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Abstract

Obesity and associated disorders are now a global pandemic. The prevailing clinical model for 

obesity is overconsumption of calorie-dense food and diminished physical activity (the calories in 

- calories out model). However, this explanation does not account for numerous recent research 

findings demonstrating that a variety of environmental factors can be superimposed on diet and 

exercise to influence the development of obesity. The environmental obesogen model proposes 

that exposure to chemical obesogens during in utero and/or early life can strongly influence later 

predisposition to obesity. Obesogens are chemicals that inappropriately stimulate adipogenesis and 

fat storage, in vivo either directly or indirectly. Numerous obesogens have been identified in recent 

years and some of these elicit transgenerational effects on obesity as well as a variety of health 

endpoints after exposure of pregnant F0 females. Prenatal exposure to environmental obesogens 

can produce lasting effects on the exposed animals and their offspring to at least the F4 generation. 

Recent results show that some of these transgenerational effects of obesogen exposure can be 

carried across the generations via alterations in chromatin structure and accessibility. That some 

chemicals can have permanent effects on the offspring of exposed animals suggests increased 

caution in the debate about whether and to what extent exposure to endocrine disrupting chemicals 

and obesogens should be regulated.

Introduction

The obesity pandemic is an escalating worldwide public health crisis, affecting over 650 

million people across all race, age and socio-economic groups. Despite global recognition 

and endless health campaigns targeting caloric intake and physical activity, the trends in 

obesity and obesity-related diseases are steadily rising. Worldwide obesity tripled from 

1975–2016 and obesity in the US alone more than doubled between 1980 and 2010 [1, 2]. 

These rates continue to rise, with the most recent statistics indicating that the fraction of 

obese adults in the US has reached nearly 40% [3, 4]. This burden of obesity falls most 

heavily on woman and some minority populations with the obesity rate in African American 
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and Hispanic women exceeding 50% [4]. Alarmingly, childhood obesity rates have more 

than tripled in the US [5]. Even the percentage of obese 2- to 5-year-olds has more than 

doubled from 5% to 13.9% and among teens ages 12 to 19, the rate increased four-fold, from 

5% to 20.6% [5]. Childhood obesity can be detrimental to physical and emotional health and 

is closely associated with negative social and health outcomes including poor self-esteem, 

academic performance and impaired cardiovascular health. Moreover, overweight children 

are likely to continue being overweight or obese into adulthood and the fraction of obese 

adults who successfully lose large amounts of weight and then maintain this weight loss is 

than 17% [6, 7]. Obesity is associated with the development of non-communicable diseases 

such as type 2 diabetes, cancer and cardiovascular disease which contribute greatly to the 

medical costs of obesity. These costs were recently estimated at more than $200 billion 

annually in the US [8] and the fraction of these costs that could be attributed to but a small 

number of known obesogens was substantial [9, 10]. The actual cost is likely to be 

significantly higher. This magnitude of the medical and human capital costs of obesity 

underscores the necessity of investigating all relevant factors to the obesity pandemic.

The Energy Balance Dogma

On the surface, the cause of this obesity pandemic seems simple: too much caloric intake 

and not enough exercise. As a result, health professionals have led the general public to 

focus on weight management strategies that involve reducing an individual’s net caloric 

balance through portion control and increasing physical exercise. However, this strategy has 

proven to be wholly inadequate at the population level as the number of obese people 

continues to rise worldwide. Moreover, the simplistic concept of increased caloric 

consumption and reduced exercise cannot explain the rapid rise in obesity. A key recent 

study examined NHANES data between 1988 and 2006 and found that even at the same 

levels of calorie consumption and energy expenditure via exercise, the average BMI was 2.3 

kg/m2 higher in 2006 than in 1988 [11]. In addition, the same NHANES data set refuted the 

idea of increased sedentary behaviour in the population by demonstrating that leisure time 

physical activity increased 47% in males and 120% in females between 1988 and 2006. 

Another series of studies demonstrated that exercise is consistently linked with increased fat 

mass in the long term [12, 13]. Thus, the energy imbalance model of calories consumed vs. 

calories expended is not sufficient to explain the uphill trend in obesity; other causes and 

risk factors should be considered. This has recently been recognized by representatives of 

the World Obesity Federation, World Economic Forum, the World Health Organization and 

several leading universities who wrote, “The established narrative on obesity relies on a 

simplistic causal model with language that generally places blame on individuals who bear 

sole responsibility for their obesity. This approach disregards the complex interplay between 

factors not within individuals’ control (eg, epigenetic, biological, psychosocial) and 

powerful wider environmental factors and activity by industry (eg, food availability and 

price, the built environment, manufacturers’ marketing, policies, culture) that underpin 

obesity” [14]. We could not agree more.
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Obesity lacks a single cause

Generally speaking, adult body weight is stable over time and normal physiological 

mechanisms balance metabolic control with hedonic inputs from the nervous system [15]. 

Thus, the brain can sense environmental cues, process metabolic inputs from multiple tissues 

and integrate these disparate data to manage body weight. In the typical situation, a 

temporary weight loss from illness or weight gain from holiday eating or the first year of 

university 10–15-pound weight gain is compensated and a “normal” weight is regained 

when these disturbances are remediated. This has led to the proposal that there is a type of 

“body weight set point” [15]. While this is not an immutable set point such as body 

temperature, it makes sense that body weight is managed around such a set point. One factor 

that argues strongly in favour of such a set point is the observation that obesity is rarely 

reversible once established. More than 83% of obese individuals who lost substantial 

amounts of weight through rigorous adherence to a regimen of dietary restriction and 

exercise gained it back within a few years [6, 7, 16]. In the absence of a body weight set 

point that these people had to fight (and failed), it is difficult to understand why such a small 

fraction of people who successfully remodelled their bodies could maintain this new normal. 

How and when might such a set point be established?

The Developmental Nature of Obesity

A number of factors can play into the obesity equation, including diet [17], genetics [18, 19], 

smoking during pregnancy [20, 21], stress [22, 23], the microbiome [24–26] and timing of 

meal consumption [27, 28]. However, an ever growing body of evidence demonstrates that 

obesity can be orchestrated before a person is even born. The foetal origins hypothesis, first 

promulgated by David Barker, proposes that the 9 months in utero has the ability to shape 

individual health outcomes and future well-being trajectories [29, 30]. Barker showed that 

infants born small for gestational age (and presumably undernourished as fetuses, in utero) 
were more likely to become obese adults and suffer unfavourable metabolic and 

cardiovascular conditions in comparison with infants who were not subjected to a 

nutritionally poor environment [31, 32]. Barker called this the “thrifty phenotype” and 

posited that it reflected an imbalance between the nature of the foetal environment and the 

adult environment; the undernourished foetus adapted itself to a calorie poor environment 

but grew up to experience a calorie sufficient or calorie rich environment for which it was 

not prepared [30]. This provided a strong link between the prenatal environment and 

postnatal health outcomes and presumed the existence of “prenatal programming” which 

became known as the foetal origins model. Since it is also recognized that critical periods in 

development are not restricted to the in utero period, Gluckman and Hanson proposed the 

“Developmental Origins of Health and Disease” or DOHaD paradigm to reflect this fact 

[33–35].

A key tenet of the DOHaD and foetal origins models is that foetal and early life 

programming set the parameters of “normal” adult physiological function. Developmental 

disturbances can produce adult physiology that is outwardly normal but which has 

underlying functional deficits that can increase susceptibility to disease. An extensive set of 

studies in animals and humans have borne out a connection between poor prenatal nutrition 
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and increased risk of diseases such as obesity throughout the life course and even in 

subsequent generations [29, 36]. What is currently lacking is an understanding of the 

molecular details through which such developmental programming occurs. Recent studies 

have implicated epigenetic mechanisms which will be discussed further below [37–39].

Economists have expanded on the DOHaD hypothesis, investigating a broader range of 

foetal shocks and circumstances and have found a wealth of later-life outcomes including 

test scores, educational attainment and income, along with health that reflect these 

exposures. For example, adults with prenatal exposure to maternal fasting during Ramadan 

were 20% more likely to have mental and learning disabilities compared to adults that were 

never exposed [40]. The fact that these effects were observed with a relatively mild foetal 

shock (episodic periods of fasting) leads one to question how much of an effect other 

common exposures would produce. The 1918 influenza pandemic was a more severe 

prenatal stressor, and one-third of babies born in early 1919 had mothers who acquired the 

infection while pregnant [41]. Despite the short time period of exposure to the foetal 

stressor, the individuals exposed to the influenza in utero were 20% more likely to be 

disabled and experienced reduced educational attainment [41]. These are but two among 

many examples of diverse foetal exposures resulting in significant, persistent and 

unfavourable health outcomes.

To further support the importance of environmental effects on development, the escalating 

obesity trend in humans is mirrored in animals living in close proximity to humans. These 

include our pet cats and dogs but also feral rats living in cities and, crucially, rats, mice and 

primates living in research colonies where caloric intake is strictly controlled [42]. This 

puzzling finding highlights just how little is known about the factors influencing fat 

accumulation and shines a bright light on the potential role of the environment in addition to 

lifestyle choices as drivers of the obesity pandemic.

Endocrine disrupting chemicals

The endocrine system plays many important roles in energy balance, fat deposition and fat 

distribution in the body. Insulin and glucagon produced in the pancreas modulate glucose 

uptake and usage; ghrelin and cholecystokinin affect metabolism in the gastrointestinal tract; 

glucagon, insulin and fibroblast growth factor 21 (FGF21) act in the liver to control 

metabolism, hunger and satiety. The brain itself is an endocrine organ that controls hedonic 

circuits that modulate food intake via reward mechanisms involving peptide hormones, 

neurotransmitters and growth factors as well as regulating metabolism [15, 43–45]. Sex 

hormones such as estradiol and testosterone can affect food intake, body weight, fat 

distribution and can alter the balance of glucose and insulin, lipogenesis and lipolysis, all of 

which affect energy metabolism and, ultimately obesity [reviewed in 46].

It is now widely accepted that endocrine-active chemicals in the environment can disrupt 

hormone function to influence health, particularly by altering developmetnal programming 

[reviewed in 47, 48]. The Endocrine Society defines an endocrine-disrupting chemical 

(EDC) as an exogenous chemical, or mixture of chemicals, that can interfere with any aspect 

of hormone action” [49]. This is distinct from the EPA and WHO definitions which add the 
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rather vague requirement that such effects must also be “adverse”. Endocrinologists and 

endocrine scientists recognize disruption of hormonal signalling as adverse, per se [49]. A 

general feature of endocrine signalling systems is that the endogenous hormones function at 

quite low levels (nano- to picomolar); therefore, molecules capable of disrupting them are 

expected to act at similar doses and not to exhibit threshold effects because endocrine 

signalling systems are typically already active [50].

The obesogen hypothesis

In 2006, Blumberg and Grün proposed the existence of chemicals, including EDCs, that 

could influence adipogenesis and obesity and be important, yet unsuspected players in the 

obesity pandemic. These “obesogens” can be defined by their function as chemicals that 

promote obesity in humans or animals [51]. The obesogen hypothesis extended the DOHaD 

paradigm for obesity by proposing that obesogens could act during development to 

predispose the exposed individual to obesity in adolescence or adulthood. In principle, 

obesogens can act directly on cells to increase the commitment or differentiation of 

adipocytes from stem cells or preadipocytes, thereby altering adipocyte number. They can 

also act by inducing adipocytes to increase triglyceride storage and/or by altering adipocyte 

homeostasis. The average adipocyte lives for ten years [52], therefore, altering the rate of 

adipocyte birth or death can influence the total number. Obesogens can also act indirectly to 

increase fat mass by changing basal metabolic rate, by modulating food intake via effects on 

the brain, pancreas, adipose tissue, liver, gastrointestinal tract, brain and muscle, by shifting 

energy balance to favour calorie storage, and by altering the composition of the microbiome 

[reviewed in 46, 53, 54]. Recent studies have established that obesogens can alter metabolic 

“set points” leading to obesity later in life, particularly when dietary composition or caloric 

intake is changed [55, 56]. Obesogens do not necessarily induce obesity alone, but they can 

alter developmental programming, affecting nuclear factors or other endocrine pathways 

during development in ways that lead to obesity later in life. It is important to note that not 

all EDCs are obesogens and not all obesogens are EDCs; there are dietary obesogens such as 

refined sugars that may not meet the strict definition of an EDC, but which are definitely 

obesogens.

Mechanisms of obesogen action

An important outstanding question is the extent to which exposure to obesogens contributes 

to the obesity pandemic in humans. To address this important question, one must examine 

the data that support or refute the obesogen hypothesis and the extent to which these data are 

consistent with the importance of environmental obesogens in the aetiology of obesity. 

Moreover, it is critical to have extensive data from longitudinal epidemiological studies in 

humans, together with accurate and repeated measurements of obesogen levels at least 

throughout pregnancy (which are largely absent from the literature at the moment). 

Numerous reviews have been written on this topic based on data from human and animal 

studies [46, 53, 54, 57–62]. EDCs have been linked to obesity, and obesogens have been 

detected in humans [63–67] and animals [68–71]. It is important to note that no systematic 

effort has yet been undertaken to determine the number of potential obesogens that are 

present in the tens of thousands of chemicals in widespread use. These chemicals are 
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pervasive in the environment; therefore, it is crucial to understand which of them might be 

obesogens, how they disrupt developmental programming, predisposing individuals to 

obesity and related disorders. At this writing, about 50 chemicals have been identified that 

can act as obesogens, in vivo [46]. Unfortunately, we currently know very little about the 

molecular mechanisms through which most obesogens act but some examples of known 

obesogens follow together with the mechanisms through which some of them act.

Obesogens reprogram stem cell fate

One of the first bona fide, in vivo obesogens to be identified was the antifouling agent, 

tributyltin (TBT). Organotins are widely used in industry and the related chemical, 

triphenyltin (TPT) is used in agriculture, primarily as a miticide. Although there are no 

biomonitoring efforts to monitor organotin exposure in humans, exposure likely occurs 

through dietary sources such as seafood and shellfish contaminated by TBT used in marine 

shipping applications or as fungicides for paper mills and industrial water systems. TPT use 

as a fungicide on high value food crops presents more opportunities for human exposure. 

TBT is present in vinyl plastics as a contaminant (non-intentionally added substance) of the 

heat stabilizer dibutyltin (DBT) and has been found at appreciable levels in house dust in the 

US [72, 73]. TBT binds directly to the “master regulator” of adipogenesis, peroxisome 

proliferator activated receptor gamma (PPARγ) and its heterodimeric partner, 9-cis retinoic 

acid receptor (RXR) at nanomolar (parts per billion) levels [70, 74, 75]. Several studies have 

shown that pre-adipocytes as well as mouse and human multipotent mesenchymal stromal 

cells (aka mesenchymal stem cells, MSCs) can be induced to differentiate into adipocytes by 

organotins such as TBT and TPT [70, 75] as well as the highly prevalent DBT [76, 77]. 

These results are largely dependent on the ability of these chemicals to activate PPARγ [78–

80]. Adult mice exposed to TBT in utero displayed increased lipid accumulation in adipose 

depots, livers and testis [70, 81] and treatment of adolescent or adult mice, rats, goldfish and 

zebrafish led to increased fat deposition and hepatic steatosis [82–85]. Very few 

epidemiological studies of TBT levels exist, yet TBT continues to be found in house dust 

[73] and in seafood, [86] and at least one study shows increased ponderal index in human 

infants with the highest prenatal TBT exposure [87].

Several other chemicals have been identified as obesogens, in vivo. These include the 

fungicides triflumizole [79], tolylfluanid [88] and the plasticizer diethylhexyl phthalate [89]. 

Tolylfluanid was shown to act via the glucocorticoid receptor [88] whereas triflumizole acts 

through PPARγ [79]. Which receptor diethylhexyl phthalate acts through is unknown but 

the action may be via its metabolite monoethylhexylphthalate on PPARγ.

A variety of other potential obesogens have been identified that are known to act on 

preadipocytes or MSCs to promote adipogenic differentiation [90, 91]. It was recently shown 

that TBT and other chemicals that activate RXR, commit MSCs to the adipose lineage by 

activating RXR, but not PPARγ. TBT and pharmacological RXR agonists de-repress genes 

important for adipogenic commitment by decreasing deposition of the repressive chromatin 

mark, histone 3 lysine 27 trimethyl (H3K27me3) in the promoters and regulatory regions of 

these genes, leading to increased expression of their mRNAs [92]. Therefore, it is likely that 

other RXR activators (these are collectively called ‘rexinoids’) such as the fungicide 
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fludioxonil or the surfactant SPAN-80 will produce similar effects. Intriguingly, a variety of 

other fungicides with widely divergent structures, including flusilazole, zoxamide and 

quinoxyfen are candidate obesogens, in vitro [90]. Other agrochemicals such as 

tebupirimfos, flusilazole, forchlorfenuron, acetamiprid and pymetrozine induce 3T3-L1 

preadipocytes to differentiate into adipocytes in culture by mechanisms other than activating 

PPARγ [90]. Flame retardants, phthalates, plasticizers, parabens, alkylphenols and 

bisphenols can all differentiate 3T3-L1 cells to adipocytes in vitro [reviewed in 46]. Which 

of these candidate obesogens lead to increased fat accumulation in vivo remains unknown. 

However, the next chemical shown to induce the differentiation of fat cells, in vitro, that 

does not cause fat accumulation in vivo, will be the first.

Obesogen exposure can produce unhealthy adipocytes

Considering how many chemicals increase the commitment or differentiation of adipocytes, 

it is reasonable to ask whether the adipocytes produced are normal and fully functional [93]. 

Such studies were prompted by the studies of Sargis and colleagues who investigated the 

effects of TBT vs. the pharmaceutical PPARγ activator, troglitazone on the differentiation 

and function of 3T3-L1 preadipocytes, in vitro [94]. TBT-induced adipocytes produced 

lower levels of adiponectin and CEBPα mRNA and protein than did troglitazone-induced 

adipocytes. The TBT-induced adipocytes displayed reduced GLUT4 expression but normal 

glucose uptake and they inferred that TBT had produced “unhealthy” adipocytes [94]. White 

adipocytes play an important role in metabolic health by removing glucose from the 

circulation when stimulated by insulin [95]. White adipose tissue (WAT) also releases 

important adipokines such as adiponectin [96]. Adiponectin expression is inversely 

correlated with risk of type 2 diabetes largely by suppressing gluconeogenesis and 

stimulating β-oxidation of fatty acids in the liver [97]. Pharmaceutical PPARγ activators are 

thought to promote the development of “healthy” adipocytes which are characterized by 

their production of healthy adipokines such as adiponectin, their sensitivity to glucose, their 

anti-inflammatory and non-fibrotic local microenvironment and by being normoxic and not 

hypertrophic [98, 99].

Shoucri and colleagues confirmed and extended these results to a stem cell model and 

addressed the mechanistic underpinnings of the obesogenic phenotype. They treated 

differentiating MSCs with the PPARγ activator rosiglitazone (ROSI), the RXR activator 

IRX4204 or the dual RXR/PPARγ agonist TBT and investigated the transcriptome and 

function of the adipocytes produced in this way. They showed that TBT- and 4204-treated 

cells accumulated essentially the same amount of fat as did ROSI-treated cells but that TBT- 

and 4204-induced adipocytes differed in a number of ways from ROSI-induced adipocytes 

[93]. TBT or 4204-induced adipocytes expressed reduced levels of GLUT4 accompanied by 

lower glucose uptake. They produced lower levels of adiponectin mRNA and protein and 

showed elevated levels of molecular markers of inflammation and fibrosis [93]. The TBT or 

4204-treated cells were impaired in their respiratory function, measured in vitro and, as 

might be expected, contained fewer mitochondria [93]. Intriguingly, the TBT or rexinoid 

induced adipocytes were less able to produce thermogenic beige/brite fat. Taken together, 

these data show that while ROSI, TBT or rexinoid differentiated adipocytes all accumulated 

fat to similar levels, in vitro, the TBT or rexinoid differentiated cells did not respond to 
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normal signalling processes. This may be highly relevant to the observations that animals 

treated with these chemicals accumulate excess fat. To what extent other environmental 

obesogens produce normal or dysfunctional WAT and the mechanisms through which they 

accomplish this is an open and exciting question to address in the future.

Obesogens exposure can impair thermogenesis

An important recent advance in understanding adipocyte function was the discovery that 

thermogenic brown adipose tissue (BAT) is found in adult humans, albeit dispersed, rather 

than concentrated in discrete depots as in human infants [100]. Another key discovery was 

that white adipose tissue (WAT) can be induced to produce thermogenic fat, which has been 

termed beige or brite fat [101, 102]. Both the differentiation of bona fide brown adipocytes 

and the beiging of white adipocytes are characterized by the increased production of 

mitochondria. Thermogenesis relies on the presence of Uncoupling Protein 1 (UCP1) which 

uncouples cellular respiration from ATP synthesis to generate heat instead of ATP. There is 

some recent evidence that at least a few obesogens exert some of their functions by 

impeding the production or function of thermogenic adipocytes. La Merrill and colleagues 

showed that perinatal exposure to the insecticide dichlorodiphenyltrichloroethane (DDT) 

produces an interesting phenotype: adult female animals are intolerant to cold, have reduced 

core temperature accompanied by lower energy expenditure [103]. The authors ascribed 

much of this reduced BAT function to diminished expression of peroxisome proliferator-

activated receptor γ coactivator 1α (Ppargc1α or PGC-1α) and iodothyronine deiodinase 2 

(Dio2, which converts thyroxine, T4, to the more thermogenic triiodothyronine, T3). 

Secondly, as noted above, Shoucri and colleagues recently found that production of beige/

brite fat cells from MSCs was inhibited by TBT or rexinoids [93]. These examples indicate 

that obesogens can influence obesity by impairing thermogenesis, in vitro and in vivo. This 

is an intriguing area for future study. The European Untion has recently funded several large 

grants through their Horizon 2020 program that aim to develop sensitive new assays to 

assess the effects of EDCs on metabolic endpoints. Among these are assays that will identify 

chemicals that affect thermogenesis which may allow the identification of more such 

chemicals.

Can obesogens modulate metabolic setpoints?

Despite abundant evidence from animal models showing that obesogen exposure can elicit 

increased fat depot weight, adipocyte size and number, the human situation will undoubtedly 

be more complex. Humans have a number of contributing factors to obesity such as diet 

composition and caloric input, composition of the gut microbiome, circadian rhythms, type 

and amount of exercise, environmental stressors such as air pollution, noise and light 

pollution and some input from genetics. Moreover, these multiple influences interact with 

each other and with confounding factors such as prescription drugs, dietary supplements and 

individual variation. The common human lament of weight being easy to gain yet hard to 

lose, together with abundant evidence showing that sustained weight loss in obese 

individuals is rare, and that adding exercise to one’s lifestyle without modifying caloric 

input results in increased body fat all support the existence of some sort of body weight set 

point. In this view, the combination of physical activity and caloric intake are key factors in 
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weight control and the effects of obesogen exposure are superimposed onto these other 

factors. That is, obesogen exposure alone may be insufficient to produce obesity, interactions 

with other factors such as diet may be critical.

Research in multiple laboratories has supported the existence of a body weight point that can 

be altered by obesogen exposure. Perinatal exposure to the estrogen, diethylstilbestrol led to 

weight gain at adulthood despite no detectable increase in food intake [104]. Prenatal 

nicotine exposure in rats produced adults that required less high-fat food to gain weight 

[105]. Exposure of F0 female mice to TBT throughout pregnancy and lactation led to males 

of the unexposed F4 generation gaining weight very rapidly when dietary fat was increased; 

they retained much of this extra fat even after their chow was returned to the previous low-

fat diet [55]. The animals also over-expressed leptin and the authors inferred they were 

leptin-resistant [55]. A very important recent study in humans showed that caloric restriction 

in a clinical setting led to weight loss, irrespective of the type of diet but that individuals 

regained weight at different rates when dieting was ceased [56]. Intriguingly, those 

individuals who regained weight the most quickly had lower resting metabolic rates than 

those who regained weight more slowly and that the rapid weight regainers had the highest 

levels of perfluoroalkyl chemicals in their blood [56]. This provided the first link between 

metabolic rate in humans and chemical contaminants in blood. Resting metabolic rate is the 

biggest consumer of calories in human physiology; therefore, small alterations in this rate 

can have large consequences on body weight. In sum, these data support the concept of a 

metabolic set point that might be malleable by exposure to chemical obesogens.

The effects of EDCs and obesogens can be heritable

One of the most startling results in the EDC field came in 2005 when Michael Skinner and 

colleagues showed that prenatal exposure to the anti-androgenic fungicide vinclozolin, or the 

estrogenic pesticide methoxychlor led to disease in various organs in the F4 generation 

[106]. More recently, when pregnant mice were treated with environmentally-relevant (nM) 

doses of TBT via their drinking water, effects were detected in the F1–F3 descendants of F0 

mice exposed during pregnancy [81] or the F1–F4 descendants of animals treated during 

pregnancy and lactation [55]. Notably, unlike TBT, the pharmacological obesogen, ROSI 

which activates PPARγ, could not produce such transgenerational effects on obesity, 

suggesting that despite its action through PPARγ in cell culture, additional or different 

targets of TBT were required to generate transgenerational effects [55, 81]. TBT exposure 

led to a transgenerational “thrifty phenotype” in F4 male (but not female) mice. This thrifty 

phenotpye as manifested as males being resistant to fat loss during fasting and showing an 

increased propensity to gain weight when dietary fat was increased. Since this phenotype 

was not manifested until diet challenge, it is clear that it does not result from the trivial 

explanation of fat animals producing fat offspring. The authors inferred that the thrifty 

phenotype was associated with changes in chromatin structure that led to subsequent 

alterations in DNA methylation and overexpression of leptin and important metabolic genes 

in white adipose tissue (WAT) [55]. In addition to these effects of TBT on obesity, Skinner 

and colleagues have shown that plastic components BPA, diethylhexyl and dibutyl phthalates 

[107], the pesticide methoxychlor [108], a mixed hydrocarbon mixture (jet fuel JP-8) [109] 

and the pesticide, DDT [110] can all cause transgenerational obesity in the rat model.
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It is currently controversial which molecular mechanisms underlie transgeneral inheritance 

of any trait, including obesity. While most investigators in the EDC field believe that these 

effects are transmitted in an epigenetic manner, this idea has met with strong resistance in 

the genetics community [111]. However, it is clear that the normal development of 

mammalian germline cells depends on hormonally regulated functions of somatic cells 

supporting their survival and differentiation, thus it is reasonable to hypothesize that EDCs 

could affect epigenetic reprogramming of germline cells. Perhaps the strongest argument 

raised against the transmission of epigenetic marks such as DNA methylation is that 

genome-wide epigenetic reprogramming in mammalian germline cells should erase 

epimutations from the preceding generation [111–113]. Some investigators report stable 

transgenerational changes in DNA methylation [110, 114, 115]; others found that the same 

chemicals induced epimutations and alterations in gene expression in the F1 generation, but 

that these were not conserved in F2 prospermatogonia [116]. Other factors such as histone 

retention and small non-coding RNA inheritance have been invoked as being involved in 

transgenerational inheritance [117], but the mechanisms underlying the transfer of these 

factors across generations remain elusive. One possible model comes from the work of 

Chamorro-García and colleagues who proposed that changes in chromatin accessibility and 

large scale organization are transmitted across generations. In their model, altered 

accessibility of the chromatin to DNA and histone modifying enzymes can lead to secondary 

changes in DNA and/or histone methylation that can ultimately result in differential gene 

expression [55]. It remains to be seen just what changes in chromatin structure can be 

transmitted across generations and whether different chemical obesogens produce 

overlapping changes in chromatin structure.

FUTURE DIRECTIONS

Obesity adds at least $200 billion to US healthcare costs annually [8], and the number of 

obese individuals continues to increase [4]. Thus, studies aimed at discovering the many 

mechanisms underlying the predisposition to obesity and related disorders are timely and 

important. Recent estimates of the impact of three obesogens on the cost of obesity to the 

EU inferred an annual cost of €18 billion [10]. A similar study was performed for the US 

population and estimated an annual cost of $5.9 billion [9]. These are likely to be gross 

underestimates since they only considered exposure to 3 obesogens. The number was limited 

to 3 because the number of prospective cohorts with suitable measurements of chemical 

levels to infer exposure was quite limited. Thus, we need appropriate studies to estimate the 

cost of the other ~50 known obesogens to world society and to what degree obesogen 

exposure influences obesity in humans. There are important knowledge gaps regarding the 

effects of multiple simultaneous or serial obesogen exposures as well as the interactions 

between obesogen exposure and established risk factors in obesity. Such factors include 

inflammation, disrupted circadian rhythms, oxidative stress, mitochondrial dysfunction, 

dietary composition, timing of eating and the regulation of appetite and satiety. These 

interactions could be critical in understanding the effects of obesogens on humans. We know 

very little about how to determine who has been exposed to obesogens during their 

development, or in their ancestry. Identifying biomarkers of exposure is a “Holy Grail” of 

obesogen research and will allow the establishment of strong links between obesogen 
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exposure, other risk factors and the eventual development of obesity and related disorders. 

Effects of obesogen and EDC exposure are at least in part epigenetic, yet we know relatively 

little about the underlying mechanisms and how the effects are transmitted across the 

generations. For example, how does exposure of pregnant F0 female mice lead to obesity in 

unexposed F3 and F4 males [55]? Is there a causal link between perfluoroalkyl chemicals 

and reduced resting metabolic rate [56]? Which molecular targets mediate the effects of 

obesogens on metabolic programming in vivo? Relatively little is known about the extent to 

which obesogen exposure programs dysfunctional adipose tissue that may readily store, but 

not mobilize fat. There is an extreme paucity of data on the effects of multiple or continuing 

exposures over the life course and across generations.

The obesogen field is only about 15 years old. Much has been learned about the potential 

effects of EDCs and obesogens in obesity. Perhaps the strongest evidence for the existance 

of chemical obesogens are the observations that a variety of pharmaceuticals have the side 

effects of making patients fat [reviewed in 46, 118]. Drugs are nothing more than chemicals 

that have been tested and validated to be effective against a particular condition; it is obvious 

that chemicals targeting the same molecular pathways should elicit similar effects. Several 

international workshops have been held to discuss the potential role of EDCs in obesity and 

metabolic diasease [10, 46, 119, 120]. There is wide agreement that obesogens exist and 

have the potential to influence obesity in humans. Thus, it would be prudent to consider 

policies and strategies aimed at reducing obesogen exposure in the population in addition to 

other preventive factors.
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