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Abstract

Association analysis has suggested that common sequence variants of genes that affect 

monoamine function can affect substance use and abuse. Demonstration of these associations has 

been inconsistent because of limited sample sizes and phenotype definition. Drawing on the life 

course perspective, we predicted a stronger association between the polymorphisms in 5HTT, 
DAT1, DRD4, DRD2, and MAOA and alcohol consumption in young adulthood than adolescence. 

This analysis tested for the gene-lifecourse interaction for the frequency of alcohol consumption in 

a nationally representative non-alcohol dependent sample of 2,466 individuals that were visited 

during adolescence and young adulthood for four times between 1994 and 2002. All five genes are 

significantly associated with the frequency of alcohol consumption, with the genotype effects 

ranging 7–20% of the mean score of alcohol consumption and their P-values being 0.014, 0.0003, 

0.003, 0.007, 0.005, and 0.003, respectively. The association is only observed in the life stage of 

young adulthood and not in adolescence. This analysis has demonstrated the potential usefulness 

of the life course perspective in genetic studies of human behaviors such as alcohol consumption.
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INTRODUCTION

The life course approach attempts to understand human behavior in a social context that 

changes continually throughout one’s life span (Elder 1974, 1999; Elder 1998). The 

changing social context can result from either a regular life-cycle transition such as leaving 

home and entering college or an irregular historical event such as the Great Depression. Peer 

influence is considered among the most important forces in shaping adolescents’ behavior 

(Harris 1995). Adolescents spend twice as much of their time with peers outside the family 

as do they with parents (Brown 1990). Peer influence was often found critical for the 

initiation and maintenance of risk behavior such as substance use, drinking, and smoking 

(Brown and Theobald 1999; Billy, Rodgers, and Udry 1984; Billy and Udry 1985; Ennett 

and Bauman 1994; Yamaguchi and Kandel 1987; Rose 1998). The intensity of peer 
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influence seems to change over the life course. The presence of strong peer influence in 

adolescence contrasts with relatively weakened peer influence in young adulthood. The 

critical importance of peer influence in adolescence suggests that genotype effects on 

alcohol use in adolescence may be less prominent than in young adulthood.

Twin studies have also lent support for the gene-lifecourse hypothesis. Twin studies carried 

out in Australia, Finland, the Netherlands, and the United States consistently demonstrate 

that the initiation of alcohol use in mid-adolescence is associated predominantly with 

environmental rather than genetic factors and that genetic influences on alcohol use are 

increasing in importance starting in late adolescence (Heath and Martin, 1988; Koopmans 

and Boomsma, 1996; Prescott et al., 1994; Rose et al., 1999; Rose et al., 2001).

Monoamine neurotransmitters are released by a small fraction of neurons that typically have 

processes that extend throughout the nervous system. Monoamines act on receptors through 

complex signal transduction processes to modulate the function of neurons both transiently 

and through long-term changes in gene expression. Many genes code for proteins that 

directly and indirectly play a role in monoamine neurotransmission, including synthetic 

enzymes, receptors and transporters. The drugs that bind to some of these gene products 

modulate behavior and are frequently abused. Implicit in this work and for many other 

studies is the hypothesis that the polymorphisms in genes that play a role in monoamine 

neurotransmission could affect behavior including drinking. Table 1 lists 5 genes and one 

polymorphism for each of the 5 genes that have been previously implicated as affecting 

alcohol use (e.g., Herman et al. 2005; Limosin et al. 2004; Munafo et al. 2005; Noble et al. 

1994; Hutchison et al. 2002) and other risky behaviors and that were genotyped for this 

study. These polymorphisms are thought to affect gene expression or be in disequilibrium 

with variation that affects gene expression (DAT1, Mill et al. 2002; MAOA, Sabol et al. 

1998; 5HTT, Lesch et al. 1996; DRD2, Noble et al. 1994).

The serotonin transporter (5HTT, locus symbol SLC6A4) moves released serotonin back 

into presynaptic terminals and is the site of action of selective serotonin reuptake inhibitors 

(SSRIs). The association of 5HTT promoter VNTR alleles with alcohol and abuse of other 

drugs has been inconsistent (Dick and Foroud 2003; Munafo et al. 2004; Herman et al. 2003; 

Nilsson et al. 2005; Hopfer et al 2005). The dopamine transporter (DAT1 known by the 

locus symbol SLC6A3) acts to take released dopamine back up into presynaptic terminals 

and is inhibited by cocaine. Polymorphisms in this gene have been associated with alcohol 

withdrawal seizures or delirium (Sander et al. 1997) and may lead to more severe 

withdrawal symptoms in chronically intoxicated alcoholics (Schmidt et al. 1998). The 48-

base-pair exon-3 dopamine-D4-receptor (DRD4) polymorphism affects binding properties 

for ligands for the receptor (Van Tol et al. 1992). The DRD4 coding sequence has been 

extensively examined since the studies by Benjamin et al (1996) and Ebstein et al (1996) 

who reported the association with novelty seeking behavior. Dozens of papers have reported 

associations and non-replications with aspects of personality, psychiatric diseases (Lopez et 

al. 2005), attention deficit disorder (Faraone et al. 2001) and substance abuse (reviewed in 

Paterson et al. 1999). The dopamine D2 receptor (DRD2) is a G-coupled receptor. Blum et al 

(1990) reported an association between a 3’ non-coding sequence polymorphism, called 

TaqIA (dbSNP ID rs112594) and alcoholism. Others have not been able to replicate these 
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results (Buckland 2001; Gelernter et al. 1993). The X-linked Monoamine Oxidase A 

(MAOA) is an important enzyme in the monoamine degradation pathway. Several 

investigators have found suggestive associations with alcohol use disorders (Herman et al. 

2005; Parsian et al. 1995; Parsian et al. 2003; Saito et al. 2002; Samochowiec et al. 1999).

The goal of this study is to examine the genes by life-course interactions for alcohol use in 

adolescence and young adulthood, using the DNA sample (N=2,466) of the National 

Longitudinal Study of Adolescent Health (Add Health). We hypothesize that the associations 

between the genetic variants and alcohol consumption tend to be stronger in young 

adulthood than in adolescence among the general or non-alcohol dependent population. 

Figure 1 illustrates our hypothesis. The curves in Figure 1 describe the typical age pattern of 

alcohol consumption in adolescence and young adulthood in the United States (Chen and 

Kandel, 1995; Kandel and Logan, 1984). The hypothesis of gene-lifecourse interaction 

suggests that the differential use of alcohol by genotype is likely to appear starting from 

early young adulthood.

MATERIALS AND METHODS

Subject

The data source for our analysis is the sibling sub-sample of about 2,466 participants in Add 

Health, a school-based study of the health-related behaviors of adolescents in grades 7–12 

(aged 12–18) in 1994–5 (Harris et al. 2003). Add Health is based on a stratified sample of 

132 high schools and middle schools in the United States; the schools were stratified by 

region, urban/rural, school type (public, private, parochial), ethnic mix, and size. The Add 

Health participants were interviewed four times during a 8-year period in 1994 (In-School), 

1994–5 (Wave I In-Home), 1995–6 (Wave II In-Home), and 2001–2 (Wave III In-Home). 

Data on alcohol consumption was collected on each of the four occasions. Our analysis uses 

the sibling sample of Add Health because DNA measures are currently only available for 

this subset of the Add Health respondents. Our sibling sample is composed of monozygotic 

twins, dizogotic twins, and full biological siblings.

A total of 2,466 individuals contributed 1–4 observations of alcohol consumption. Of the 

2,466 individuals, 1,527 contributed one observation at the In-School Wave; 2,430, 2,298, 

and 2,434 contributed one observation at the Waves I, II, and III surveys, respectively. Of the 

2,466 individuals, about 60%, 18%, 14.3%, and 7.6% are White, African, Hispanic, and 

Asian Americans, respectively. Our data have measures on alcohol use taken at ages from 13 

to 26 covering the life stages of adolescence and young adulthood. The Add Health Study 

has received written informed consent from all participants and the institutional IRB at the 

University of North Carolina, Chapel Hill, has approved this study.

Measures of Adolescent Alcohol Use

At the In-School as well as the three subsequent Home interviews, respondents were asked 

about their frequency of alcohol use. At the In-School interview, respondents were asked, 

“During the past twelve months, how often did you drink beer, wine, or liquor?” In the 

Home interviews, respondents answered the question, “During the past twelve months, on 

Guo et al. Page 3

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2019 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



how many days did you drink alcohol?” In all Waves, respondents’ answers were recorded 

as 0, never; 1, one or two days in the past twelve months; 2, once a month or less; 3, two or 

three days a month; 4, one or two days a week; 5, three to five days a week; or 6, everyday 

or almost everyday. This seven point scale is simplified in the analysis to a six point scale in 

which categories 1 and 2 of the original measure are collapsed. Thus, the drinking score of 

an individual is recorded as 0, 1, 2, 3, 4, or 5 for never, once in a month or less, 2–3 times in 

a month, 1–2 times a week, 3–5 times a week, or almost everyday, respectively. At the In-

School Wave, the responses were obtained via self-administered paper-and-pencil survey. To 

protect confidentiality and reduce non-responses, this section of the interview was self-

administered by audio-CASI (Computer Assisted Self Interview) at the three Home 

interviews. The sensitive questions were read to respondents by means of audio headphones. 

Respondents were given instructions on how to complete their answers on the computer.

DNA Preparation and Genotyping

At Wave III in 2002, in collaboration with the Institute for Behavioral Genetics (IBG) in 

Boulder, Colorado, Add Health collected, extracted, and quantified DNA samples from the 

sibling sub-sample. Genomic DNA was isolated from buccal cells using a modification of 

published methods (Lench et al. 1988; Meulenbelt et al. 1995; Spitz et al. 1996; Freeman et 

al. 1997). All of the methods employed Applied Biosystems instruments and reagents. 

Microsatellite and VNTR polymorphisms were done using fluorescent primers that were 

analyzed on an ABI capillary electrophoresis instrument. Single nucleotide polymorphisms 

were analyzed using an ABI Sequence Detection System and 5’-nuclease (Taqman®) 

methodology. The additional details on DNA collection and genotyping are at Add Health 

website (Smolen and Hewitt, http://www.cpc.unc.edu/projects/addhealth/).

A series of χ2 tests for each polymorphism and for each self-reported ethnic group 

(European, African American, Hispanic, and Asian) reveals no deviation from the Hardy-

Weinberg equilibrium.

Analytical Strategies

To test the hypothesis of gene-lifecourse interaction for alcohol consumption in adolescence 

and young adulthood, a three-step analytical strategy is adopted. The first step is a 

contingency table analysis in which the means of alcohol consumption across genotypes and 

life stages (adolescence vs. young adulthood) were compared. The second step is a mixed 

regression model (Searle 1971; Searle, Casella, and McCulloch 1992) that adjusts for race/

ethnicity and gender and for correlation among siblings and repeated measures in the data. 

The third step addresses potential bias from population stratification.

In the rest of this section, we elaborate on the second and third steps. Our sample consists of 

twins and siblings as well as the repeated observations of the same individual over different 

Add Health Waves and these observations are not independent. The mixed model has long 

been established in the statistical literature for the analysis of data that are not independent. 

Several major statistical packages (e.g., SAS and STATA) include the mixed model as a 

standard procedure. The following equation describes the mixed model of alcohol 

consumption
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Alcohol jit(s) = β′X ji + β1genotype ji + β2adult jit + β3(genotype ji * adult jit)
              + u j0(s) + v +ji e jit(s)

(1)

where j,i, and t index sibling cluster or pair, individual, and Add Health Waves, respectively; 

s=m, d, or f indicates whether the sibling cluster or pair are MZ twins, DZ twins, or full 

biological siblings; adult is a dummy variable taking the value of one when the measure of 

alcohol consumption is taken at age 19 or older and the value of zero when the measure is 

taken at age younger than 19; and (genotype ji * adult jit) is an interaction term between 

genotype and life stage. The size and significance level of the coefficient for the interaction 

term is a direct test of the gene-lifecourse hypothesis. The model allows the random effect at 

the sibling cluster level and the measure level to vary by type of sibling cluster because the 

strength of the correlation varies considerably by type of sibling clusters (s). Conditional on 

the three random intercepts at the level of sibling clusters and one random intercept at the 

individual level, the siblings and repeated measures are assumed to be independent. The 

models were estimated by SAS (SAS Institute 1965–2005).

We used three strategies to address the potential impact of population structure. First, we 

adjusted for self-reported race/ethnicity in all regression analysis so that comparisons across 

genotypes are made within each race/ethnicity. Tang et al. (2005) showed a near-perfect 

correspondence between the four self-reported ethnic categories (European Americans, 

African Americans, East Asians, and Hispanics) and the categories determined by 326 

microsatellite markers.

The second strategy addressed this concern by re-estimating the models after eliminating 

individuals who reported belonging to more than one racial category. In keeping with the 

new Census policy, Add Health respondents were allowed to mark as many ethnicity 

categories as they felt applied to them (Harris et al. 2003). About 7.5%, 3.5%, and 0% of 

African, Hispanic, and White participants marked more than one category, respectively. Of 

those who marked more than one ethnic category, the large majority (86%) marked two 

ethnic categories and 12% marked three ethnic categories.

As a third strategy, we applied Allison et al. (1999)’s procedure to test for possible 

population stratification. Following the idea used in the development of sibship tests of 

linkage and association (Curtis 1997; Boehnke and Langefeld 1998; Spielman and Ewens 

1998), Allison et al. reasoned that the probabilities of genotypes of siblings depended 

entirely on parental genotypes and that controlling for the effects of sibship would be 

equivalent to controlling for parental genotypes. Indexing sibships by j, individuals by k, and 

genotypes by i, they proposed a procedure that can be written as a mixed model

Y i jk = μ + αi + β j + (αβ)i j + ei jk, (2)

Where αi, or the effect of genotype i, is assumed to be fixed; βj, or the effect of sibship j, is 

assumed to be random; and (αβ)ij is an interaction term specifying the dependence of the 
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random effect of sibship on genotype. The conditioning on sibship in the model eliminates 

the possible confounding of population stratification. This model is a special case of the 

mixed model (Searle 1971; Searle, Casella, and McCulloch 1992).

RESULTS

Contingency Table Analysis

Table 2 shows the mean score of alcohol use by genotype and life stage. The two life stages 

of adolescence and young adulthood are defined as the age range of 13–18 and 19–26, 

respectively. Table 2 provides comparisons of mean alcohol consumption across genotypes 

within each life stage. The Table also gives genotype frequency in proportion for each 

polymorphism examined and number of observations used for each comparison. Alcohol 

consumption appears to be associated with all the five monoamine genes considered in this 

analysis; however, the association consumption seems to mainly exist in young adulthood 

and not in adolescence.

In adolescence, of the six comparisons across genotypes, only the 3R allele of the DRD4 
gene seems to be associated with alcohol use (1.236 vs. 1.038). In young adulthood, the 

mean alcohol use seems to differ by genotype in all comparisons except the one concerning 

MAOA among the females. The comparison with regards to MAOA was carried out 

separately for males and females because of the X-linked MAOA. The genotype effect on 

alcohol consumption ranges from 0.104 for serotonin transporter (5HTT) to 0.414 for the 

dopamine D4 receptor (DRD4), representing about 5–20% of the mean score of alcohol use. 

When a rare genotype was not the focus of comparison, it would be included in the category 

that was used as the reference category in the regression analysis. Because of the sibling 

clustering and repeated observations in the data, standard t tests are not valid for these 

comparisons. In the next section, results are presented from significance tests conducted 

within the mixed-model framework that has taken into consideration the correlation in the 

data.

Regression Analysis

Table 3 presents the coefficients and their P-values in eight separate regression models. 

Except for the first “No genes” model and the last “All genes” model, each of these models 

includes a main genotype effect and an interaction term between genotype and the dummy 

variable (Age≥19) for young adulthood. MAOA is again analyzed separately for males and 

females separately. The last “All genes” model includes simultaneously the main effects and 

the interaction effects of all the polymorphisms under consideration in this analysis except 

MAOA.

The “No genes” model shows that the alcohol consumption in the life stage of young 

adulthood is up 1.09 relative to that in adolescence, that the males tend to consume more 

alcohol than the females, and that African, Hispanic, and Asian Americans consume 

considerably less alcohol than White Americans. These non-gene effects generally hold in 

the “genetic” models. In the “5HTT” model, those with one or two copies of the short allele 

(Any S) do not differ (P=0.22) in alcohol consumption from those with the L/L (long/long) 
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genotype in adolescence; in contrast, in young adulthood, those with the Any-S genotype 

score 0.144 points higher than those with the L/L genotype (P=0.014). This pattern of gene-

lifecourse interaction is observed in every polymorphism examined in this analysis.

In the “DAT1” model, only in young adulthood do individuals with the Any-9R genotype 

score significantly higher (0.206; P=0.0003) than individuals with the 10R/10R genotype. 

The “DRD4” model compares two relatively rare genotypes (Any 3R and 7R/7R) against the 

by-far the most frequent genotype of Any 4R; both Any 3R and 7R/7R consume more 

alcohol than Any 4R only in young adulthood (0.47, P=0.003; 0.46, P=0.007, respectively). 

The models of “DRD2” and “MAOA (male) reveal the same pattern of genotype effects. In 

the model of “MAOA (female)”, Any 3R is not related to alcohol use in either adolescence 

or young adulthood. These regression results are remarkably consistent with those from the 

contingency table analysis in Table 2. In the “All-genes” model in which the four 

polymorphisms are considered simultaneously, all the interaction coefficients and their P-

values remain similar to those in the models that consider only one gene at a time, 

suggesting little correlation among these genetic polymorphisms with respect to alcohol use. 

To test for the gene-gene interactions more formally, we estimated a number of models 

containing the 2-way gene-gene interactions. These tests yielded a possible interactive effect 

between the 7R/7R of DRD4 and Any A1 of DRD2 (P=0.02). Given the large number of 

tests carried out, however, we consider this result suggestive.

To address population stratification, we carried out the three strategies described earlier. 

Race/ethnicity was added as a control in all regression models estimated (Table 3). The set 

of models were re-estimated after eliminating individuals who designated themselves as 

multi-racial/ethnic. The results remained essentially unchanged (data not shown). We 

estimated Allison models (1999) that include one random effect at the sibling level and a 

second random effect at the individual level plus the required interaction parameters; our 

results in these models do not differ substantively from those presented in Table 3 (data not 

shown).

DISCUSSION

The contingency table analysis has yielded exploratory evidence for the gene-lifecourse 

interaction hypothesis from all the five polymorphisms examined. The frequency of alcohol 

consumption seems to differ by genotype primarily in the life stage of young adulthood, in 

which all the five genetic variants appear to have an effect on alcohol consumption with the 

genotype effects ranging 5–20% of the mean alcohol consumption. The mixed model 

regression analysis further tests the hypothesis after adjusting for the effects of life stage, 

gender, and race/ethnicity and after taking into account the correlation among the siblings 

and repeated observations in the sample. The regression results have proved to be quite 

consistent with those from the analysis of contingency table. While none of the genetic 

variants are related to alcohol consumption in adolescence, all of them are associated with 

alcohol consumption in young adulthood, with the genotype effects of 0.144, 0.20, 0.47, 

0.46, −0.15, and −0.25, respectively, ranging 7–20% of the mean score of alcohol 

consumption. The corresponding P-values are 0.014, 0.0003, 0.003, 0.007, 0.005, and 0.003, 

respectively. These results remain essentially unchanged when all the polymorphisms 
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(except MAOA) are included in one single model, implying little correlation among them. 

The last ‘all genes’ model suggests that genotypes can make substantial differences in 

alcohol consumption because a single individual can possess a number of higher-risk alleles. 

The effect of these higher-risk alleles can add up.

All the five polymorphisms in the five monoamine genes have been previously implicated in 

alcohol-use related measures. The studies of Herman et al. (2003) and Munafό et al. (2005) 

are two of the few that have investigated the role of the 5HTT gene in alcohol consumption 

in non-alcohol dependent populations. Herman et al. reported an association between the 

short form of the 5HTT gene and elevated alcohol consumption in a general college student 

population (mean age=19.1). Using a general adult population (aged 33–73), Munafό et al. 

showed that the short allele of the 5HTT gene was significantly associated with increased 

alcohol consumption. This analysis demonstrates an increase in alcohol consumption among 

young adults with at least one copy of the short allele of the 5HTT gene.

Two studies (Sander et al. 1997; Schmidt et al. 1998) reported a significant higher 

prevalence of the 9-repeat (9R) of the DAT1 gene among alcoholics displaying withdrawal 

syndromes than among matched nonalcoholics. This analysis shows an approximate 10% 

increase (P=0.0004) in the score of alcohol consumption among young adults with one or 

two copies of 9R allele of the DAT1 gene.

The in vitro studies suggest that the exon III DRD4 7-repeat allele (7R) has decreased 

affinity for dopamine and transmits weaker intracellular signals in comparison to the most 

common 4R exon III allele (Asghari et al, 1995). A number of studies have reported the 

association of the 7R of DRD4 with novelty seeking behavior, attention deficit disorder, and 

substance abuse. This analysis finds an approximate 20% increase in alcohol consumption 

among young adults with either two copies of 7R or one copy of 3R of the DRD4 gene 

(P=0.007 or 0.003, respectively) relative to the 4R allele.

The DRD2 gene has long been implicated in alcoholism (Blum et al. 1990). A meta-analysis 

of the published studies using Caucasians showed a significantly higher prevalence in the 

DRD2 A1 allele among alcoholics than among the controls (Noble 2003). This analysis uses 

the A2/A2 genotype as the reference category and finds that young adults with the A1/A2 or 

A1/A1 genotype are associated with decreased alcohol consumption (about 8% reduction, 

P=0.006). Hopfer et al. (2005), using Add Health Waves I-III data, reported a significant 

association between the usual number of drinks consumed per drinking episode (vs our 

measure of drinking frequency) and the same DRD2 polymorphism at Wave III, but not at 

Waves I-II. The respondents were aged 12–18, 13–19, and 19–26 at Waves I-III, 

respectively.

Previous association studies concerning MAOA have produced inconsistent results regarding 

the direction of the associations. Samochowiec et al. (1999) reported a higher prevalence of 

the 3R allele (the MAOA low activity allele) among dissocial alcoholics. Saito et al. (2002), 

based on a Finnish male sample of alcoholics, detected no association between alcoholics 

and the MAOA alleles. Parsian et al. (2003) found a higher frequency of the 3R allele in 

their controls than alcoholics. The findings in this analysis are consistent with Parsian et 
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al.’s. This analysis uses a sample from the general population and detects a decrease in 

alcohol consumption among young adults for those with the 3R allele (P=0.0039).

Our study has a number of limitations. Like gender and ethnicity, life course is a proxy 

variable under which a host of other factors could be operating. We briefly discussed the 

difference in the intensity of peer influence between adolescence and young adulthood as a 

possible explanation for the gene-lifecourse interactions. Other factors such as the degree of 

parental control and mental maturity across the two life stages could be important. Peer 

influence may not be as straightforward as it appears to be. Individuals may, to various 

extents, select friends; they and their friends may share certain genetic background (Guo 

2006).

This study is only able to investigate one polymorphism in each of the five genes. An 

alternative explanation to these findings is that other functional variants within the five genes 

or in other genes on the same chromosome are in linkage disequilibrium with the genetic 

variants evaluated herein. However, it is biologically plausible that some of these genetic 

variants directly affect alcohol consumption. Because actual alcohol consumption is difficult 

to observe, this study relies on self-reported information, which can be biased or imprecise. 

This study is also limited because some of the genetic variants such as the 7R/7R and Any 

3R of the DRD4 gene are quite rare in spite of the reasonably large sample. It is possible that 

some of the findings related to the rare variants are attributable to chance. A follow-up study 

for the Add Health project (Wave IV of Add Health) is scheduled to collect DNA data from 

its entire sample of about 17,000 individuals, creating an opportunity to replicate these 

findings in an even much larger population based study.

In conclusion, our analysis of the 2,466 individuals has produced unambiguous evidence 

supporting the gene-lifecourse interaction hypothesis. Our data show that all the five genes 

examined (5HTT, DAT1, DRD4, DRD2, and MAOA) are significantly associated with the 

frequency of alcohol consumption; the association is only observed in the life stage of young 

adulthood and not in adolescence. Our analysis has demonstrated the potential usefulness of 

the life course perspective in genetic studies of human behaviors such as alcohol 

consumption.
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Figure 1. 
Age pattern of alcohol consumption in adolescence and young adulthood by genotype.
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