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Abstract

Skeletal muscle is a highly plastic tissue that remarkably adapts to diverse stimuli including 

exercise, injury, disuse, and, as discussed here, aging. Humans achieve peak skeletal muscle mass 

and strength in mid-life and then experience a progressive decline of up to 50% by the ninth 

decade. The loss of muscle mass and function with aging is a phenomenon termed sarcopenia. It is 

evidenced by the loss and atrophy of muscle fibers and the concomitant accretion of fat and 

fibrous tissue. Sarcopenia has been recognized as a key driver of limitations in physical function 

and mobility, but is perhaps less appreciated for its role in age-related metabolic dysfunction and 

loss of organismal resilience. Similar to other tissues, muscle is prone to multiple forms of age-

related molecular and cellular damage, including disrupted protein turnover, impaired regenerative 

capacity, cellular senescence, and mitochondrial dysfunction. The objective of this review is to 

highlight the clinical consequences of skeletal muscle aging, and provide insights into potential 

biological mechanisms. In light of population aging, strategies to improve muscle health in older 

adults promise to have a profound public health impact.
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Introduction

In nearly all species from c. elegans to humans, skeletal muscle exhibits marked changes in 

its form and function with advancing age that profoundly impact health. As a primary driver 

of movement, age-related changes in muscle compromise the ability of an organism to move 

efficiently within its environment. Mobility is required for survival and represents one of the 

most essential and necessary forms of physical function across all species. Skeletal muscle is 

also a robust metabolic organ, which can store, utilize, and provide vast amounts of energy. 

These physiological processes commonly falter with age, however, and contribute to the 

pathogenesis of metabolic disease. Skeletal muscle also appears to bestow resilience to 

physical challenges, and the loss of muscle with advancing age increases vulnerability to 

adverse outcomes following medical and surgical interventions. Collectively, these 

consequences of skeletal muscle aging pose substantial socioeconomic burden. In light of 

population aging, new strategies to optimize muscle health in older adults are desperately 

needed.

The phenomenon of skeletal muscle aging has been termed sarcopenia, from the Greek 

words sarx (flesh) and penia (poverty) [1]. The most widely appreciated feature of 

sarcopenia is the attrition of muscle mass. This has been largely attributed to both the loss 

and atrophy of postmitotic, multinucleated muscle cells, termed fibers. Lexell and 

colleagues, for example, observed a 40% reduction in the cross-sectional area of whole 

vastus lateralis muscle from 20 to 80 years of age, and noted that the number of both type 1 

(slow-twitch and more oxidative) and type 2 (fast-twitch and more glycolytic) fibers were 

reduced, and the size of type 2 fibers was particularly diminished at advanced ages [2]

(Figure 1). Their analysis further revealed that fat and fibrous tissue replaced lost and 

shrunken muscle fibers. Though arguably less studied, such alterations in the cellular 

composition of muscle may equally contribute to the clinical impact of muscle aging as the 

reduction in muscle mass.

The recognition of sarcopenia as an important clinical syndrome has led to multidisciplinary 

efforts to identify, understand, prevent, and treat this condition [3-5]. One evidence-based [6] 

and several consensus-based [7-10] definitions of sarcopenia have been proposed. Despite 

progress, there is not yet a universally accepted clinical definition; however, a unique 

International Classification of Diseases, 10th Revision (ICD10), code for sarcopenia was 

assigned in 2016 [11, 12], The heterogeneity in sarcopenia definitions has made estimates of 

its prevalence in older adults vary widely, ranging from 0.5 to 13% [13].

Remarkable progress has been made in elucidating the causal molecular pathways of aging. 

The diverse forms of age-related molecular and cellular damage, commonly referred to as 

hallmarks [14] or pillars [15] of aging, which include loss of proteostasis, deregulated 

nutrient sensing, stem cell exhaustion/dysfunction, cellular senescence, genomic instability, 

mitochondrial dysfunction, and epigenetic alterations, are plausible contributors to 
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sarcopenia. To date, however, there are currently no approved pharmacologic therapies. The 

burden of sarcopenia on older adults combined with population aging highlight the need to 

better understand and address age-related muscle loss and dysfunction. To this end, the 

objective of this review is to discuss the clinical consequences of skeletal muscle aging and 

highlight recent discoveries relevant to fundamental biological mechanisms.

Clinical consequences of skeletal muscle aging

Physical Function.

Skeletal muscle’s unique capacity to generate force and power is perhaps one of its most 

important functions. Maximum skeletal muscle force generating capacity, strength, is a 

product of the cross-sectional area of the muscle and the capacity of the nervous system to 

fully activate the corresponding motor neurons. Cross sectional analyses reveal a close 

association between muscle size and maximum strength among older adults. However, 

longitudinal studies examining changes in muscle mass/size and strength have revealed a 

more complex relationship. Data from both the Baltimore Longitudinal Study of Aging and 

the Health Aging and Body Composition (HABC) Study have confirmed age-related 

changes in muscle size or appendicular lean mass to occur at a rate of approximately 0.5 to 

1.0% per year; whereas changes in lower extremity muscle strength occurs at rates between 

1.0 to 2.0% per years [16, 17]. The longitudinal divergence observed between muscle mass/

size and strength suggest that other biological factors independent of changes in muscle size/

mass may play a fundamental role in the well characterized changes in motor performance 

throughout the lifespan.

The age-related declines in muscle mass and strength occur in conjunction with reductions 

in mobility and physical functioning [17-23]. Sarcopenia leads to age-related functional 

limitations, including difficulties in walking, climbing stairs and carrying objects [24, 25]. In 

turn, the penalties of functional decline include falls [26], disability [27-30], 

institutionalization [31], and even death [32-35]. Methods to indirectly quantify skeletal 

muscle mass in humans have relied on imaging techniques such as dual-energy X-ray 

absorptiometry (DXA), computed-tomography (CT), and magnetic resonance imaging [5]. 

Somewhat surprisingly, the reported associations between muscle/lean mass estimated from 

DXA and measures of physical function and other distal outcomes, including falls, fractures, 

and mortality, have been inconsistent [36-41]. Studies using CT to assess muscle size and 

quality may be more reliable and assess a direct physical property of muscle composition in 

comparison to measures of lean mass assessed by DXA. Specifically, muscle attenuation as 

assessed using CT, a relative measure intramyocellular fat infiltration, independently 

predicts incident mobility disability (self-reported difficulty walking ¼ mile) in community 

dwelling older adults [42]. Moreover, changes in muscle cross sectional area over 5 years as 

measured by CT in HABC Study participants were related to an increased risk of mortality 

(relative risk 1.21 C.I.: 1.08-1.35) [41]. More recent approaches to measure direct properties 

of muscle quantity by using the isotopic dilution of deuterium-labelled creatine have 

revealed stronger associations between skeletal muscle mass (estimated by creatine dilution) 

and measures of physical functioning (Short Physical Performance Battery (a composite 

measure of gait speed, repeated chair stand time, and standing balance) and usual walking 
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speed), incident mobility limitation (self-reported difficulty walking 2-3 blocks), and serious 

fall injury [43]. These findings suggest that tools that more directly assess skeletal muscle 

mass, size, and/or quality may be more sensitive and thus be more predictive of poor 

physical function, mobility limitations and more distal clinically relevant outcomes. Future 

studies need to more extensively interrogate the performance characteristics of new 

methodologies such as the creatine-dilution technique and other imaging tools in more 

diverse populations of older adults.

Metabolic Homeostasis.

Aging is strongly associated with T2D, a condition characterized by a resistance to insulin 

action that accounts for > 90% of cases of diabetes (DC ADA position statement [44]. The 

incidence of T2D notably increases from 3.1 diagnoses per 1000 persons age 18-44 years to 

10.9 diagnoses per 1000 persons age 45 to 65 years [45]. This dramatic mid-life shift in T2D 

onset, commonly attributed to obesity and physical inactivity, also corresponds to the onset 

and progression of skeletal muscle aging.

Skeletal muscle is a robust metabolic organ. It is the primary site of insulin-mediated 

glucose disposal. With the advent of the glycemic clamp technique, the laboratories of 

DeFronzo and Olefsky demonstrated that insulin sensitivity and, more specifically, post-

receptor insulin action, are significantly reduced in healthy, non-obese older women and 

men [46, 47]. Despite effective binding to its cognate receptor, insulin-mediated activation of 

Akt2 and the subsequent phosphorylation and inactivation of RabGTPases, which enable 

glucose transporter type 4-containing vesicles to translocate to the cell membrane to import 

glucose, are decreased in aged skeletal muscle [48]. Exercise-stimulated muscle glucose 

transport also diminishes with advancing age. This has been attributed to blunted activation 

of AMP-activated protein kinase (AMPK), a master regulator of glucose and lipid 

homeostasis, insulin sensitivity, and mitochondrial biogenesis [49]. Alterations in muscle 

glucose uptake partly contribute to a marked ~38% reduction in muscle glycogen content in 

older compared to younger adults [50]. This has notable consequences since skeletal muscle 

is the largest reservoir of glycogen in the human body and reduced glycogen stores impact 

endurance, performance, and onset of fatigue [51].

Skeletal muscle further impacts whole-body metabolism as a chief determinant of both 

resting energy expenditure ((REE), often referred to as basal metabolic rate) and activity-

associated energy expenditure (AEE) [52]. REE routinely accounts for 50-70% of total 

energy expenditure among adults and has been show to decline by 1-2% each decade [53]. 

This is predominantly a consequence of the loss of lean mass, and skeletal muscle in 

particular, as nicely summarized by Roberts and Rosenberg [54]. Finally, age-associated 

changes in AEE are perhaps even more striking and reflect the progressive decrease in both 

habitual physical activity and purposeful exercise with advancing age. The use of an 

objective measure of physical activity (accelerometry) in the National Health and Nutrition 

Examination Survey revealed a 55% decrease in moderate to vigorous activity counts from 

age 39 to 70+ years, and a 75% decrease in time spent performing moderate to vigorous 

activity [55]. Indeed, physical activity and exercise have profound effects on skeletal muscle 

energy demand, including increasing skeletal muscle glucose uptake and fatty acid 
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oxidation, and, in turn, systemic metabolic homeostasis. Determinants of physical activity 

and participation in structured exercise are undoubtedly multifactorial (e.g., physical, social, 

environmental, sex, race), and innovative strategies to counteract the age-associated decline 

in these behaviors are desperately needed as they promise to profoundly impact human 

health.

Physical Resilience.

The loss of resilience, defined as the ability to resist and/or recover from a stress or 

challenge, is a critical phenotype of aging that has recently gained increased attention 

[56-59]. Challenges to physical resilience, such as infections, surgery, medication exposures, 

and falls, intensify with advancing age. Considerable evidence suggests sarcopenia is a 

contributor to the age-related loss of resilience. For example, older persons with low muscle 

mass experience delayed recovery [60] and higher rates of complications and infections 

following surgery [61], greater drug toxicity [62], and higher disease-specific and all-cause 

mortality [63-65]. Moreover, performance-based measures of grip strength and gait speed 

and self-reported measures of endurance and physical activity, are core components of the 

frailty phenotype and, arguably, indicative of skeletal muscle health [66]. The associations 

between frailty and adverse outcomes are robust and have been extensively studied and 

reviewed elsewhere (e.g., [67-69]). Support for a causal relationship between low muscle 

mass and the loss of resilience stems from preclinical studies in which blockade of factors 

responsible for muscle wasting, such as activin A, at least in the context of cancer, enhance 

survival without altering tumor growth or the systemic inflammation [70]. The potential of 

muscle-based interventions to improve the resilience of older adults to adverse health 

outcomes following medical and surgical challenges and/or enhancing their subsequent 

functional recovery offers a unique clinical trial paradigm.

Collectively, the clinical consequences of skeletal muscle aging profoundly impact the 

health, independence, and quality of life of older adults and pose a significant burden on 

healthcare resources and health expenditures. Through a better understanding of the 

biological mechanisms that cause muscle aging, new interventions can be pursued.

Biological mechanisms of skeletal muscle aging

Proteostasis.

Under physiological conditions, a dynamic interplay between protein degradation and 

synthesis ensures the maintenance of protein homeostasis within skeletal muscle and allows 

an adequate adaptation to changes in physical activity, nutritional input and metabolic needs 

[71, 72]. A progressive loss in protein homeostasis is believed to contribute to the 

pathogenesis of muscle loss and dysfunction during aging, although the precise mechanisms 

are still far from being fully elucidated.

Among the proteolytic systems, the ubiquitin-proteasome and the autophagy-lysosome 

pathways play a prominent role in skeletal muscle protein degradation [73]. In the ubiquitin-

proteasome system proteins destined for degradation are first covalently attached to a chain 

of ubiquitin molecules through an enzymatic cascade (involving the ATP-dependent E1 
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ubiquitin activating enzymes, the E2 ubiquitin conjugating enzymes and the E3 ubiquitin 

ligases) and are then processed by the 26S proteasome [74]. Hyperactivation of the 

ubiquitin-proteasome system has been implicated in several muscle wasting conditions [75], 

but its role in skeletal muscle aging is more controversial. Indeed, studies on aged skeletal 

muscle have reported both increased and decreased proteasome activity [76, 77]. Moreover, 

several studies on skeletal muscle aging have reported unchanged and even reduced mRNA 

levels for atrogin-1/MAFbx and MuRF1 [76-82], which are two important muscle-specific 

E3 ubiquitin ligases transcriptionally upregulated in many conditions associated to muscle 

atrophy [73, 83]. Interestingly, experimental studies have shown that MuRF1-null mice 

display preserved muscle mass at old age, but a decline in muscle force [77, 80], while mice 

lacking atrogin-1/MAFbx, which did not reach old age because of precocious death, 

displayed a reduction of muscle mass and force at 15 months of age [80].

Macroautophagy (hereafter referred as autophagy) is an evolutionary conserved homeostatic 

mechanism that allows the degradation and recycling of cellular components (bulk 

cytoplasm, long-lived or misfolded proteins, damaged organelles) by their sequestration in a 

double membrane vesicle called an autophagosome that next fuses with the lysosome for 

enzymatic digestion of its content [84]. Although long-considered a non-specific degradative 

pathway, it is becoming increasingly evident that autophagy can also selectively remove 

protein aggregates or damaged organelles (such as mitochondria via mitophagy) [85]. 

Autophagy plays an essential role in the maintenance of skeletal muscle mass and its 

alteration has been linked to the pathogenesis of muscle atrophy during different 

pathological conditions [80, 86]. Recently, several studies on aging have evaluated the 

muscular expression of proteins commonly used to monitor autophagy such as beclin-1, 

microtubule-associated protein 1 light chain 3 isoform I (LC3I) and the lipidated isoform 

LC3II, and SQSTM1/p62 [87, 88] . Although the patterns of autophagy markers assessed 

and reported in these studies were slightly different, overall, they suggested impaired 

autophagic degradation in aged skeletal muscle [89-93]. However, since autophagy is a 

highly dynamic process and measurement of these markers in static conditions has some 

limitations [87, 94], recent experiments have been also performed using the autophagy 

inhibitor colchicine, which blocks the autophagosome-lysosome fusion [95]. Results 

obtained in whole muscle extracts as well as in mitochondria isolated from the muscle of 

aged rodents would suggest an increase in basal autophagy and mitophagy flux, although 

further studies are needed to evaluate whether autophagosome formation is followed by an 

efficient lysosomal degradation of the cargo during the final step of autophagy [82, 96, 97]. 

Indeed, an accumulation of lipofuscin has been previously reported in aged skeletal muscle, 

which would suggest some impairment in lysosomal function [96, 98].

Interestingly, experiments conducted using mice with a muscle-specific deletion of Atg7 (a 

crucial autophagy gene) suggested that impaired autophagy may contribute to sarcopenia. 

Indeed, genetic inhibition of autophagy in murine muscle reduced survival and induced 

muscular alterations resembling those observed during aging such as atrophy and weakness, 

neuromuscular junction degeneration, mitochondrial dysfunction and enhanced oxidative 

stress [86, 91]. In addition, in a recent study genetic impairment of autophagy by Atg7 

deletion in the satellite cells of young mice induced entry into senescence and regenerative 

failure [99]. Of note, a decline in basal autophagy was also observed in physiologically aged 
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satellite cells and its reactivation by pharmacological treatment or Atg7 overexpression 

prevented senescence and restored their regenerative capacity.

In coordination with degradative processes, an important contribution to the maintenance of 

skeletal muscle mass is made by protein synthesis. The insulin-like growth factor 1 (IGF-1)/ 

Akt/mechanistic/mammalian target of rapamycin (mTOR) signaling is a well characterized 

anabolic pathway, which also plays an important role in regulating protein degradation 

[100]. Indeed, Akt activation, besides stimulating mTOR and thereby protein synthesis, can 

also inhibit the Forkhead Box O (FoxO) transcription factors, which control the expression 

of genes involved in the autophagy as well as in the ubiquitin proteasome-pathway [101, 

102]. mTOR functions through formation of two different complexes: mTORC1, which 

stimulates protein synthesis by phosphorylating p70S6 kinase (S6K) and the eukaryotic 

translation initiation factor 4E-binding protein 1 (4E-BP1), and mTORC2, which 

phosphorylates Akt in a feedback loop [71]. Besides regulating protein synthesis, mTORC1 

can also suppress autophagy by inhibiting ULK1 (a kinase involved in autophagy induction) 

and the transcription factor EB (TFEB), which regulates the expression of genes involved in 

lysosomal biogenesis and autophagy [103]. Importantly, several lines of evidence suggest 

that mTORC1 activity can be further regulated by diverese inputs such as amino acids and 

mechanical stimuli, although the molecular mechanisms involved still need to be fully 

elucidated [103, 104]. The role of the IGF-1/Akt/mTOR pathway in the pathogenesis of 

skeletal muscle aging is still controversial, but a few studies have suggested that mTORC1 

signaling is hyperactivated in the skeletal muscle of aged rodents [80, 93, 105]. Interestingly, 

different patterns of modulation of the Akt/mTOR pathway have also been shown in the 

skeletal muscle of female and male aged rodents as well as in different muscles suggesting 

that the regulation of this pathway may vary with aging by sex and muscle type, at least 

under the experimental conditions analyzed [106-108]. In humans, reduced, unchanged and 

increased mTORC1 signaling has been reported [80, 109, 110], underscoring the need for 

additional research to better understand how modulation of this pathway may contribute to 

skeletal muscle aging.

Skeletal muscle aging is not associated with a reduction in basal muscle protein synthesis, 

but rather an impaired protein synthetic response to anabolic stimuli, a phenomenon called 

anabolic resistance [72]. Data obtained in the skeletal muscle of aged rodents have shown, in 

spite of high basal mTORC1 signaling, a blunted activation in response to a single bout of 

muscle contraction compared to younger animals [106]. An impaired activation of mTORC1 

signaling has also been shown in the skeletal muscle of elderly subjects in response to acute 

bout of resistance exercise or essential amino acids ingestion [111, 112]. Despite evidence 

for aging-associated anabolic resistance, a recent systematic review was less conclusive. 

Several differences, however, were noted among the included studies in terms of anabolic 

stimuli utilized as well as experimental methodology and design adopted, which may have 

contributed to the resultant inconsistencies [113]. Additional research is needed to advance 

our understanding of anabolic resistance and identify strategies to counteract this 

consequence of aging.
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Stem Cell Exhaustion and Function.

Satellite cells are the essential skeletal muscle stem cell. As their name implies [114], these 

cells reside juxtaposed to the mature muscle fiber; external to its plasma membrane yet 

enveloped by the surrounding basal laminae. In addition to their location, satellite cells can 

be identified by their expression of several molecular markers, including the paired 

homeodomain transcript factor, Pax7, which is essential for satellite cell specification, 

expansion and function [115, 116]. Considerable research has been conducted to understand 

the impact of aging on satellite cells and their role in skeletal muscle health.

Satellite cells are absolutely essential for skeletal muscle regeneration following injury. 

Indeed, targeted depletion of satellite cells in adult mice harboring a human diphtheria toxin 

receptor under the control of the Pax7 promoter completely disrupted muscle regeneration 

following both extreme (intramuscular injection of cardiotoxin (see also [117]) and 

physiological (downhill running on a treadmill) muscle injury [118]. In the absence of 

satellite cells, skeletal muscle atrophy, fiber loss, fibrosis, fat accumulation, immune cell 

infiltration, and inflammation are evident and severe following injury. The extent to which 

sarcopenia per se is influenced by the health and function of satellite cells is less clear. 

Targeted elimination of most (~83%) Pax7-expressing cells in mice failed to hasten or 

exacerbate the age-related loss in muscle fiber cross-sectional area or muscle mass, despite 

clear defects in muscle regenerative capacity [119]. It is possible that the satellite cells that 

remained were sufficient to maintain muscle fiber size and mass, as reported in a separate 

study [120], particularly given the limited demands placed on skeletal muscle by captive 

laboratory mice. Interestingly, mice deficient in satellite cells did exhibit significant 

increases in fibrosis, a phenotype of aging muscle that further highlights the dynamic 

interplay between the diverse cell types residing in skeletal muscle [119], In sum, the 

findings by Fry and colleagues are provocative, and have stimulated further investigations 

into the contributions of satellite cells to muscle adaptations to aging and other physiological 

stimuli.

Muscle regenerative capacity is markedly impaired by aging. The number of muscle stem 

cells and their capacity to self-renew have been shown to decline with age in both mice [121, 

122] and humans [123], particularly in fast-twitch glycolytic muscle fibers. In addition to 

number, satellite cells exhibit age-associated changes in their molecular phenotype. Purified 

muscle progenitor cells (highly enriched for PaxT) obtained from aged 24-month-old mice 

demonstrated markedly impaired (two-thirds reduction) engraftment compared to young 2-

month-old donor cells when transplanted into muscle of young immunodeficient recipient 

mice [120], Further analyses revealed increased activation of p38α/β stress signaling and 

increased expression of senescence-associated cyclin dependent kinase inhibitors p16Ink4a 

and p21Cip1 in the aged muscle stem cells, consistent with their diminished proliferative 

potential [120], Pharmacological inhibition of p38α/β restored aged muscle stem cell 

proliferative capacity in vitro, and markedly improved engraftment in vivo. A recent analysis 

of satellite cells derived from geriatric mice (28 to 32 months of age) also revealed elevated 

expression of p16Ink4a, a cyclin-dependent kinase inhibitor involved in the cell fate of 

senescence (see below) [124], Following cardiotoxin injury to the muscle of young mice, 

transplanted satellite cells from geriatric mice were unable to activate and expand. Targeted 
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repression of p16Ink4a by short hairpin RNA, however, restored satellite cell activation in 

culture, and augmented engraftment and self-renewal. Collectively, these studies provide 

compelling evidence for intrinsic changes in satellite cells as a consequence of aging that, at 

a minimum, severely compromise skeletal muscle’s capacity for regeneration.

During muscle regeneration, the transition of satellite cells from quiescence and their 

subsequent proliferation and differentiation are also regulated by extrinsic factors in the 

local environment, or niche [125], These cues include cytokines, growth factors, and 

extracellular matrix proteins and remodelers, which are produced by the mature myofibers 

and diverse myogenic (i.e., satellite cells) and non-myogenic (e.g., endothelial cells, 

fibroadipogenic progenitors, immune cells, and invading monocytes, etc.) cell types [126, 

127], potentially in the context of senescence as discussed below. Dysregulation of the niche 

during muscle regeneration results in aging-like phenotypes, including impaired satellite cell 

proliferation and differentiation and increased fibrosis and fat accumulation.

The experimental model of parabiosis, in which two organisms are joined in a manner so 

that they share a common circulatory network, has led to the study of progeronic factors 

from an older organism that adversely affect the health and function of cells in a younger 

organism, and antigeronic factors from a younger organism that positively affect the health 

and function of cells in an older organism. Indeed, injury to the skeletal muscle of a younger 

mouse that shares the circulation of an older mouse leads to compromised tissue 

regeneration. In contrast, an injured older mouse coupled to a younger mouse experiences 

restored satellite cell function and ameliorated age-related tissue fibrosis [128], Progeronic 

factors include Wnt proteins, a large family of secreted glycoproteins, that promote the 

transition of myogenic satellite cells to a fibrogenic lineage [129], Transforming growth 

factor-β, which is particularly liberated from aged muscle, also exhibits progeronic activity 

that involves the phosphorylation of Smad3 and the disruption of Notch signaling in satellite 

cells [130], Notch signaling is a critical determinant of the satellite cell pool and satellite cell 

fate [131-133], In older mice, failed activation of Notch in satellite cells leads to “mitotic 

catastrophe [134].” Antigeronic factors have remained more elusive; however, one example 

is oxytocin, a hormone produced by the hypothalamus whose abundance declines with age. 

Systemic administration of oxytocin to aged mice rescued satellite cell proliferation and 

skeletal muscle regeneration to levels observed in young mice following injury [135], 

Collectively, these data demonstrate that age-associated alterations in the niche can 

markedly effect satellite cell function and muscle regeneration. The biological mechanisms 

that drive alterations in the niche warrant further study.

Cellular Senescence.

Senescent cells and their dynamic secretome—the senescence-associated secretory 

phenotype (SASP)—have been strongly implicated as drivers of aging [136-139] and aging-

related diseases, including vascular dysfunction [140], atherosclerosis [141], lung disease 

[142], diabetes [143, 144], osteoarthritis [145], osteoporosis [146], and neuropathology 

[147, 148]. Senescence, a state of stable growth arrest, is principally a fate of proliferating 

cells. In response to genomic, proteomic, metabolic, or replicative stress, the senescence 

program is initiated by cell cycle inhibitor proteins, including p16Ink4a and p21Cip1, that 
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antagonize the actions of cyclin dependent kinases to ultimately halt cell proliferation [149, 

150]. Senescence is therefore an inherently protective, tumor-suppressive program [151], 

With advancing age, however, senescent cells accumulate [152, 153], presumably due to 

their resistance to apoptosis and inefficient removal by the immune system [139, 154]. By 

depleting the mitotically active progenitor pool and abundantly secreting a mix of cytokines, 

chemokines, matrix remodeling proteins, and growth factors, senescent cells compromise 

regeneration and mediate inflammation, deterioration, and fibrosis in tissues of older 

organisms [154, 155]. Intuitively, senescent cells and the SASP could underlie skeletal 

muscle aging and sarcopenia, yet this concept has not been methodically tested.

Support for senescent cells and the SASP as drivers of skeletal muscle dysfunction comes 

from a number of observations. First, transplantation of senescent cells (either syngeneic 

preadipocytes or autologous ear fibroblasts) into young adult mice compromised measures 

of grip strength and physical function, including walking speed and hanging endurance 

[137]. In turn, systemic elimination of p16Ink4a-expressing cells through either activation of 

a suicide transgene, or the pharmacological targeting of senescent cells (based on their 

significant upregulation of pro-survival factors (see [139])), modestly improved measures of 

physical function in older (24-month-old) mice. Whether the detrimental effects of senescent 

cells on physical function, or the beneficial effects of their removal, resulted from a direct 

influence on parameters of muscle aging (e.g., atrophy, fibrosis, denervation, or cellular 

composition) was not studied. Instead, the effects on adipose tissue senescent cell burden 

and SASP and, correspondingly, systemic inflammation, was demonstrated. This potential 

mechanism is in line with a prior report showing pharmacological inhibition of the Jak 

pathway, which was shown to regulate the SASP in senescent preadipocytes and endothelial 

cells in vitro, suppressed markers of both adipose tissue and systemic inflammation and 

improved parameters of physical function in aged mice [156]. It is also worth noting that 

associations between the number of p16Ink4a-expressing cells in thigh adipose tissue and 

measures of muscle performance and physical function have been observed in older humans 

[157].

It is unclear whether senescent cell populations within muscle mechanistically contribute to 

age-related changes in its mass, composition or function. As discussed above, Sousa-Victor 

and colleagues have demonstrated the significant impact of p16lnk4a-expressing satellite 

cells on muscle regeneration [124]. However, the longer-term effects of senescent cells or 

their removal on sarcopenia, fibrosis, fat infiltration and measures of muscle performance 

have not been carefully investigated. In part, this is a practical challenge as sarcopenia is 

relatively late phenomenon in mice, compared to its progressive nature in humans. As 

emphasized, aged muscle is compositionally heterogenous, and senescence of resident cell 

populations beyond satellite cells, including fibroadipogenic progenitor, endothelial, and 

immune cells, may also contribute to muscle aging. Consequently, there is a need to identify 

and comprehensively phenotype the cell populations within aged muscle that are prone to 

senesce and determine the extent to which they mechanistically contribute to muscle loss 

and dysfunction.
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Mitochondrial function.

Mitochondria play a pivotal role in skeletal muscle function. These organelles are 

recognized for their role in generating chemical energy in the form of ATP to fuel the 

metabolic demands within muscle fibers, including contractile function, maintenance of 

membrane potential, calcium handling, and overall cellular maintenance and homeostasis. In 

addition to their role as energetic powerhouses, mitochondria are also a primary source of 

reactive oxygen species (ROS). As reviewed authoritatively elsewhere [158], ROS function 

as important signaling molecules but can simultaneously initiate cell death through damage 

to cellular components such as DNA, proteins, and lipids. Given their critical role for 

cellular homeostasis, mitochondria have been implicated in the etiology of sarcopenia and 

multiple age-related diseases (e.g., diabetes, cancer, cardiovascular disease) [159-161] and 

pursued as therapeutic targets [162, 163].

More than 20 years ago, Rooyackers and colleagues first demonstrated that the activities of 

two key mitochondrial enzymes, citrate synthase and cytochrome c oxidase, decrease with 

age in skeletal muscle biopsies from men and women across a wide age range [164]. 

Additional studies supported the premise that aging adversely affects skeletal muscle 

mitochondria, including decreased mitochondrial ATP production rates [165-167], decreased 

mitochondrial gene expression [168], decreased mitochondrial DNA copy number [169, 

170], reduced mitochondrial volume density [171], and increased oxidative damage [172]. 

These findings were not universal; however, as a number of carefully conducted studies 

failed to observe age-related impairments in skeletal muscle mitochondrial function 

[173-177]. Indeed, several important factors may confound the effects of aging on muscle 

mitochondrial physiology:

1. Aging vs. disuse. Plasticity of mitochondria makes them exquisitely responsive 

to use and disuse (i.e., exercise and sedentariness). To what extent do observed 

changes in skeletal muscle mitochondria simply reflect changes in muscle use 

across the lifespan? Multiple studies have shown that age-related changes in 

muscle oxidative capacity and mitochondrial function are not evident when 

studies carefully control for habitual physical activity [174, 178, 179]. However, 

some age-related mitochondrial changes occur independent of physical activity 

levels. For example, mitochondrial DNA copy number decreases with age in 

young and older adults who are matched for physical activity levels [180]. 

Furthermore, the age-associated reduction in mtDNA abundance is also evident 

even in highly-trained masters level endurance athletes [180].

2. Age-related mitochondrial changes may be muscle-specific. Fast-glycolytic 

muscle fibers undergo a more profound age-related atrophy than slow-oxidative 

muscle fibers [181]. The vastus lateralis muscle, characterized by a mixed fiber 

type composition, is often studied in humans because its large size, accessibility, 

and location relative to major blood vessels makes it convenient for repeated 

sampling by percutaneous biopsy with minimal complications. Samples from 

vastus lateralis typically reveal age-related declines in mitochondrial function 

[166, 167, 182, 183], whereas studies in other muscle groups such as tibialis 

anterior [174], forearm muscles [184], and plantarflexors [185] report similar 
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mitochondrial function in young and old. Indeed, muscle oxidative capacity, 

measured in vivo by 31P magnetic resonance spectroscopy, was found to be 

reduced with age in vastus lateralis, but not in tibialis anterior [186, 187]. A 

recent systematic review on this topic clearly shows that muscle group is a 

significant moderator of age-related changes in skeletal muscle oxidative 

capacity [188].

3. Reductionistic vs. Integrative Studies of Mitochondrial Physiology. Studies 

commonly draw conclusions based on the expression of a gene or the activity of 

a single cytochrome chain or TCA cycle enzyme. Even gold-standard 

measurements of oxygen consumption and ATP production in intact 

mitochondria isolated from skeletal muscle have been criticized because the 

organelles are studied ex vivo under non-physiological conditions where cellular 

circulatory and regulatory systems have been stripped away. Picard and 

colleagues nicely demonstrated how measurements in isolated mitochondria may 

overstate the degree to which aging influences muscle mitochondrial biology 

[176]. In this study they show that salient indices defining mitochondrial 

function, including respiration, ROS production, and calcium sensitivity, are 

significantly impaired with aging when examined in isolated muscle 

mitochondria. However, the effects of age were less apparent when 

measurements were made in permeabilized yet intact muscle fibers. Phosphorous 

magnetic resonance spectroscopy (31P-MRS) enables the study of human skeletal 

muscle bioenergetics in vivo [189], and was first applied to study aging skeletal 

muscle in the 1980s [177]. Kent and Fitzgerald have authored an authoritative 

review of studies that have used 31P-MRS to investigate the effects of aging on 

mitochondrial oxidative capacity [190]. They concluded that much of the 

ambiguity regarding the effects of aging can be ascribed to differences in muscle 

group investigated or subject characteristics (e.g., physical activity, age, sex, and 

presence of age-related comorbidities). An important message from this body of 

literature is that not all of the mitochondrial changes observed in muscles of 

older adults are consequences of aging per se, but may be largely driven by 

environmental and lifestyle factors.

Regardless whether age-related functional changes in muscle mitochondria are consequent 

to biological aging or simply paraphenomena, the changes experienced by older adults are 

real. The extent to which age-related changes in muscle mitochondria drive aging 

phenotypes (e.g., sarcopenia, insulin resistance) is a topic that remains at the leading edge of 

aging research [191, 192].

Interventions for skeletal muscle aging

Despite the prevalence and impact, there are no currently approved pharmacological 

interventions for sarcopenia. A number of anabolic interventions to augment protein 

synthesis have been trialed, such as testosterone and growth hormone, and shown to have 

minor to modest effects on muscle mass, strength, and/or physical function (e.g., [193-196]), 

but have also generated significant concerns about safety [197, 198]. There has been great 
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interest in approaches to disrupt myostatin signaling, a catabolic transforming growth factor 

β (TGFP) superfamily member that is predominantly synthesized and secreted by skeletal 

muscle that triggers protein degradation and disrupts protein synthesis pathways, as we have 

recently reviewed [199, 200]. A number of early phase clinical trials in older adults have 

been completed [201-204], and shown favorable effects on muscle mass or volume, muscle 

strength, and/or some functional outcomes, including stair climb time, chair rise time, 

maximal gait speed, and six-minute walk distance. These studies and their outcomes have 

been nicely summarized in a recent issue of Bone [205]. It is worth noting that other TGFβ 
family members, including GDF11 and activin A, also compromise skeletal muscle health 

and function and serve as potential therapeutic targets for sarcopenia [206-211]. Of note, 

neither myostatin nor GDF11 increase with chronological age in humans [212, 213], and an 

important study by Latres and colleagues demonstrated critically important species 

differences in the abundance of myostatin, GDF11, and Activin A [214]. Specifically, 

circulating concentrations of myostatin are markedly higher in mice than humans, whereas 

activin A is much higher in humans than in mice, and GDF11 is extremely low in both 

species. These data potentially help explain why the profound effects of myostatin inhibition 

on muscle mass in mice do not necessarily translate to humans and may help inform future 

therapeutic approaches.

Finally, the search for small molecules and biologics to enhance skeletal muscle health and 

function should not overshadow nor trivialize the remarkably protective effects of exercise 

against the biology of aging. Indeed, exercise is safe and scalable, and effectively improves 

measures of muscle mass, strength, power, and physical function, even in those with overt 

age-associated deficits. The salutary effects of exercise on aging-associated changes in 

skeletal muscle have recently and very thoughtfully been reviewed [215]. The power of 

exercise, and the challenge to harness or mimic it in a pill, stems from the array of 

mechanical, metabolic, hormonal, and neural signals it elicits. Impressively, exercise has 

been show to counter a range of age-induced forms of damage, including those discussed 

here; i.e.,proteotoxic stress by inducing autophagy [216], stem cell dysfunction by 
stimulating muscle satellite cell activation [217], cellular senescence by mitigating 

senescence-inducing stressors (e.g., DNA damage [218]), and mitochondrial dysfunction by 

restoring the hermetic response to oxidative stress [219]. As new interventions targeting the 

biology of aging emerge, there will be value in studying how their effects are augmented by 

exercise.

Conclusions

Population aging coupled with the clinical consequences of sarcopenia have generated 

considerable interest to understand and identify strategies to counter the biological 

mechanisms of skeletal muscle aging. The underlying causes of this process are 

multifactorial, and in no way is this review all inclusive. We apologize to the authors of the 

important studies we have not included. An outstanding, incredibly comprehensive review 

on sarcopenia, led by Dr. Marco Sandri, was very recently published [220].

In sum, strategies to promote muscle health in late life promise to have beneficial effects on 

physical function, metabolism, and resilience, and subsequently, the independence and 
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quality of life of older adults. While new interventions are on the horizon, physical activity 

and structured exercise can have an immediate and far-reaching impact. Given physical 

activity and exercise delay the onset and progression of the majority of age-related diseases 

and geriatric syndromes, broad reaching public health strategies are warranted to promote 

adoption and compliance.
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Highlights

• Muscle mass and cellular composition are altered with advancing age

• Muscle aging negatively affects physical function, metabolism, and resilience

• Diverse forms of age-related molecular and cellular damage drive muscle 

aging

• New interventions targeting hallmarks of aging may benefit late-life muscle 

health

• Notably, exercise effectively counters muscle aging and its consequences
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Figure 1. Age-related changes in skeletal muscle.
The considerable loss of muscle mass and volume with advancing age is attributed to both 

the loss and atrophy of muscle fibers. The progressive decrease in functional contractile 

tissue is matched with the accretion of fat and fibrotic tissue. These alterations, along with 

progressive loss of innervating motor neurons and capillaries, contribute to the age-related 

loss of muscle strength, power, and endurance.
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Figure 2. Skeletal muscle in health, aging and disease.
Skeletal muscle uniquely generates force and power for diverse forms of physical function, 

including mobility. It is also a critical metabolic organ that is responsible for the storage of 

glucose, the oxidation of fatty acids, and is a rich source of amino acids. Based on its size 

and metabolic activity during both rest and movement, muscle strongly influences both 

resting energy expenditure (REE) and activity associated energy expenditure (REE). 

Measures of muscle performance, physical function, and mass are also determinants of 

physical resilience, the capacity to resist and recover from diverse challenges.
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