raw features; PopPhy-
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CNN [9] aggregates the abundances reported by MetaPhlAn2 up to the genus level; MetaML 

[5] investigates the performance of using species abundances or the presence of strain-

specific markers as the microbiome features. Alternatives to MetaPhlAn2 include Quikr 

[35], Bracken [36], and CLARK [37]. The platform UGENE can combine the results of 

several of these tools into a single “ensemble” prediction [38].

The other aspect of understanding a microbial community is addressing the question of 

“what are they doing?” through functional annotation. One example of this approach was 

demonstrated by Yazdani et al. [39], who detected protein family shifts between healthy and 

diseased gut microbiomes by using KEGG [40] annotations and a random forest classifier. 

Other methods attempt to infer the functional and metabolic properties of microbiomes from 

either shotgun [41] or 16S rRNA [42] sequence data. Predicted functional and metabolic 

profiles have been used to predict ecological roles in the rhizosphere [43] and general human 

gut dysbiosis [44].

The major drawback of the aforementioned feature extraction approaches is that they are 

limited by the reference database. In microbial abundance profiling, we can only estimate 

the abundance of known microbes, or the microbes present in the database. In functional 

profiling, we rely on the annotated genes and pathways that can be recognized in the 

sequencing data. Consequently, these two approaches toss away unmapped reads with 

valuable information [7]. In order to fully utilize all of the reads, several frameworks have 

proposed using the k-mer abundances directly acquired from the raw reads [45, 46, 47, 48]. 

These frameworks first count the k-mer frequencies of the metagenomic reads in each 

individual. Common k-mer counters include Jellyfish [49] and KMC [50]. The next step is 

to identify the significantly differentially abundant k-mers between the cases and controls 

through a statistical test, such as Student’s t-test, Wilcoxon rank-sum test, or likelihood ratio 

test. The false discovery rate is then controlled for multiple hypothesis testings. The 

statistically significant k-mers are sometimes used directly as the features. In other cases, the 

raw k-mer counts are used without statistical testing in pipelines alongside other steps, such 

as assembly and clustering [7].

3.2. Meta-Analysis of Classical Machine Learning Approach

Recently, the work of Pasolli et al. [5], MetAML (Metagenomic prediction Analysis based 

on Machine Learning) comprehensively assesses different machine learning approaches to 

metagenome-based disease prediction tasks. In MetAML, six available disease-associated 

metagenomic datasets spanning five diseases are discussed. They are: liver cirrhosis [51], 

colorectal cancer [52], inflammatory bowel diseases (IBD) [53], obesity [54], and type 2 

diabetes (T2D) (two distinct studies [4] and [55]). Each dataset is evaluated independently 

by cross-validation. MetaPhlAn2 [6] taxa abundances are used as features. Several classical 

machine learning and statistical methods are evaluated. RFs performs the best followed by 

SVMs. However, deep learning methods (neural networks) are not evaluated.

Overall, the proposed MetAML method works well for some phenotypes such as liver 

cirrhosis, IBD, and colorectal cancer. However, it performs relatively poorly on T2D and 

obesity [5]. There are two main limitations of using MetaPhlAn2 for feature extraction. 

First, MetaPhlAn2 is limited to detecting only species in its reference database. A 
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metagenomic benchmark study by the CAMI consortium found that MetaPhlAn2 has a high 

false negative rate, meaning that it fails to identify many taxa present in the sample [56]. 

Due to the false negatives, the relative abundances are mis-estimated, leading to noise in the 

extracted features. Second, MetaPhlAn2 does not consider functional elements of the 

microbiome, limiting potentially valuable information that can be used to predict diseases.

3.3. Deep Learning Approaches

As deep neural networks (DNNs) have achieved excellent classification results, researchers 

have recently attempted to apply them to the problem of metagenome-based disease 

prediction. However, several challenges remain, with various methods attempting to address 

them.

Reiman et al. [9, 57] argue that the DNN architecture may not be suitable to predict diseases 

using metagenomic data. Learning through a deep architecture often requires an excessive 

amount of data, which is currently impractical with the limited number of sampled patients 

[7, 24]. In addition, as previously discussed, extracting the significant features from the 

learned models is not trivial. To mitigate these issues, Reiman et al. propose a framework 

that leverages the architecture of CNNs to predict diseases from microbial abundance 

profiles [9, 57]. Reiman et al.’s method PopPhy-CNN [9] uses phylogenetic trees to describe 

the relatedness of different features, i.e. microbes. The tree is further embedded in a 2D 

matrix to include the observed relative abundance of microbial taxa, allowing the CNNs to 

fully exploit the spatial relationship of the microbes and their quantitative characteristics in 

metagenomic data. A comprehensive evaluation has demonstrated that the framework can 

efficiently train models without an excessive amount of data. The significant microbes 

contributing to different diseases can also be extracted and visualized on the phylogenetic 

tree.

Another common issue in this domain is overfitting. To alleviate this issue when conducting 

disease predictions, Nguyen et al. [8] propose the Met2Img approach, which relies on 

embedding taxonomic abundances as color pixels in an image, called “synthetic images”. 

Each image corresponds to an individual and each pixel corresponds to a taxon, with a color 

representing the abundance of that taxon. Pixels are arranged by phylogenetic sorting such 

that pixels near each other represent taxa that are phylogenetically similar. Nguyen et al. 
explore a variety of ways to set the colors and arrange the pixels. Finally, a CNN is used to 

predict the disease based on the image created. Evaluating on twelve benchmark datasets 

shows that Met2Img outperforms classical machine learning algorithms (RFs and SVMs) 

[8]. Nguyen et al. claim that the integration of phylogenetic information alongside 

abundance data improves classification [8].

Several other related approaches have been developed that use deep learning to predict both 

host and environmental phenotypes. MicroPheno [10] uses extracted k-mer counts to predict 

various host and environmental phenotypes, reporting that deep learning outperforms 

random forests for predicting environmental phenotypes but not disease phenotypes. 

MetaNN [58] uses microbe abundance profiles, augments them with simulated samples 

generated from a negative binomial distribution, and predicts host and body site phenotypes 

using either a DNN or a CNN. They report that their method improves on classical machine 
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learning approaches, and that the DNN outperformed the CNN [58]. Ditzler et al. apply a 

DNN and a recurrent neural network (RNN) to host and environmental phenotype 

prediction. They find that the DNN outperforms the RNN and a RF at predicting sample pH 

and body site, while the RF is the best at predicting host phenotype [59].

3.4. Other Machine Learning Approaches

Other methods have attempted to model the learning problem in a different way. RegMIL [7] 

is one such method. RegMIL takes the approach of Multiple Instance Learning (MIL), 

which considers a set of samples called “bags” that have known labels, and which contain a 

number of “instances”, which have unknown labels. In this case, the bags are the individuals 

in a study, the known labels are the disease phenotypes, and the instances are the 

metagenomic sequence reads. Because individual sequence reads provide limited 

information, RegMIL begins by assembling reads into contigs and then binning and 

clustering contigs. Normalized k-mer counts are then obtained for the sequences in each 

cluster. Based on the association between k-mers and disease status in the training set, a 

neural network is used to predict which k-mers in the test set are associated with disease 

status. A RF classifier uses these predictions as features to predict the disease status of the 

individual. The authors claim that this approach leads to improved results over MetaML in 

both accuracy and AUC on the liver cirrhosis and IBD datasets [7]. RegMIL thus illustrates 

both a different way to model the classification problem and an alternate way to employ 

neural networks beyond the final disease prediction step.

Several other approaches have focused not directly on classification, but on feature selection. 

Ditzler et al. introduce a feature selection method called Fizzy that attempts to select 

important microbes or functional elements for downstream classification algorithms to 

analyze [60]. A competing taxonomy-aware feature selection method was recently released 

by Oudah and Henschel [34]. The authors claim that applying it prior to classification 

improves colorectal cancer prediction from 16S rRNA metagenomic data [34]. Feature 

selection for metagenome-based disease prediction seems to be a less-explored area, but 

may be just as important as the classification method used and may enhance interpretability, 

motivating further research in this direction.

4. Results from Previous Works on MetAML Datasets

Since several methods, including PopPhy-CNN [9], Met2Img [8], and RegMIL [7], have 

been developed in comparison to the results of MetAML [5], we review their results here in 

order to provide a comparison of several recent and related papers in the field. The datasets 

we cover in this review are profiled in Table 1. As previously stated, MetAML’s best results 

are obtained with a RF, PopPhy-CNN and Met2Img are CNN based methods, and RegMIL 

models the problem with Multiple Instance Learning (MIL), while using both a nerual 

network and RF as part of their pipeline. Below, we compare and contrast the experimental 

procedures used in each study and then review the results

LaPierre et al. Page 8

Methods. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Cross-Validation Settings

MetAML performs grid search using stratified 5-fold cross-validation to select the 

hyperparameters for each classifier, and then runs 10-fold cross-validation 20 times using 

the selected hyperparameters to determine the disease classification results [5]. PopPhy-

CNN performs hyperparameter grid search for SVMs using 5-fold cross-validation, while 

the CNN is manually tuned and the settings of RFs are mostly left to the default [9]. 

Met2Img performs 10 runs of stratified 10-fold cross-validation to gather results and 

hyperparameter tuning is not mentioned for any of the methods in the paper [8]. RegMIL [7] 

performs Leave One Out Cross-Validation (LOOCV), and sets the hyperparameters 

manually.

4.2. Evaluation Protocols

Commonly used evaluation metrics for binary classification include accuracy, precision, 

recall, F1-Score and area under the receiver operating characteristic curve (AUC). Accuracy 

simply refers to the percentage of correctly predicted individuals. Precision is the percentage 

of predicted cases that are actual cases. Recall is the percentage of actual cases that are 

correctly identified by the classifier. In other words, precision measures the rate of falsely 

predicting disease, while recall measures the rate of falsely predicting healthy. The F1-Score 

is the harmonic mean of precision and recall, defined as follows:

F1‐Score = 2 × precision × recall
precision + recall

Most classifiers can report the probability of their prediction, which can be considered as the 

confidence in the prediction. The AUC uses this information to summarize the false 

prediction rate at different confidence levels. While accuracy is the most straightforward 

representation of performance, the F1-Score and AUC are better metrics when there is an 

imbalance of cases and controls. PopPhy-CNN [9] reports AUC, Met2Img [8] reports 

accuracy, RegMIL [7] reports both accuracy and AUC, and MetAML [5] reports all of the 

above metrics.

4.3. Summary of Results

Because of the inconsistencies in cross-validation and hyperparameter tuning, we only report 

the results of the baseline RF model and the proposed model for each study without making 

cross-study comparisons. In Table 2, we show the comparison between PopPhy-CNN and its 

RF baseline, denoted by PopPhy-RF. They report increased AUC in liver cirrhosis, T2D, and 

obesity of between 0.8% and 3.4% [9]. Met2Img-CNN is reported to outperform their RF 

baseline (denoted as Met2Img-RF) in liver cirrhosis, obesity and IBD, and the differences 

are statistically significant based on the one-tailed t-test (p-value < 0.05) [8]. RegMIL 

compares their proposed model with the MetAML package (denoted as RegMIL baseline) 

and reports that it outperforms the baseline in terms of accuracy and AUC for both liver 

cirrhosis and IBD by 0.5–2%.
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5. In-depth Analysis of Type 2 Diabetes and Obesity Datasets

As summarized in Section 4, machine learning methods present promising power (high 

accuracy and AUC) in predicting liver cirrhosis and IBD using only the information from 

metagenomic reads. However, these methods still struggle to predict T2D and obesity. Here 

we analyze the performance of many different classification algorithms on the T2D and 

obesity datasets. We also explore an alternate feature extraction method to see if the results 

can be improved.

5.1. k-mer-based Feature Extraction

Many existing approaches rely on MetaPhlAn2 to estimate the relative abundances of 

microbes in each individual based on the metagenomic data. To address the drawback of this 

approach as discussed in Section 3, we examine the potential to improve T2D and obesity 

prediction using k-mer abundance profiles.

We count the k-mer frequencies of the metagenomic reads in each individual using Jelly-fish 

[49]. To avoid the bias of different sequencing depths, the k-mer counts are normalized by 

the total number of possible k-mers in each sample. Each k-mer is represented by its 

canonical form (i.e., the lexicographical minimum of itself and its reverse complementary 

sequence). In our study, we set k to 12, resulting in 8,390,656 unique k-mers. Shorter kmers 

have a higher chance to randomly appear in the genome; longer k-mers generate more 

candidates in exponential order for the statistical analysis in the next step, which can be 

computationally intractable. We empirically find that setting k = 12 leads to sufficiently 

significant k-mers while still being computationally feasible to process.

To identify the significant k-mers, we conduct a statistical test based on the abundance of 

each k-mer between the cases and controls. We first pool the k-mer counts from all diseased 

samples into a case group and other samples into a control group. For each k-mer, we 

calculate the p-value with the Student’s t-test, followed by the Benjamini-Hochberg 

procedure [64] to control the false discovery rate from multiple hypothesis testings. We sort 

the k-mers based on their adjusted p-values, and retain the top 1,000 k-mers as our 

significant features. This criterion is used because retaining all k-mers with p-values smaller 

than 0.05 increases the computational time and does not improve the performance. It is 

important to note that the significant k-mers are extracted from the training data for our 

machine learning analysis, and the same set of k-mers is then used for the testing data.

5.2. Evaluation Protocols

We compare the performance of k-mer-based features against the microbial abundance 

profile estimated by MetaPhlAn2 down to the strain level. These features are used as input to 

five different machine learning algorithms: SVM, RF, XGBoost, gcForest, and an AE-

pretrained DNN (henceforth referred to as AutoNN). Hyperparameter grid search is 

performed for all five algorithms using 5-fold cross-validation to select the best settings. 

With these settings, each model is evaluated over five independent runs of 5-fold cross-

validation. We report the accuracy, precision, recall, F1-Score, and AUC for each model 

(defined in Section 4). We also conduct a pairwise statistical test to determine if the result of 
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the best k-mer-based approach is significantly better than the result of the best MetaPhlAn-

based approach.

5.3. Summary of Classification Results

Tables 3 and 4 show that different models yield different performances when learning from 

these two types of features. When learning from the microbial abundance profiles, there is 

no single model that outperforms the others in all metrics. SVM achieves the best recall and 

F1-Score in both the T2D and obesity analyses. However, the SVM simply leverages the 

class imbalance in the obesity data (see Table 1) to achieve perfect recall, and reasonable 

precision and accuracy, by predicting positive for every sample. This highlights the 

importance of careful interpretation for metrics on imbalanced data such as the obesity and 

IBD datasets. The best accuracy using the microbial features is achieved by AutoNN and RF 

for T2D and obesity, respectively; the best precision is demonstrated by RF for T2D and 

XGBoost for obesity.

On the other hand, gcForest is particularly effective at learning from the k-mer abundance 

profiles. It consistently outperforms the others in all metrics in the T2D analysis. A similar 

observation is shown in the obesity analysis, except that RF achieves the best recall. We 

further evaluate whether the best accuracy results are significantly different between the k-

mer and microbial abundance features. The pairwise Student’s t-test reveals that gcForest 

with k-mer features is not significantly different from AutoNN with microbial abundance 

features in the T2D dataset (p-value of 0.096 after Benjamini-Hochberg correction). 

Similarly, in the obesity dataset, gcForest with k-mer features is not significantly different 

from RF with microbial abundance features (p-value 0.558). These analyses further the 

evidence that T2D and obesity will continue to be challenging traits to predict using only 

metagenomic reads.

5.4. Hyperparameter Grid Search Details

Here we discuss the details of the grid search that was performed to select the best 

hyperparameters for classification. Grid search was performed for all five algorithms using 

5-fold cross-validation to select the best settings, which were then used in the subsequent 

classification steps. We attempted to identify a limited number of critical hyperparameters 

for each algorithm that significantly modified performance, as comprehensively evaluating 

all combinations of all possible hyperparameters is computationally infeasible. Similarly, we 

ran some small tests to evaluate choices for these settings that were computationally feasible 

and positively affected results. These hyperparameters (and the settings evaluated) were: the 

type of kernel (linear/polynomial) and the error term penalty 

(0.25/0.5/0.75/1.0/1.25/1.5/1.75/2.0) for the SVM; the maximum tree depth (2/6/10), 

number of estimators (10/50/100), and the splitting criterion (entropy/gini) for the Random 

Forest; the maximum tree depth (2/6/10), “alpha” L1 regularization term (0/0.25/0.5), and 

“lambda” L2 regularization term (0.5/1.0/1.5) for XGBoost; the number of training rounds 

(3/5) and the maximum forest depth (unlimited/50/100) for gcForest; the number of 

autoencoder layers (none/1/2/3), number of feedforward layers (3/5/10), dropout rate 

(0/0.25/0.5), optimizer (stochastic gradient descent[65]/adagrad[66]/adam[67]), and learning 

rate (0.01/0.001) for AutoNN. SVM and RandomForest were implemented via the scikit-
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learn library [68] and the AutoNN was implemented in Keras [69]. For more information on 

the XGBoost [22] and gcForest [23] hyperparameters, see their respective papers and 

software packages.

For the taxonomic features, the SVM’s best hyperparameter settings were a linear kernel and 

an error term penalty parameter of 1.75. For the Random Forest, the best hyperparameter 

settings were a maximum tree depth of 6, 100 estimators, and the entropy splitting criterion. 

For XGBoost, the best settings were a maximum tree depth of 2, an alpha of 0.0, and a 

lambda of 1.0. For gcForest, the best settings were 5 rounds of training and unlimited 

maximum forest layers. For AutoNN, the best settings were a single autoencoder layer, five 

feedforward layers, a dropout rate of 0.5, the adagrad optimizer, and a learning rate of 0.001.

For the k-mer-based features, the SVM’s best hyperparameter settings were a linear kernel 

and an error term penalty parameter of 0.25. For the Random Forest, the best 

hyperparameter settings were a maximum tree depth of 6, 50 estimators, and the gini 

splitting criterion. For XGBoost, the best settings were a maximum tree depth of 2, an alpha 

of 0.25, and a lambda of 1.5. For gcForest, the best settings were 3 rounds of training and 

unlimited maximum forest layers. For AutoNN, the best settings were a single autoencoder 

layer, three feedforward layers, a dropout rate of 0.25, the adam optimizer, and a learning 

rate of 0.001.

6. Discussion

We have reviewed several methods that claim to improve disease prediction on several 

datasets from a popular meta-analysis by Pasolli et al. [5]. There are several inconsistencies 

that make a comparative analysis of these methods difficult, namely different cross-

validation and hyperparameter searching methods used both between and within studies, and 

different classification metrics being reported between studies. Any valid cross-validation 

analysis is reasonable to report in a given study, whether 5-fold, 10-fold, or LOOCV, but 

within the same study, each method should be run with the same cross-validation and 

comprehensive hyperparameter search settings. As for which cross-validation method is 

ideal for this setting, there is no obvious best choice, but LOOCV has been shown to have 

low bias and strong generalization to new data [15, 70, 71], with the main drawback being 

computational cost [15]. It is often recommended for small datasets and has the additional 

benefit of avoiding questions surrounding stratification and different numbers of 

independent k-fold runs. Performance metric inconsistency is also an issue. With case-

control class imbalances, different metrics may vary in usefulness, but reporting all of the 

ones mentioned in Section 4 makes it clear why an algorithm is outperforming others, 

whether due to fewer false case predictions or fewer false control predictions. Some papers 

also report the Matthews Correlation Coefficient (MCC) which is robust to case-control 

class imbalances [72]. Overall, greater clarity and robustness of results can be achieved by 

keeping study methodology and performance metrics consistent across all tested algorithms.

There are several other ways that interpretability can be enhanced. PopPhy-CNN, RegMIL, 

and MetAML all discuss the most significant microbes for their classification models. This 

facilitates comparisons between the biological implications suggested by each model. 
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Met2Img provides results for many different variants of their method, and also used a t-test 

to highlight significant results [8]. All of these methods provide confidence bounds for their 

predictions. Each of these factors help to determine the robustness and the relevance of 

results. Another aid to replicable results and consistent experiments is public, centralized 

resources for metagenomic data analysis. One example of this is ExperimentHub [73], which 

compiles many phenotyped metagenomic datasets, including those used in the Pasolli et al. 
meta-analysis. ExperimentHub provides both microbiome taxonomic and functional 

annotations [73].

Feature extraction plays an important role in the performance of the classification model. We 

have reviewed the benefits and limitations of MetaPhlAn2-based feature extraction and also 

discussed an alternative k-mer-based approach in this paper. One difficulty of the k-mer-

based approach is the computational burden of analyzing k-mers with a large k because of 

the exponential increase of the numbers of possible k-mers. With short k-mers, the 

interpretability is challenging, as it is unclear what the k-mers represent. One less explored 

feature extraction approach is attempting to explicitly infer functional characteristics of the 

microbiome, using methods such as HUMAnN [41] or PICRUSt [42]. Finally, integration 

between different types of extracted features can be explored and further research in this 

direction is critical.

Ultimately, however, there has been extensive effort put into these studies with increasingly 

powerful machine learning algorithms, but with only minor performance improvements and 

modest changes in feature importance rankings. This suggests that there are upper limits on 

predictive accuracy that can be achieved from only metagenomic sequence read data. Thus, 

perhaps the greatest way to improve results is to include genetic data from the human 

subjects from whom metagenomic samples are taken. While this increases the cost of 

studies, it is likely critical to understanding the microbiome’s role in complex phenotypes 

such as obesity and T2D. For instance, it has been demonstrated recently that combining 

micro-biome and genetic data can significantly improve the prediction accuracy of several 

human traits, including obesity [74]. Additonally, microbiome and genetic data are largely 

complementary in contributing to this predictive performance, and the microbiome is largely 

shaped by the environment [74]. Critically, these results indicate that using microbiome data 

alongside host genetic data can help disentangle the intricate web of genetic and 

environmental factors that lead to complex traits. Additional multi-omic data sources, such 

as metatranscriptomics, are just now seeing increased availability and hold significant 

potential for elucidating the function of the microbiome [71]. Finally, deep learning has been 

suggested as a promising method for successfully integrating multiple data types [75], and 

existing methods such as Similarity Network Fusion [76] can also be employed.

We note that, while disease prediction has been challenging in some cases, deep learning 

methods in particular seem to perform extremely well at classifying the body-site origin of 

microbial samples from the HMP [3] and other datasets as reported by MicroPheno [10] and 

others [58, 59]. Other works have performed strongly at predicting phenotypes of the micro-

biome itself (as opposed to host phenotype) [59, 77], predicting disease with deep learning 

on non-metagenomic data [78], or identifying protein family shifts in microbiomes of 

diseased patients [39]. While these directions are outside the scope of this review, they 
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highlight other interesting applications of machine learning and deep learning in 

metagenome-based phenotype prediction.

7. Conclusion

Disease prediction using metagenomic sequence data has shown some potential, with a 

particularly large amount of effort having been put into deep learning methods, but remains 

challenging. Study methodology must remain consistent to compare different classification 

methods, especially when margins of difference in performance are so small. Feature 

extraction is as crucial to predictive performance as the classification methods themselves, 

and deserves increased attention. Supplementing metagenomic data with human genetic data 

may be the best way to improve both classification performance and biological 

understanding, especially with hard-to-classify complex traits such as obesity and type 2 

diabetes. This is because genetic and metagenomic data provide complementary information 

about the host and environment, respectively [74].
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Table 1:

Summary of the datasets covered in this study. More information is available in the MetAML paper [5].

Number of Case samples Number of Control samples Citation

Liver Cirrhosis 118 114 [61]

T2D 170 174 [4]

Obesity 164 89 [62]

IBD 25 85 [63]
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Table 2:

Comparison of machine learning approaches in predicting different diseases.

Liver Cirrhosis T2D Obesity IBD

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

MetAML-SVM 0.834
(0.052)

0.922
(0.041)

0.613
(0.057)

0.663
(0.066)

0.636
(0.042)

0.648
(0.071)

0.809
(0.066)

0.862
(0.083)

MetAML-RF 0.877
(0.043)

0.945
(0.036)

0.664
(0.052)

0.744
(0.056)

0.644
(0.052)

0.744
(0.056)

0.809
(0.050)

0.890
(0.078)

PopPhy-RF NA 0.932 NA 0.727 NA 0.642 NA NA

PopPhy-CNN NA 0.94 NA 0.753 NA 0.676 NA NA

Met2Img-RF 0.877
(0.060) NA 0.672

(0.080) NA 0.645
(0.042) NA 0.808

(0.068) NA

Met2Img-CNN 0.905
(0.071) NA 0.651

(0.094) NA 0.680
(0.066) NA 0.868

(0.081) NA

RegMIL baseline 0.923
(0.041)

0.922
(0.040)

NA NA NA NA 0.8387
(0.028)

0.8242
(0.0374)

RegMIL-RF 0.928
(0.036)

0.927
(0.035) NA NA NA NA 0.847

(0.035)
0.844

(0.026)
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Table 3:

Comparison of different types of features used to train the models for T2D. The mean and standard deviation 

are recorded for different evaluation metrics after five runs of 5-fold cross-validation. The best performances 

are highlighted in bold.

Microbial Abundances k-mer Abundances

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SVM 0.6429
(0.0072)

0.6259
(0.0058)

0.7204
(0.0148)

0.6644
(0.0083)

0.7250
(0.0048)

0.6375
(0.0204)

0.6405
(0.0278)

0.6168
(0.0215)

0.6246
(0.0156)

0.6945
(0.0215)

RF 0.6567
(0.0177)

0.6805
(0.0162)

0.6022
(0.0250)

0.6324
(0.0219)

0.7285
(0.0127)

0.6796
(0.0164)

0.6935
(0.0159)

0.6418
(0.0165)

0.6630
(0.0175)

0.7461
(0.0082)

XGBoost 0.6398
(0.0181)

0.6449
(0.0198)

0.6146
(0.0253)

0.6259
(0.0215)

0.6911
(0.0112)

0.6764
(0.0250)

0.6957
(0.0292)

0.6317
(0.0296)

0.6573
(0.0267)

0.7310
(0.0154)

gcForest 0.6550
(0.0181)

0.6524
(0.0198)

0.6669
(0.0253)

0.6547
(0.0215)

0.7341
(0.0112)

0.6942
(0.0059)

0.6979
(0.0101)

0.6845
(0.0152)

0.6874
(0.0068)

0.7616
(0.0106)

AutoNN 0.6626
(0.0184)

0.6644
(0.0222)

0.6598
(0.0192)

0.6574
(0.0183)

0.7343
(0.0160)

0.6517
(0.0085)

0.6444
(0.0116)

0.6762
(0.0194)

0.65 26
(0.0102)

0.7134
(0.0039)
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Table 4:

Comparison of different types of features used to train the models for obesity. The mean and standard 

deviation are recorded for different evaluation metrics after five runs of 5-fold cross-validation. The best 

performances are highlighted in bold.

Microbial Abundances k-mer Abundances

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SVM 0.6374
(0.0008)

0.6374
(0.0008)

1.0000
(0.0000)

0.7768
(0.0012)

0.5133
(0.0361)

0.6154
(0.0271)

0.6923
(0.0199)

0.7229
(0.0296)

0.7031
(0.0202)

0.5993
(0.0174)

RF 0.6480
(0.0112)

0.6512
(0.0034)

0.9675
(0.0182)

0.7764
(0.0087)

0.6416
(0.0062)

0.6139
(0.0161)

0.6733
(0.0054)

0.7786
(0.0272)

0.7170
(0.0155)

0.5937
(0.0268)

XGBoost 0.6352
(0.0241)

0.6749
(0.0112)

0.8277
(0.0366)

0.7407
(0.0205)

0.6055
(0.0241)

0.6169
(0.0261)

0.6818
(0.0116)

0.7614
(0.0427)

0.7145
(0.0253)

0.5979
(0.0196)

gcForest 0.6404
(0.0125)

0.6553
(0.0094)

0.9247
(0.0163)

0.7644
(0.0082)

0.6495
(0.0148)

0.6365
(0.0242)

0.7042
(0.0194)

0.7470
(0.0282)

0.7211
(0.0184)

0.6186
(0.0337)

AutoNN 0.6238
(0.0072)

0.6432
(0.0024)

0.9299
(0.0247)

0.7572
(0.0077)

0.6031
(0.0127)

0.5972
(0.0124)

0.6665
(0.0106)

0.7525
(0.0178)

0.70 01
(0.0108)

0.5666
(0.0135)

Methods. Author manuscript; available in PMC 2020 August 15.


	Abstract
	Introduction
	Overview of Machine Learning and Deep Learning Methods
	Primer on Machine Learning
	Classical Machine Learning Algorithms
	Deep Learning Algorithms

	Current Methods in Metagenome-Based Disease Prediction
	Feature Extraction
	Meta-Analysis of Classical Machine Learning Approach
	Deep Learning Approaches
	Other Machine Learning Approaches

	Results from Previous Works on MetAML Datasets
	Cross-Validation Settings
	Evaluation Protocols
	Summary of Results

	In-depth Analysis of Type 2 Diabetes and Obesity Datasets
	k-mer-based Feature Extraction
	Evaluation Protocols
	Summary of Classification Results
	Hyperparameter Grid Search Details

	Discussion
	Conclusion
	References
	Table 1:
	Table 2:
	Table 3:
	Table 4:

