Skip to main content
. Author manuscript; available in PMC: 2019 Aug 25.
Published in final edited form as: Infect Genet Evol. 2018 Jun 28;72:59–66. doi: 10.1016/j.meegid.2018.06.029

Table 9:

Accuracy of algorithms by refined lineage.

Algorithm Overall EAI East-Asian Euro-American Indo-Oceanic M. africanum 1 M. africanum 2 M. bovis M. caprae
MIRU-VNTRplus (*) 49.8 [98.5] 44.1 72.6 39.4 61.1 25.0 100 100 100
Same, no threshold (*) 97.4 91.2 99.1 99.7 100 25.0 100 100 100
MIRU-VNTRplus () 91.9 [97.0] 93.4 99.7 95.5 75.2 45.3 40.0 100 50.0
Same, no threshold () 96.5 96.3 99.7 99.8 87.8 45.3 40.0 100 100
TBminer - MIRU-VNTRplus 97.0 88.2 100 100 100 25.0 100 100 0
TBminer - Expert 96.8 91.2 100 100 96.3 25.0 100 100 0
TBminer - MIRU-VNTRplus () 97.0 88.2 100 100 100 25.0 100 100 0
TBminer - Expert () 96.8 88.2 98.6 100 100 25.0 100 100 0
RuleTB 94.0 88.2 93.1 96.0 98.1 50.0 50.0 100 100
StackTB 98.0 91.2 100 100 100 50.0 50.0 100 100
(*)

= the MIRU-VTNRplus database is used for training;

(†)

= the training subset of the entire data is used for training;

= only the 15 most discriminative VNTR loci are used for the prediction. The numbers in square brackets indicate the accuracy of only the assignments actually made (excluding NAs). Note that TB-Insight is omitted because it does not identify lineages at this level of re nement.