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Abstract

Background: MET amplification and MET exon 14 alterations (METex14) in lung cancers 

impart sensitivity to MET kinase inhibitors. Fluorescence in situ hybridization (FISH), next-

generation sequencing (NGS), and IHC, have been used to evaluate MET dependency. Here, we 

determined the association of MET IHC with METex14 mutations and MET amplification.

Methods: We collected data from a tri-institutional cohort from LCMC2 (Lung Cancer Mutation 

Consortium). All patients had metastatic lung adenocarcinomas and no prior targeted therapies. 

MET IHC positivity was defined by H-score ≥ 200 using SP44 antibody and MET amplification 

by copy number fold change ≥ 1.8x using NGS or MET/CEP7 ratio > 2.2 using FISH.

Results: We tested tissue from 181 patients for MET IHC, MET amplification, and METex14 

mutations. Overall, 71/181 (39%) were MET IHC positive, 3/181 (2%) were MET amplified, and 

2/181 (1%) harbored MET exon 14 mutations. Of MET-amplified cases, 2 cases were FISH 
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positive with MET/CEP7 of 3.1 and 3.3, 1 case was NGS positive with fold change 4.4x, and 1/3 

of the cases were MET IHC positive. Of IHC positive cases, 1/71 (1%) were MET amplified and 

2/71 (3%) were METex14 mutated. Of MET IHC negative cases, 2/110 (2%) were MET 
amplified.

Conclusions: In this study, nearly all MET IHC positive cases are negative for MET 
amplification or METex14 mutations. MET IHC can also miss patients with MET amplification. 

The limited number of MET amplified cases in this cohort makes it challenging to demonstrate an 

association between MET IHC and MET amplification. Nevertheless, IHC appears to be an 

inefficient screen for these genomic changes. MET amplification or METex14 mutations can best 

be detected by FISH and a multiplex NGS panel.
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Introduction

The hepatocyte growth factor receptor (MET) has been shown to be an oncogenic driver in 

lung cancers. MET pathway activation, either by MET amplification or a splice site 

alteration in exon 14 (METex14), facilitates lung cancer growth, survival, and metastasis1, 2. 

In lung cancers, both MET mutation and amplification are primary oncogenic drivers. MET 
amplification is also a mechanism of acquired resistance to EGFR- and ALK-targeted 

therapies.

MET pathway activation by MET amplification occurs by constitutive signaling through 

protein expression and kinase activation. De novo MET amplification occurs in 1% to 5% of 

lung cancers, depending on the assay and positivity cut-point used2. A global consensus 

regarding the appropriate cut-off for MET amplification based on gene copy number has yet 

to be reached3. One classification scheme by Camidge et al. proposed various categories of 

MET/CEP7 ratio as follows: low: ≥ 1.8 to ≤ 2.2; intermediate: > 2.2 to < 5; or high: ≥ 5 

(although a later classification changed the intermediate cut-point to > 2.2 to < 4 and high 

cut-point to ≥ 4) and has been applied in clinical settings when treating patients with MET 

inhibitors3.

METex14 mutations produce a skipping alteration that prevents the MET receptor from 

being degraded, resulting in increased MET activity. METex14 mutations occur in 3% to 4% 

of patients with lung adenocarcinomas based on studies employing hybrid capture NGS4. 

These mutations impart sensitivity to MET tyrosine kinase inhibitors (TKI), including 

cabozatinib, crizotinib, tepotinib, and capmatinib2, 5.

Some have suggested that MET IHC can serve as a potential predictive marker for MET 

kinase inhibitor activity. However, studies that used IHC for MET-targeted therapies have 

been unsuccessful thus far6, 7. Moreover, there is growing evidence that MET IHC may not 

be a good screening test for MET amplification or METex14 mutation in lung cancer8.
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The Lung Cancer Mutation Consortium 2 (LCMC2) was a multi-institutional effort 

established in 2010 to investigate the frequency of oncogenic drivers in lung 

adenocarcinoma9. Using a tri-institutional cohort derived from the LCMC experience 

(University of Colorado, Dana Farber Cancer Institute, Memorial Sloan Kettering), we set 

out to determine the association of MET IHC testing with MET amplification or METex14 

mutation status in patients with metastatic lung adenocarcinomas.

Methods

Patient recruitment, enrollment, and IRB approval

Data was collected from three of the institutions that participated in LCMC29. All sites 

obtained Institutional Review Board approval for this study. Patients undergoing further 

evaluation for the diagnosis or treatment of stage IV or recurrent lung adenocarcinomas were 

prospectively enrolled if they provided written informed consent, as previously described9. 

In addition, patients were eligible if they had no prior treatment with targeted therapy, a 

diagnosis of metastatic disease between May 2012 to January 2016, and adequate tissue for 

molecular analyses. All subjects enrolled were provided written informed consent. 

Epidemiologic and clinicopathologic data including age, sex, and cigarette smoking history 

were collected.

Pathology evaluation

Molecular testing and the diagnosis of lung adenocarcinoma was confirmed by pathologists 

at each institution. The diagnosis of lung adenocarcinoma was confirmed centrally with the 

pathology report and review of a hematoxylin- and eosin-stained histology slide or a scanned 

whole-slide image (Leica Biosystems Inc.). All testing was done in Clinical Laboratory 

Improvement Amendments (CLIA) laboratories.

IHC and FISH detection

MET amplification was determined by MET FISH (Roche/Ventana) and NGS. FISH assays 

were performed with laboratory-developed reagents as previously described10. 

Amplification by FISH was considered present when the MET/CEP7 ratio was > 2.2.

IHC for MET (clone SP44, Roche/Ventana) was independently validated at each site. MET 

IHC was defined as positive if the sample had an H-score ≥ 200, following a previously 

established method11. Pathologist training and interlaboratory proficiency testing were used 

for IHC scoring (Supplemental Methods).

Mutational analyses

Mutational analyses were performed using methods previously described9. Mutations 

included in these studies include AKT1, BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, 

NRAS, and PIK3CA. During the course of this study, many diagnostic laboratories 

converted from single gene testing to NGS methods. NGS technologies at each site are 

provided (Supplementary Table S2). They were independently validated for both wet-bench 

and bioinformatics components and were also centrally reviewed. MET exon 14 testing was 

performed at selected LCMC sites. MET amplification by NGS was considered to be 
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amplified from NGS when copy number fold change (log2 ratio) is ≥ 1.8x assuming 50% 

tumor content. At least a 50X mean target coverage was needed for a sample to pass 

analysis.

Statistical Analysis

Mann-Whitney Test was used to compare categorical values. All reported p-values are for 

two-sided hypothesis tests conducted at the 0.05 level.

Results

One hundred eighty-one patients from three institutions had tissues tested for MET IHC, 

MET amplification, and METex14 mutation with FISH or NGS. The median age at 

diagnosis was 65 years, 57% (104/181) were women, and 71% (129/181) were current or 

former smokers (Table 1). The prevalence of MET amplification by FISH or NGS was 2% 

(3/181, 95% CI: 3.4 to 5.0%) (Figure 1). Two MET amplified cases were detected by FISH 

and 1 by NGS. MET IHC by H-score was negative in 2/3 of the patients (Table 2). MET 

IHC status was unchanged by MetMab scoring criteria. Two of these MET IHC negative 

patients also had a concurrent KRAS G12C mutation.

METex14 was seen in 1% (2/181, 95% CI: 0% to 4.2%) (Table 1). The two patients with 

METex14 mutation were 73 and 83 years of age, female, and former smokers. MET IHC 

was positive in both of these cases (Table 2). Of note, neither case had concurrent MET 
amplification.

MET IHC was positive in 39% (71/181, 95% CI: 32 to 47%) (Table 1). Of the patients with 

MET IHC positive lung cancer, 1% (1/71) had MET amplification by FISH and 3% (2/71) 

had METex14 mutation by NGS. MET IHC was negative in 61% (110/181) of cases and, of 

these, 2% (2/110) were MET amplified (Figure 1B). Of the cases without amplification, 

MET IHC was positive in 39% (70/181). Two of these seventy MET IHC positive cases also 

had METex14 mutations.

A total of 85 cases (47%) had both MET IHC and MET FISH performed. The median MET/

CEP7 ratio of MET IHC negative cases (1.1, n = 49) was not different from that of MET 

IHC positive cases (1.14, n = 36; Mann-Whitney test, p = 0.57) (Figure 2). The median MET 
FISH copy number was also not different between MET IHC negative (3.3, n = 49) and that 

of positive cases (3.5, n = 36; Mann-Whitney test, p = 0.20) (Figure 2B). Using a higher cut-

off to define IHC positive (H-score 300) did not select for MET amplified cases (Figure 2C).

Discussion

Attempts to use MET IHC as a marker of MET dependency have largely been unsuccessful. 

Recently, MET IHC was shown to correlate poorly with MET/CEP7 ratio in all stages of 

sarcomatoid lung cancer studied8. In this tri-institutional cohort of patients with metastatic 

lung adenocarcinoma, more than 1/3 of cases were MET IHC positive, but only 2% were 

MET amplified. MET IHC also did not detect MET in 2 of the 3 MET amplified cases.
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Two cases of METex14-mutated lung cancer were also MET IHC positive. Other studies 

have also shown that lung cancers with METex14 mutations are often IHC positive12–14. 

These studies also show that MET IHC is a poor screening strategy for METex14, 

considering how frequently MET IHC is positive in lung cancers9, 13. In this study, 96% of 

MET IHC positive cases had no detectable MET amplification or METex14 mutation. 

Finally, no clear association was observed between IHC and MET amplification by FISH in 

this study. The low number of METex14 mutations or MET amplification by NGS makes it 

difficult to determine an association with MET IHC. The sensitivity and specificity of H-

score for evaluating for a MET genomic aberration (either MET exon14 mutation or MET 
amplification by FISH or NGS) in this series were both 0.6.

This study was limited by the low number of MET amplified and mutated cases. The 

prevalence of MET amplification (2%) in our cohort was similar to earlier reports. However, 

this prevalence was lower than that reported in LCMC2 as a whole. This discrepancy is 

likely due to the use of different cut-offs for MET amplification in post-hoc analyses 

between our cohort and that in LCMC29. Furthermore, differences in the prevalence of MET 
amplification between cohorts may be limited by the precision of current methodologies. 

Recently, it was shown that there was a surprising amount of intratumoral heterogeneity of 

MET copy number gain and amplification as determined by FISH15. In addition, NGS could 

potentially miss some cases of MET amplification that would otherwise be called by FISH. 

How well MET amplification by NGS correlates with MET amplification by FISH is not 

well-understood and needs to be further explored15.

The prevalence of METex14 (1%) is also lower than that reported in the literature, which 

may be related to poor coverage of relevant target regions in METex14 with earlier versions 

of the NGS panels used in this study. Issues with METex14 coverage with older NGS panels 

has been described and newer generation NGS panels, which were implemented as the study 

progressed, provide better coverage of these regions16. Although the low number of MET 
amplification and METex14 mutation in this study makes it difficult to draw a strong 

conclusion about the diagnostic accuracy of MET IHC, the large number of false-positive 

MET IHC cases in this cohort suggests that MET IHC is a poor screen for MET 
amplification and METex14 mutation.

Multiple trials have used MET IHC as a predictive marker for MET-directed therapies, such 

as onartuzumab, but have largely been unsuccessful6, 7. In contrast, ongoing studies with 

MET tyrosine kinase inhibitors have seen more success with using high MET copy numbers 

(gene copy number >5) and MET/CEP7 ratios as predictive markers1, 3. Coupling the results 

of these trials with growing literature showing that MET IHC inadequately selects for MET 
amplification or METex14 mutations strongly challenges its use as a screen for MET 
dependency. Multiplex next-generation sequencing panels in use today detect actionable 

targets (like EGFR, ALK, ROS1, and BRAF) and nearly always assess MET copy number 

and MET exon 14 mutations. We recommend that tissue should be prioritized for NGS and 

FISH over IHC to test for actionable MET mutations or amplification in lung 

adenocarcinomas.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. METex4 and MET amplification status in MET IHC positive and negative cases by H-
score.
A) Of the MET IHC positive cases by H-score, MET amplification or METex14 was seen in 

1% and 3% of cases, respectively. B) Of the MET IHC negative cases, only MET 
amplification was seen in 2% of cases.
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Figure 2. Box plot representations of MET/CEP7 ratios and MET FISH copy numbers compared 
to MET IHC H-Score.
Boxes represent the interquartile range, which contains 50% of the values, whereas lines 

extend the entire range of values. A) Median MET/CEP7 ratios of MET H-scores from 0 to 

< 200 (1.1, n=49) and ≥ 200 (1.135, n=36) are not significantly different (Mann Whitney 

test: p=0.57). B) Median MET FISH copy number from 0 to < 200 (3.3, n=49) and ≥ 200 

(3.5, n=36) are also not significantly different (Mann Whitney test: p=0.2). C) Median MET/

CEP7 ratios continue to overlap when comparing MET H-scores from 0 to < 300 (1.1, n=78) 

and the max score (300) (1.2, n=7) (Mann Whitney test: p=0.58).
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Table 1.

Features of patients with metastatic lung adenocarcinomas with MET testing
*
.

The clinical characteristics of 181 patients with MET IHC and MET FISH or massively parallel sequencing 

testing are described.

All patients (n=181)

Age at Diagnosis of Metastatic Disease

 median 64 years

 range (18–90 years)

Sex

 female 104 (57%)

 male 77 (43%)

Smoking history

 never smoker 50 (28%)

 former smoker 118 (65%)

 current smoker 11 (6%)

 unknown 2 (1%)

MET IHC by H-Score 181 (100%)

 Positive 71 (39%, 95% Cl: 32% to 47%)

 Negative 110 (61%, 95% Cl: 54% to 68%)

MET FISH 85 (47%)

 Positive 2 (1%, 95% Cl: 0% to 4.2%)

 Negative 83 (46%, 95% Cl: 39% to 53%)

MET NGS 181 (100%)

 METex14 mutation 2 (1%, 95% Cl: 0% to 4.2%)

 MET amplification 1 (1%, 95% Cl: 0% to 3.4%)

 No MET mutation 178 (98%, 95% Cl: 95% to 100%)

*
Percentages may not total 100 because of rounding.
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Table 2.
Patients with MET amplification or METex14 mutation.

Five patients with either MET amplification or METex14 mutation are identified. MET amplification was 

detected by FISH in 2/3 (67%) of the patients. Next-generation sequencing detected a concurrent KRAS G12C 

mutation in both. Amplification in case 3 was detected by next-generation sequencing. One out of three 

patients that were MET amplified were also MET IHC positive by H-score. METex14 was seen in two patients 

and both were MET IHC positive. These results were unchanged when using IHC status by MetMab scoring 

criteria.

MET Amplification MET mutation by NGS Other Drivers MET IHC by H-score

Case 1 Positive by FISH (MET/CEP7 3.1) None KRAS G12C Negative

Case 2 Positive by FISH (MET/CEP7 3.3) None KRAS G12C Positive

Case 3 MET amplified by NGS (Fold 4.4) None None Negative

Case 4 None METex 14 None Positive

Case 5 None METex 14 None Positive
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