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Abstract

The determination of lineages from strain-based molecular genotyping information is an important 

problem in tuberculosis. Mycobacterial interspersed repetitive unit-variable number tandem repeat 

(MIRU-VNTR) typing is a commonly used molecular genotyping approach that uses counts of the 

number of times pre-specified loci repeat in a strain. There are three main approaches for 

determining lineage based on MIRU-VNTR data - one based on a direct comparison to the strains 

in a curated database, and two others, on machine learning algorithms trained on a large collection 

of labeled data.

All existing methods have limitations. The direct approach imposes an arbitrary threshold on how 

much a database strain can differ from a given one to be informative. On the other hand, the 

machine learning-based approaches require a substantial amount of labeled data. Notably, all three 

methods exhibit suboptimal classification accuracy without additional data.

We explore several computational approaches to address these limitations. First, we show that 

eliminating the arbitrary threshold improves the performance of the direct approach. Second, we 

introduce RuleTB, an alternative direct method that proposes a concise set of rules for determining 

lineages. Lastly, we propose StackTB, a machine learning approach that requires only a fraction of 

the training data to outperform the accuracy of both existing machine learning methods.

Our approaches demonstrate superior performance on a training dataset collected in New York 

City over 10 years, and the improvement in performance translates to a held-out testing set. We 

conclude that our methods provide opportunities for improving the determination of pathogenic 

lineages based on MIRU-VNTR data.
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1. Introduction

The genetic diversity of the infectious pathogen Mycobacterium tuberculosis has played an 

important role in its adaptation to its diverse host species, including humans [1, 2, 3]. This 

diversity is commonly organized into groups of related strains, called lineages, that are 

correlated with the strain’s geographical origin [4]. Lineage information can help inform us 

of the phylogeographic provenance of the strain [5], and has been shown to influence 

mutation rates and likelihood of drug resistance [6], as well as transmissibility and virulence 

[7, 8]. The aggregated information obtained by combining lineage classification with 

epidemiological or clinical data can provide the basis for a molecular surveillance program 

[9].

Several different molecular genotyping methods have been used to assign lineages to M. 
tuberculosis, including restriction fragment length polymorphism (RFLP), spacer 

oligonucleotide typing (spoligotyping), large sequence polymorphisms (LSPs), single 

nucleotide polymorphisms (SNPs), and mycobacterial interspersed repetitive unit-variable 

number tandem repeats (MIRU-VNTR). These and other molecular genetic approaches for 

tuberculosis genotyping are reviewed in Mathema et al [14] as well as Kato-Maeda et al 

[15]. The typing of MIRU-VNTR is a commonly used approach for genotyping tuberculosis 

strains due to its reproducibility [10] and discriminatory power for identifying potential 

transmission clusters [11], a process in which it is often used in combination with 

spoligotyping.

MIRU-VNTR is a mini-satellite typing system that has been proposed as a tool to analyze 

the diversity of tuberculosis isolates [12, 13]. It consists in performing a PCR amplification 

step with primers designed for the regions before and after the tandem repeats, and 

determining the sizes of the amplicons. This produces a readout containing the number of 

copies of a repeated region at several pre-selected loci, each of the repeats being between 50 

and 150 base pairs long. These copy number variants (CNVs) are then used to compare the 

M. tuberculosis strain to other similarly typed strains. The prevalence of MIRU-VNTR as 

the genotyping method of choice for tuberculosis naturally gives rise to the problem of 

determining lineages based only on information obtained with this technique.

One commonly used method for solving this problem is based on a reference database called 

MIRU-VNTRplus, which contains a collection of 186 strains with their 24 MIRU-VNTR 

loci and lineage assignments [16] - we note that another widely used genotypic marker 

database for M. tuberculosis, SITVIT [20], primarily contains spoligotypes. The method 

consists in assigning to a strain of interest the lineage of the strain in the database that differs 

from it in the smallest number of loci, provided that this number does not exceed 4 out of 24 

loci. Another widely used method, called TB-Insight [21], uses a machine learning method 

called Conformal Bayesian Networks for the classification problem. It only provides major 

lineages, rather than the more specialized minor lineages like MIRU-VNTRplus. One final 
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method, called TBminer [22], uses several popular machine learning techniques to learn 

lineage assignments based on either MIRU-VNTR loci, spoligotypes, or both, and outputs 

the majority-vote prediction. TBminer can provide both major and lineages, as well as its 

own “consensus” classification.

Since TB-Insight only predicts major lineages, we focus our comparison to existing methods 

on this level of granularity. However, both our approaches can be adapted to determine 

minor lineages, at the cost of only a slight decrease in accuracy due to the smaller number of 

strains in our training data that belong to each lineage, as we describe in Sections 2.1 and 4.

We address the limitations of existing methods with several proposed improvements, 

described in detail below. First, we suggest that removing the arbitrary threshold of 4 out of 

24 loci recommended by the authors of the MIRU-VNTRplus database retains the accuracy 

of the method based on it while increasing the number of strains that can be classified. 

Second, we develop a state-of-the-art interpretable lineage classifier by using an 

optimization framework to extract a set of rules suitable for classification; each of these rules 

considers only a small number of MIRU-VNTR loci. Finally, we also consider an approach 

that uses the ensembling technique from machine learning, which captures the strengths of 

different machine learning classifiers within a single model in a principled way.

We test all our proposed improvements on a dataset collected in New York City over a 

period of 10 years, and representative of the substantial diversity found among M. 
tuberculosis strains and the M. tuberculosis complex. We separate it into a training set, 

which we use to develop our methods, and a testing set, which we use to evaluate their 

performance.

2. Materials and Methods

2.1. Dataset preparation

There are two sources of data that we use to develop our algorithms. The first is the publicly 

available database MIRU-VNTRplus [16], which contains 186 strains (including 2 strains 

with a locus containing two different copy numbers, which we consider as representing two 

different MIRU patterns). These MIRU patterns are assigned to 22 different narrow lineages. 

We eliminate the 9 lineages that do not contain sufficient data, and coarsen the remaining 13 

into 6 broad lineages, according to the transformation described in Table 1. This leaves us 

with 155 strains that are used in the analysis.

We also perform a second analysis, with what we refer to as “refined lineages”, in which we 

keep the 11 strains belonging to the Mycobacterium caprae lineage, for a total of 166 strains 

from the MIRU-VNTRplus database. For this analysis we also subdivide the Mycobacterium 
africanum lineage into sub-lineages 1 and 2, as is commonly done in the field [17].

The second source of data is a collection of strains collected by the New York City 

Department of Health and Mental Hygiene (NYCDOHMH) Bureau of TB Control from 

tuberculosis (TB) patients counted in New York City over a period of 10 years (2001-2010). 

There are a total of 1860 strains with no missing values that are assigned to 6 different broad 
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lineages based on the SNP analysis described previously [14, 18]. After the two datasets are 

combined, we are left with 2015 strains containing 1978 unique MIRU patterns, which we 

split into a training and a testing set in a 4:1 ratio in a manner that preserves the lineage 

distribution. For the second analysis we proceed analogously with a total of 2026 strains 

falling into 8 refined lineages.

In order to test our methods’ robustness to the number of categories, and to demonstrate 

their ability to identify known substructure within the Euro-American lineage, we also 

perform a third analysis in which the NYC strains are categorized into 12 SNP clusters, 9 of 

which contain M. tuberculosis sensu stricto and a further 6 of which are a subdivision of the 

Euro-American lineage [19]. We refer to this as the “SNP cluster” analysis. To the 1834 

strains classified in this way we add the 44 MTBC strains belonging to M. bovis and M. 
africanum from the MIRU-VNTRplus database, since the NYC dataset contains very few of 

those. In summary, our third analysis contains 1878 strains assigned to 12 SNP clusters.

2.2. Removing the arbitrary threshold

One straightforward performance improvement can be obtained by removing arbitrary 

thresholds. Namely, the MIRU-VNTRplus method contains the requirement that the strain of 

interest have no more than 4 out of 24 loci with values different from those of a strain in the 

database. One would expect that having a more conservative threshold would lead to more 

accurate lineage predictions, at the cost of not being able to classify certain strains. We test 

this assumption to understand the influence that this threshold has both on the fraction of the 

lineages to which the method is able to assign a strain, as well as on the accuracy of this 

assignment.

2.3. Producing interpretable rules: RuleTB

In order to produce an accurate yet interpretable classifier for lineages, we use the 

methodology of Malioutov and Varshney [23] to come up with a small set of rules for 

predicting each lineage that has the lowest possible error on the training dataset. We define a 

simple rule by an inequality of the form either sl ≤ b or sl ≥ b for some MIRU-VNTR locus l 
and integer b. A strain s satisfies this rule if the inequality is valid for it, and fails it 

otherwise. A strain s satisfies a complex rule (defined as a collection of rules) if it satisfies 

each one, otherwise it fails the complex rule. The goal is to find the smallest set of such 

complex rules that correctly predict the lineage for the largest number of strains.

As we describe in the Supplementary Materials, Malioutov and Varshney [23] propose an 

approach based on linear programming (LP) to the NP-hard problem [24] of identifying the 

smallest set of complex rules of this form. This approach is guaranteed to work correctly 

under certain specific conditions, and provides a useful heuristic otherwise. We modify their 

approach in two ways. First, instead of solving the linear programming relaxation of the rule 

inference problem that they propose, we directly solve its integer linear programming (ILP) 

formulation, including a penalty term for violated constraints, using the CPLEX software 

[25]. Second, to generalize to the case where multiple lineages need to be classified at the 

same time, we propose a greedy iterative approach which produces complex rules for one 

lineage at a time, as we describe in the Supplementary Materials.
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2.4. Designing a machine learning method: StackTB

StackTB is an algorithm which combines a number of machine learning modelling 

methodologies using a technique called stacking. In this section, we describe how the 

different models are stacked together, and then provide descriptions of the individual 

methodologies in the Supplementary Materials.

Ensembling is a technique for aggregating the results of multiple machine learning models 

to improve their collective performance. For each instance to be classified, some aggregator 

function is used to aggregate the classifications of all of the constituent algorithms to get the 

ensemble classification. The simplest aggregator function is the majority vote, which is used, 

for instance, in the TBminer method [22]. However, it is usually possible to do better with 

more advanced ensembling methods, by using aggregator functions which enhance the 

signal from constituent classifiers which do well on the instances to be classified, and 

dampen the signal from those that do not.

The specific ensembling technique we use is called stacking, and it uses another machine 

learning algorithm to perform the aggregation. Each of the stacked algorithms is trained on 

some resampling of the training data. The outputs of each of these models are concatenated 

and fed as the input to the combining model. These inputs are then used to optimize the 

parameters of the combining model. Any new data points that the model is to predict go 

through a similar process, first being transformed by the stacked models, and then having the 

final prediction be determined by the combining model. See Figure 1 for a visualization of 

how the models we use for StackTB get stacked.

3. Implementation

RuleTB and StackTB are implemented in the R programming language [26]. The 

implementation took place in five phases, as described below.

3.1. Data Cleaning

In this phase we cleaned and combined both datasets described in Section 2.1. This involved 

mapping the loci names and lineage names to be consistent across the datasets and 

translating all string-encoded hexadecimal numbers to their numerical equivalents. We also 

removed any samples with missing MIRU-VNTR values for at least one locus.

3.2. Train-Test Split

We then randomly split this combined dataset into a training and test set. The training set 

consisted of 1613 samples of labeled MIRU-VNTR data, which is eighty percent of our 

combined data set. Twenty percent of the data, or 402 samples, was held out as a test set 

from which we determined our out of sample accuracy. The remaining data was used as a 

training set to develop the rules in RuleTB and train the machine learning algorithms in 

StackTB. We performed the same fractional splits (80% for training, 20% for testing) on the 

data used in our second and third analyses.
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3.3. Model Training

Using the training data, we constructed the rule for each lineage. We also trained each of the 

individual models that are needed for stacking in StackTB: random forest, two gradient 

boosted machines, and k-nearest neighbors. We used five-fold cross-validation on this 

training data to select hyper-parameters and train the stacking multinomial regression model.

3.4. Performance Analysis

We evaluated the quality of the constructed rules and models on the test set, by analyzing the 

confusion matrix and looking at the overall accuracy for each classifier. We compared this 

accuracy to that of the state of the art MIRU-VNTRplus, TB-Insight and TBminer 

algorithms on our test set. Our results are discussed in Section 4.

3.5. Sensitivity Analysis

To ensure that our results do not depend on the particular random partition of the data into a 

training and a testing set that we used, we repeated the process on 100 additional random 

partitions of the data, each time with 80% used for training and the remaining 20% used for 

testing. As the results presented in Table 1 in the Supplementary Materials show, our results 

held for all partitions of the data.

The final RuleTB rules are listed in Table 3. The final StackTB model can be used through a 

user-friendly Web interface1, which also includes a sample file based on the strains 

contained in the MIRU-VNTRplus database.

4. Results

4.1. Performance of our methods on broad lineages

Tables 2 and 4 show the confusion matrices of RuleTB and StackTB with broad lineages, 

respectively. In both methods, very few errors were made on the testing set, and StackTB 

consistently performed better than or as well as RuleTB on every lineage at the cost of being 

less transparent.

Table 3 shows the rules extracted by RuleTB for broad lineages. The number of rules needed 

for each lineage varied between 2 and 6, with an average of 4 (the Mycobacterium 

africanum lineage is shown with 5 rules since two of the rules affect the same locus, 

MIRU26, and can be combined into one). Interestingly, only 15 out of 24 MIRU-VNTR loci 

participated in at least one rule, suggesting that a smaller subset of the loci might be 

sufficient for lineage assignment when a sufficiently large training set is available. We note 

that only 12 out of these 15 loci are also on the list of the 15 most highly discriminatory 

MIRU-VNTR loci [13], which suggests that the task of predicting lineages is different from, 

albeit similar to, the task of discriminating strains into as many clusters as possible.

To verify this hypothesis in an additional experiment, we tested whether our rules could 

correctly predict the lineage of those 253 strains that were excluded during preprocessing 

1https://stacktb.cs.sfu.ca/
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due to missing information about one or more loci (all of these come from the NYC dataset). 

We applied the rules extracted by RuleTB to these incompletely specified strains, in the 

same order. We obtained an overall accuracy of 85% on this subset. This result suggests that, 

even in the presence of missing information, lineages can often be reliably inferred by a 

robust set of rules such as the one extracted by RuleTB.

4.2. Performance of our methods on a refined classification

To ensure that our methods generalize well to situations with more refined labels, we tested 

our methods on the two additional sets of labels. We obtained a comparable overall accuracy 

of 98.0% (94.0%) with StackTB (RuleTB), respectively, in the second analysis (with a 

refinement of M. africanum and some additional M. caprae strains), and a slightly lower 

accuracy of 92.7% (78.8%), respectively, in the third analysis (with a refinement of the 

Euro-American lineage into 6 SNP clusters). We also test the rules derived from RuleTB on 

the incompletely specified strains in the dataset and obtain a slightly lower accuracy of 82.6 

in the second analysis, and a much lower accuracy of 62.8% in the third analysis. For both of 

these analyses, the rules extracted by RuleTB involve 19 out of the 24 loci, and only 10 of 

those are highly variable ones.

These results suggest that our methods are robust to the presence of multiple lineages, 

although they do suffer from a loss of accuracy when their number increases too much. 

Remarkably, however, a lot of the mistakes made by StackTB are “reasonable” ones, insofar 

as they consist of assigning a strain from a lineage to a closely related lineage. For instance, 

a lot of the errors made by StackTB on the refined lineages involve the two sublineages of 

M. africanum (Table 8), while most of the errors made on the SNP clusters involve different 

clusters within the Euro-American lineage (see Table 12, where most non-zero off-diagonal 

elements are in rows and columns corresponding to LIII through LVIII).

4.3. Comparison to existing methods

In order to compare our results to those obtained with existing methods, we first need to 

establish a correspondence between the lineage assignments produced by those methods and 

those in our datasets. These are summarized in Table 1 above. We make several 

observations:

Both MIRU-VNTRplus and TBminer are able to produce finer classifications than our 

method (our training data does not extend to sublineages since it was labeled using SNP 

analysis rather than spoligotyping). Since those methods (especially TBminer) were trained 

on finer classifications, they might appear to perform worse than they do. On the other hand, 

we reason that obtaining a correct fine classification should only come after obtaining a 

correct coarse one, and if these methods make mistakes in the latter they will inevitably 

make mistakes in the former as well. Therefore, we believe that our comparison is fair 

overall.

We test MIRU-VNTRplus and TBminer in up to four modes each. For MIRU-VNTRplus, 

we can train the method only on the MIRU-VNTRplus database or on the entire training 

dataset (in the latter case we can learn an arbitrary classification of strains into lineages), and 

we can also use the recommended threshold of d = 4 loci having differences or not use any 
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threshold (as we recommend in this paper). If a threshold is used, some strains do not get 

assigned to any lineage, and we report both the accuracy of the assignments made as well as 

that of the overall assignment (which count no assignment as an incorrect assignment). For 

TBminer, the returned lineages can be based on either the MIRU-VNTR classification or the 

expert classification developed by the authors [22], and it can consider all 24 loci or only the 

15 most variable ones.

For the refined lineages (second analysis), we do not test TB-Insight because it does not 

distinguish between M. africanum 1 and M. africanum 2, and is also unable to detect M. 
caprae. To evaluate the results of TBminer, we count assignments to the L0 lineage (animal 

strains) as correct for M. bovis, but incorrect for M. caprae; this guarantees the best possible 

outcome for TBminer since there are roughly 2.5 times more M. bovis strains than M. 
caprae ones in the dataset.

Lastly, for the SNP clusters (third analysis) we do not test any of the other methods except 

the MIRU-VNTRplus method trained on the entire training part of the data. This is because 

the classification into SNP clusters is not directly comparable with those produced by the 

other methods.

We see that, despite other methods sometimes coming close, StackTB is the most accurate 

method on all three classifications (Tables 5, 9 and 13). Our sensitivity analysis results (in 

the Supplementary Materials) further corroborates this as being a robust and systematic 

performance advantage, rather than the artifact of a “lucky” split of the data into training and 

testing sets. We discuss possible reasons for this performance advantage in the next section.

5. Discussion

In this work we have explored a number of possible improvements to the standard methods 

of predicting lineage from MIRU-VNTR data, based on a curated database of strains with 

known lineages. One of the biggest improvements at no computational cost came from 

simply removing the threshold from the direct method, suggesting that requiring a limit on 

how close two strains needed to be was unnecessarily limiting for the lineage assignment 

problem. Designing different interpretable rules for different lineages has provided some 

additional improvement, although it was a small incremental one relative to the removal of 

the threshold. The use of a machine learning-based classifier further improved classification 

accuracy, leading to the best currently existing predictor. Interestingly, the two methods 

appear to share a lot of their errors, which suggests that some of the strains have MIRU-

VNTR patterns atypical for their lineage and get misclassified by even the most 

sophisticated methods.

One of the key advantages of our approach is that it can rapidly provide lineage assignment 

on large datasets that already exist, while being flexible enough to accommodate information 

from additional strains labeled with their lineage by independent methods. In addition, the 

ideas behind our approach - systematic rule extraction for RuleTB and aggregation of 

machine learning methods via stacking for StackTB - can also be used for other pathogens 

Thain et al. Page 8

Infect Genet Evol. Author manuscript; available in PMC 2019 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for which data are available on both lineages and VNTR copy numbers, or other 

classification systems such as multi-locus sequence typing.

One specific advantage of our machine learning method, StackTB, over both TB-Insight as 

well as TBminer, is the use of a more sophisticated aggregator function of the individual 

predictors. TB-Insight uses a conformal Bayesian network, which aggregates data by 

postulating a number of conditional independence assumptions, which may not hold for the 

VNTR data. On the other hand, TBminer uses a simple voting procedure, which may be 

leaving some information on the table compared to the stacking approach used by StackTB.

One of the limitations of our method is that our training dataset was more limited in size 

than the one used in some of the previous work - TB-Insight used over 35,000 labeled strains 

[21], while TBminer used over 3,000 [22]; in comparison, we used around 2,000. While this 

was advantageous in restricting us to algorithms that learn from even small amounts of data, 

this also meant that we are unable to produce predictions for any lineages that were either 

not present at all in the dataset we used (such as Lineage 7 [27]) or that were not present in a 

sufficient quantity (such as M. canettii [28], of which we only had 2 strains). It seems that 

our methods are able to learn lineages correctly with as few as 11 example strains, as they 

did with M. caprae, but not fewer than that.

We believe that a more rigorous investigation of currently accepted methods is needed, and 

we hope that this work paves the way for such an investigation. One open problem that 

remains unsolved is the systematic incorporation of information from lineages that may be 

present in only a few samples in some datasets, and not at all in others. A principled solution 

to this problem would add substantial value to existing databases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A schematic illustration of the StackTB classifier.
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Table 1:

Correspondence between the narrow lineages used in MIRU-VNTRplus database, together with their 

frequencies there, and the broad lineages in TB-Insight as well as the broad and refined ones in our study.

Narrow lineage Broad lineage Refined lineage # (unique)

Beijing East-Asian East-Asian 10 (8)

Bovis M. bovis M. bovis 11 (11)

Cameroon Euro-American Euro-American 10 (10)

Canettii not used due to sparsity not used 2 (2)

Caprae not used due to sparsity M. caprae 11 (11)

Delhi/CAS East-African Indian East-African Indian 10 (8)

EAI Indo-Oceanic Indo-Oceanic 12 (2)

Ghana Euro-American Euro-American 10 (6)

Haarlem Euro-American Euro-American 13 (12)

H37Rv not used due to sparsity not used 1 (1)

LAM Euro-American Euro-American 11 (11)

llama not used due to sparsity not used 4 (4)

NEW-1 not used due to sparsity not used 3 (3)

S Euro-American Euro-American 12 (11)

Seal not used due to sparsity not used 2 (1)

TUR not used due to sparsity not used 4 (2)

Uganda* Euro-American Euro-American 20 (17)

Ural not used due to sparsity not used 4 (4)

vole not used due to sparsity not used 2 (2)

West African 1 M. africanum
† M. africanum 1 22 (21)

West African 2 M. africanum
† M. africanum 2 11 (11)

X Euro-American Euro-American 3 (2)

*
- includes Uganda I and II;

†
- includes West African 1 and 2.
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Table 2:

Confusion Matrix of RuleTB with broad lineages.

Sensitivity

Predicted Lineage

Overall accuracy: 95.0%
EAI East-Asian Euro-

American Indo-Oceanic M. africanum M. bovis

88.2% 30 0 3 1 0 0 EAI

Actual Lineage

95.9% 2 70 0 0 1 0 East-Asian

96.0% 0 3 217 3 3 0 Euro-American

94.4% 0 0 3 51 0 0 Indo-Oceanic

90.0% 0 0 0 1 9 0 M. africanum

100% 0 0 0 0 0 5 M. bovis

93.8% 95.9% 97.3% 91.0% 69.2% 100% Specificity
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Table 3:

Rules used by RuleTB for each broad lineage, in order.

Rule M. bovis M. africanum Indo-Oceanic EAI East-Asian Euro-American

Rule 1 MIRU10 ≤ 2 MIRU24 ≥ 2 MIRU26 ≤ 3 MIRU16 ≥ 2 MIRU10 ≤ 4 MIRU31 ≤ 4

Rule 2 Mtub29 ≤ 3 3 ≤ MIRU26 ≤ 4 Mtub29 ≤ 3 MIRU31 ≥ 4 MIRU31 ≥ 4 MIRU39 ≤ 2

Rule 3 Mtub30 ≥ 3 Mtub 21 ≤ 6 Mtub30 ≤ 3 ETRC ≤ 2 MIRU40 ≤ 5

Rule 4 QUB4156 ≤ 1 ETRA ≤ 7 ETRA ≥ 3 QUB11b ≥ 2

Rule 5 QUB26 ≤ 7 Mtub30 ≥ 3
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Table 4:

Confusion Matrix of StackTB with broad lineages.

Sensitivity

Predicted Lineage

Overall accuracy: 97.0%
EAI East-Asian Euro-

American Indo-Oceanic M. africanum M. bovis

88.2% 30 0 3 1 0 0 EAI

Actual Lineage

98.6% 1 72 0 0 0 0 East-Asian

98.2% 0 1 222 3 0 0 Euro-American

96.3% 0 0 2 52 0 0 Indo-Oceanic

90.0% 0 0 0 1 9 0 M. africanum

100% 0 0 0 0 0 5 M. bovis

96.8% 98.6% 97.8% 91.2% 100% 100% Specificity
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Table 5:

Accuracy of algorithms by broad lineage.

Algorithm  Overall  EAI East-Asian Euro-American Indo-Oceanic M. africanum M. bovis

MIRU-VNTRplus (*) 44.5 [97.8]  44.1 69.9 31.9 53.7 70.0 100

Same, no threshold (*) 96.9  88.2 99.8 98.1 94.4 90.0 100

MIRU-VNTRplus (†) 91.8 [97.1]  88.0 97.3 93.8 77.2 93.3 100

Same, no threshold (†) 96.3  88.0 98.6 98.2 90.1 93.3 100

TB-Insight 96.3  82.4 97.3 98.2 96.3 90.0 100

TBminer - MIRU-VNTRplus 96.3  79.4 98.6 98.2 96.3 90.0 100

TBminer - Expert 95.8  82.3 98.6 98.2 92.6 80.0 100

TBminer - MIRU-VNTRplus (‡) 95.8  82.4 94.5 98.2 96.3 90.0 100

TBminer - Expert (‡) 95.0  79.4 94.5 97.8 94.4 90.0 100

RuleTB 95.0  88.2 95.9 96.0 94.4 90.0 100

StackTB 97.0  88.2 98.6 98.2 96.3 90.0 100

(*)
= the MIRU-VTNRplus database is used for training;

(†)
= the training subset of the entire data is used for training;

‡
= only the 15 most discriminative VNTR loci are used for the prediction. The numbers in square brackets indicate the accuracy of only the 

assignments actually made (excluding NAs).
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Table 6:

Confusion Matrix of RuleTB with refined lineages.

Sensitivity

Predicted Lineage

Overall accuracy: 
94.0%EAI East-

Asian
Euro-

American
Indo-

Oceanic

M. 
africanum 

1

M. 
africanum 

2

M. 
bovis

M. 
caprae

88.2% 30 1 3 0 0 0 0 0 EAI

Actual 
Lineage

93.1% 5 68 0 0 0 0 0 0 East-Asian

96.0% 3 5 217 1 0 0 0 0 Euro-
American

98.1% 1 0 0 53 0 0 0 0 Indo-
Oceanic

50.0% 0 0 1 2 4 1 0 0 M. 
africanum 1

50.0% 0 0 0 0 1 1 0 0 M. 
africanum 2

100% 0 0 0 0 0 0 5 0 M. bovis

100% 0 0 0 0 0 0 0 2 M. caprae

76.9% 91.9% 98.2% 94.6% 80.0% 50.0% 100% 100 % Specificity
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Table 7:

Rules used by RuleTB for each refined lineage, in order.

Rule M. caprae M. bovis M. africanum 
2

M. africanum 
1

Indo-
Oceanic EAI East-Asian Euro-

American

Rule 1 MIRU24 ≥ 
2 MIRU10 ≤ 2 MIRU16 ≥ 3 MIRU23 ≤ 5 MIRU26 ≤ 

4 MIRU10 ≥ 4 MIRU10 ≤ 3 MIRU31 ≤ 
4

Rule 2 Mtub34 ≤ 2 Mtub29 ≤ 3 ETRA ≥ 6 MIRU24 ≥ 2 Mtub29 ≤ 3 MIRU16 ≥ 2 MIRU31 ≥ 4 MIRU39 ≤ 
2

Rule 3 Mtub39 ≤ 1 Mtub30 ≥ 3 Mtub30 ≥ 4 MIRU40 ≤ 2 Mtub30 ≤ 3 MIRU31 ≥ 4 MIRU40 ≤ 5

Rule 4 QUB4156 ≤ 
1 Mtub39 ≥ 4 QUB11b ≤ 6 Mtub04 ≥ 3 Mtub04 ≥ 2

Rule 5 QUB26 ≥ 6 QUB26 ≤ 6 Mtub21 ≥ 2 Mtub21 ≥ 3

Rule 6 ETRA ≥ 2 Mtub30 ≥ 2

Rule 7 Mtub29 ≥ 3 ETRB ≥ 2
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Table 8:

Confusion Matrix of StackTB with refined lineages.

Sensitivity

Predicted Lineage

Overall accuracy: 
98.0%EAI East-

Asian
Euro-

American
Indo-

Oceanic

M. 
africanum 

1

M. 
africanum 

2

M. 
bovis

M. 
caprae

91.2% 31 0 3 0 0 0 0 0 EAI

Actual 
Lineage

100% 0 73 0 0 0 0 0 0 East-Asian

100% 0 0 226 0 0 0 0 0 Euro-
American

100% 0 0 0 54 0 0 0 0 Indo-
Oceanic

50.0% 0 0 1 2 4 1 0 0 M. 
africanum 1

50.0% 0 0 0 0 1 1 0 0 M. 
africanum 2

100% 0 0 0 0 0 0 5 0 M. bovis

100% 0 0 0 0 0 0 0 2 M. caprae

100% 100% 98.3% 96.4% 80.0% 50.0% 100% 100 % Specificity
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Table 9:

Accuracy of algorithms by refined lineage.

Algorithm Overall EAI East-
Asian

Euro-
American

Indo-
Oceanic

M. 
africanum 1

M. 
africanum 2

M. 
bovis

M. 
caprae

MIRU-VNTRplus 

(*)
49.8 

[98.5] 44.1 72.6 39.4 61.1 25.0 100 100 100

Same, no 

threshold (*)
97.4 91.2 99.1 99.7 100 25.0 100 100 100

MIRU-VNTRplus 

(†)
91.9 

[97.0] 93.4 99.7 95.5 75.2 45.3 40.0 100 50.0

Same, no 

threshold (†)
96.5 96.3 99.7 99.8 87.8 45.3 40.0 100 100

TBminer - 
MIRU-VNTRplus 97.0 88.2 100 100 100 25.0 100 100 0

TBminer - Expert 96.8 91.2 100 100 96.3 25.0 100 100 0

TBminer - 
MIRU-VNTRplus 

(‡)
97.0 88.2 100 100 100 25.0 100 100 0

TBminer - Expert 

(‡)
96.8 88.2 98.6 100 100 25.0 100 100 0

RuleTB 94.0 88.2 93.1 96.0 98.1 50.0 50.0 100 100

StackTB 98.0 91.2 100 100 100 50.0 50.0 100 100

(*)
= the MIRU-VTNRplus database is used for training;

(†)
= the training subset of the entire data is used for training;

‡
= only the 15 most discriminative VNTR loci are used for the prediction. The numbers in square brackets indicate the accuracy of only the 

assignments actually made (excluding NAs). Note that TB-Insight is omitted because it does not identify lineages at this level of re nement.
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Table 10:

Confusion Matrix of RuleTB with SNP clusters.

Sensitivity

Predicted Lineage
Overall accuracy: 

78.8%LI LII LIIa LIII LIV LV LVI LVII LVIII M. 
afri 1

M. 
afri 2

M. 
bovis

96.1% 49 0 1 0 0 0 0 0 0 1 0 0 LI

Actual 
Lineage

85.9% 0 61 0 1 8 0 1 0 0 0 0 0 LII

84.8% 1 0 28 3 0 1 0 0 0 0 0 0 LIIa

83.9% 0 0 1 47 0 0 0 8 0 0 0 0 LIII

26.1% 1 0 0 14 6 0 0 0 1 1 0 0 LIV

50.0% 0 0 0 2 1 4 0 1 0 0 0 0 LV

69.9% 0 5 1 2 0 1 51 12 0 1 0 0 LVI

86.8% 0 0 1 1 0 0 1 33 1 1 0 0 LVII

25.0% 0 0 0 0 0 0 0 3 1 0 0 0 LVIII

87.5% 0 0 0 0 0 0 0 0 0 7 1 0 M. afri 1

100% 0 0 0 0 0 0 0 0 0 0 2 0 M. afri 2

80.0% 0 0 0 1 0 0 0 0 0 0 0 4 M. bovis

96.1% 92.4% 87.5% 66.2% 40.0% 66.7% 96.2% 57.9% 33.3% 63.6% 66.7% 100% Specificity
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Table 11:

Rules used by RuleTB for each SNP cluster, in order.

M. bovis M. africanum 2 LVIII M. africanum 1 LI LV

Rule 1 MIRU04 ≥ 3 ETRC ≥ 5 MIRU40 ≤ 1 MIRU04 ≤ 3 MIRU24 ≥ 2 MIRU23 ≤ 5

Rule 2 Mtub30 ≥ 3 ETRA = 6 Mtub04 ≤ 3 MIRU23 ≤ 6 MIRU26 ≤ 4 MIRU40 ≤ 3

Rule 3 QUB4156 ≤ 1 Mtub30 ≥ 4 Mtub21 ≤ 2 MIRU24 ≥ 2 Mtub04 ≥ 3

Rule 4 QUB26 ≥ 6 QUB11b ≥ 3 MIRU26 ≤ 4 ETRC = 3

Rule 5 Mtub30 = 2 QUB11b ≤ 6 Mtub21 ≥ 3

Rule 6 ETRA ≤ 7 2 ≤ QUB11b ≤ 4

Rule 7 QUB26 ≤ 6 Mtub34 ≥ 3

LII LIIa LIV LIII LVII LVI

Rule 1 MIRU04 ≤ 3 MIRU10 ≥ 4 MIRU10 ≤ 5 Mtub30 ≥ 3 MIRU40 ≥ 1 MIRU04 ≤ 3

Rule 2 MIRU10 ≤ 5 MIRU24 ≤ 1 ETRC ≥ 4 QUB26 ≤ 10 ETRA ≤ 3 MIRU26 ≥ 2

Rule 3 MIRU39 ≥ 3 MIRU31 ≥ 4 Mtub30 ≥ 3 Mtub30 ≥ 2 Mtub04 ≥ 3

Rule 4 MIRU40 ≤ 5 Mtub21 ≥ 2 Mtub34 ≥ 2

Rule 5 ETRC ≥ 3 Mtub29 ≥ 3 QUB26 ≥ 2

Rule 6 Mtub30 ≥ 2

Rule 7 Mtub39 ≤ 6
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Table 12:

Confusion Matrix of StackTB with SNP clusters.

Sensitivity

Predicted Lineage
Overall accuracy: 

92.7%LI LII LIIa LIII LIV LV LVI LVII LVIII M. 
afri 1

M. 
afri 2

M. 
bovis

100% 51 0 0 0 0 0 0 0 0 0 0 0 LI

Actual 
Lineage

100% 0 71 0 0 0 0 0 0 0 0 0 0 LII

90.9% 1 0 30 1 0 0 0 1 0 0 0 0 LIIa

94.6% 0 0 0 53 1 0 0 2 0 0 0 0 LIII

87.0% 1 0 0 1 20 0 0 1 0 0 0 0 LIV

75.0% 0 0 0 0 1 6 1 0 0 0 0 0 LV

87.7% 0 1 0 2 1 1 64 4 0 0 0 0 LVI

84.2% 0 0 0 3 2 0 1 32 0 0 0 0 LVII

100% 0 0 0 0 0 0 0 0 4 0 0 0 LVIII

87.5% 0 0 0 0 0 0 0 0 0 7 1 0 M. afri 1

100% 0 0 0 0 0 0 0 0 0 0 2 0 M. afri 2

100% 0 0 0 0 0 0 0 0 0 0 0 5 M. bovis

98.1% 98.6% 100% 88.3% 80.0% 85.7% 97.0% 80.0% 100% 100% 66.7% 100% Specificity
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Table 13:

Accuracy of algorithms by SNP cluster.

Algorithm Overall LI LII LIII LIV LV LVI LVII LVIII M. 
afri 1

M. 
afri 2

M. 
bovis

M. 
caprae

MIRU-

VNTRplus (†)
83.7 

[91.3] 76.5 97.2 91.7 86.0 73.9 74.9 80.5 81.3 41.2 90.0 77.5 40.0

Same, no 

threshold (†)
89.4 90.8 100 91.7 86.8 77.4 74.9 87.1 85.7 66.2 90.0 77.5 100

RuleTB 78.8 96.1 85.9 84.8 83.9 26.1 50.0 69.9 86.8 25.0 87.5 100 80.0

StackTB 92.7 100 100 90.9 94.6 87.0 75.0 87.7 84.2 100 87.5 100 100

(†)
= the training subset of the entire data is used for training. The numbers in square brackets indicate the accuracy of only the assignments actually 

made (excluding NAs). Note that MIRU-VNTRplus (with the database as training set), TB-Insight and TBminer do not produce this classification, 
and are therefore omitted.
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