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Abstract

G protein-coupled receptor 137b (GPR137b) is an orphan seven-pass transmembrane receptor of 

unknown function. In mouse, Gpr137b is highly expressed in osteoclasts in vivo and is 

upregulated during in vitro differentiation. To elucidate the role that GPR137b plays in osteoclasts, 

we tested the effect of GPR137b deficiency on osteoclast maturation and resorbing activity. We 

used CRISPR/Cas9 gene editing in mouse-derived ER-Hoxb8 immortalized myeloid progenitors 

to generate GPR137b-deficient osteoclast precursors. Decreasing Gpr137b in these precursors led 

to increased osteoclast differentiation and bone resorption activity. To explore the role of 

GPR137b during skeletal development, we generated zebrafish deficient for the ortholog 

gpr137ba. Gpr137ba-deficient zebrafish are viable and fertile and do not display overt 

morphological defects as adults. However, analysis of osteoclast function in gpr137ba−/− mutants 

demonstrated increased bone resorption. Micro-computed tomography evaluation of vertebral 

bone mass and morphology demonstrated that gpr137ba-deficiency altered the angle of the neural 
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arch, a skeletal site with high osteoclast activity. Vital staining of gpr137ba−/− fish with calcein 

and alizarin red indicated that bone formation in the mutants is also increased, suggesting high 

bone turnover. These results identify GPR137b as a conserved negative regulator of osteoclast 

activity essential for normal resorption and patterning of the skeleton. Further, these data suggest 

that coordination of osteoclast and osteoblast activity is a conserved process among vertebrates 

and may have similar regulation.
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1. Introduction

The skeleton is a dynamic structure, continuously remodeled by coordinated bone formation 

and degradation in response to physiological signals or environmental factors. The balance 

of remodeling through bone formation by osteoblasts and bone resorption by osteoclasts is 

highly regulated and conditions that cause an imbalance in these activities can lead to 

pathological conditions such as osteoporosis or osteopetrosis. Identification of the factors 

that act to regulate remodeling would serve to aid in remediation of these conditions, 

however our knowledge of these agents remains incomplete.

Osteoblasts derive from mesenchymal progenitors, differentiate and produce bone matrix in 

response to a wide variety of growth factors [1]. Osteoblasts regulate osteoclast activity 

through the production of RANKL and a decoy receptor for RANKL, osteoprotegrin (OPG). 

Osteoclasts are multinucleated myeloid cells derived from differentiation and fusion of 

hematopoietic precursors in response to M-CSF (macrophage colony stimulating factor) and 

RANKL (Receptor Activator of Nuclear factor Kappa b Ligand) stimulation. Mature 

osteoclasts degrade bone matrix by secreting proteolytic enzymes and acid into a sealed 

zone known as resorbing lacuna [2]. Several lines of evidence suggest that osteoclasts can 

stimulate bone formation by osteoblasts, both by releasing growth factors from the bone 

matrix during bone resorption and by directly secreting factors that promote osteoblast 

activity [3]. However, how this functional coupling is regulated is uncertain.

G protein coupled receptors (GPCRs) are surface receptors which integrate signaling 

pathways in response to a diverse set of ligands, including ions, photons, hormones, and 

other peptides. Ligand binding triggers activation of G-proteins and intracellular signaling 

cascades to regulate transcription and specific cellular responses [4]. Several GPCRs have 

been identified to play a critical role in skeletal development and bone turnover [5, 6]. 

Gpr137b is reported to be highly expressed in mouse osteoclasts, while, in comparison, is 

minimally detected in osteoblasts [7]. GPR137b is a lysosomal seven-pass transmembrane 

orphan receptor, although its ligand and function are unknown [8, 9]. A number of 

lysosomal proteins are required for osteoclasts to acidify the resorption lacunae and to 

degrade the extracellular matrix [10]. Here, we demonstrate GPR137b is essential for 

regulation of osteoclast function. Further, we explored the role of this orphan receptor in 

bone homeostasis in vivo using the zebrafish, Danio rerio, by generating a mutant lacking 
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the Gpr137b ortholog gpr137ba. We provide functional evidence that GPR137b is a 

conserved negative regulator of osteoclast activity important for skeletal homeostasis and 

form.

2. Methods

2.1. Zebrafish and mouse husbandry

Cas9-EGFP mice on a C57BL/6J background (Jackson Laboratories, stock number 026179) 

[11] and C57BL/6J mice (Jackson Laboratories, stock number 000664) were socially housed 

and maintained under specific pathogen–free conditions and provided with irradiated food 

ad libitum. Animal research was conducted with the approval of the Institutional Animal 

Care and Use Committee of Harvard Medical School and conformed to relevant guidelines 

and laws.

The zebrafish included in this study were housed and handled in accordance with the Boston 

Children’s Hospital Animal Research Care Committee. A complete description of the 

husbandry and environmental conditions in housing for the fish used in these experiments is 

available as a collection in https://www.protocols.io/view/zebrafishdanio-rerio-

environmental-summary-aquati-mijc54n. CRISPR/Cas9 mutations were introduced into the 

Tuebingen wildtype background.

2.2. Phylogenetic analysis

To examine the phylogenetic relationship of gpr137b orthologues, cDNA sequences of 

Astyanax mexicamis (cave fish), Danio rerio (zebrafish), Gasterosteus aculeatus 
(stickleback), Lepisosteus oculatus (spotted gar), Mus musculas (mouse), Oryzias latipes 
(medaka) and Scleropages formosus (Asian arowana) were retrieved from NCBI [27] and 

ENSEMBL [28] databases. Sequences were aligned using MUSCLE [29] multiple sequence 

alignment tool. A phylogenetic tree was constructed via Tamura-Nei model in MEGA 

version 7.0.18 [30]. The reliability of the tree was assessed by 500 bootstrapping replicates; 

branches with nodes having bootstrap support less than 70 were collapsed.

2.3. Osteoclast differentiation and resorption assay

In vitro experiments were performed in α-MEM (Cellgro) containing 10% fetal calf serum 

(Hyclone), 100 U penicillin and 100 μg/ml streptomycin (Cellgro) at 37°C with 5% CO2. 

Mouse bone marrow cells derived from wildtype mice were plated on a tissue culture dish. 

After 24 hours, non-adherent cells were collected and seeded on plastic with 20 ng/mL M-

CSF (R&D Systems) alone (for bone marrow derived macrophages, BMM) or in 

combination with 5 ng/ml RANKL (PeproTech). After 3 days, the cytokines were 

replenished daily.

To visualize osteoclasts, cells were fixed in 10% formalin and incubated with tartrate-

resistant acid phosphatase (TRAP) staining solution (100μg/ml Naphtol AS-Mx phosphate, 

1% N,N-Dimethylformamide, 600μg/ml Fast Red LB Violet salt in 0.1M acetate buffer) at 

37°C for 10-15 minutes. Positively stained cells with 3 or more nuclei were counted as 

osteoclasts. The area of each multinucleated TRAP+ cell was measured using ImageJ 
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software and hand-drawn contours. The average cell area was calculated from 3 wells per 

sample, with >200 cells measured per well.

For the resorption assay, 1×105 cells were seeded in Corning Osteo Assay plates (Corning). 

After 7-10 days of culture, plates were stained with von Kossa solution (2.5% silver nitrate 

in aqueous solution) for 30 minutes at room temperature and developed with pyrogallol 

aqueous solution (1%). Photographs were acquired with a Leica DM2000 microscope and 

the resorbed area was quantified using Image J [12].

2.4. Osteoblast Differentiation

For mRNA expression analysis, C57BL/6/J mouse bones were minced and cultured in α-

MEM (Cellgro) containing 10% fetal calf serum (Hyclone), 100 U penicillin, 100 μg/ml 

streptomycin, non-essential amino acids (Cellgro) and 1μM beta-mercaptoethanol (Sigma) at 

37°C with 5% CO2. After 5 days, adherent bone marrow stromal cells were re-plated for 

differentiation in the same media containing 50 ng/mL ascorbic acid (Sigma Aldrich) and 5 

mM beta-glycerophosphate (Sigma) (OB media) and cultured for an additional 14 days. For 

immunofluorescence, calvarial osteoblasts from C57BL/6J mice were isolated from 2-4 day 

old pups by serial digestion with a mix of collagenase type I and II and differentiated for 21 

days in OB media.

2.5. Cas9-HoxB8 cell lines

Cas9-EGFP expressing Hoxb8 cells have been described previously [13]. Briefly, bone 

marrow mononuclear cells from Cas9-EGFP expressing mice [11] were isolated and 

expanded in medium containing stem cell factor (SCF, 40 ng/mL, Peprotech) and IL-3 (20 

ng/mL, Peprotech) for 48h, spin-infected with murine stem cell virus encoding ER–HoxB8 

and cultured in the presence of SCF (20 ng/mL) and β-estradiol (500 nM, Sigma Aldrich) 

for two days prior to addition of G418 for selection. Non-adherent immortalized cells grew 

in ~3 weeks, as previously described [13].

For osteoclast differentiation, Hoxb8 cells were washed twice with PBS, plated at 1×105 

cells/well in 96-well tissue culture plates or 2×106 cells/well in 6-well plates and 

differentiated in the presence of 10 ng/mL RANKL, 20 ng/mL M-CSF and 2.5 ng/mL IL-1β 
(R&D systems), in the absence of SCF and β-estradiol.

2.6. CRISPR/Cas9 mutagenesis.

2.6.1. Gpr127b deficient Hoxb8 cells: Lentivirus encoding a guide RNA (gRNA) for 

Gpr137b (CGTGAAGCTCGGCCTCACCG) or EGFP control 

(GAAGTTCGAGGGCGACACCC) were generated by the Broad Institute Genetic 

Perturbation Platform (Cambridge, MA) using the pXPR_003 vector. Cas9-EGFP Hoxb8 

cells described above were spin-infected with gRNA lentivirus (multiplicity of infection 10) 

and selected in puromycin for 1 week prior to OC differentiation and evaluation of gene 

expression.

2.6.2. Zebrafish: The Cas9 expressing vector pCS2_nCas9n [14] was used for in vitro 
transcription of Cas9 mRNA using the mMESSAGE mMACHINE SP6 kit (Life 
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Technologies). The target sequence specific for gpr137ba (ENSDARG00000078448) was 

identified using ZiFiT Targeter [15] and complimentary oligos (zb-gRNA FW 5′-

AAACGTCCATCAGTCTGCTGTT-3′; RV 5′-TAGGAACAGCAGACTGATGGAC-3′) 

were cloned downstream of the T7 promoter into the guide RNA cloning vector as 

previously described [14]. The linearized gRNA vector was then transcribed in vitro 
(MEGAShortscript T7 kit, Life Technologies) to produce gRNA. An RNA mixture (2nl) 

composed of gRNA (25 ng/μl) and Cas9 mRNA (400 ng/μl) was microinjected into one-cell 

stage zebrafish embryos. To detect CRISPR/Cas9 induced mutations, a 743bp genomic 

region containing gpr137ba exon 3 was amplified followed by T7 endonuclease digestion. 

To establish mutant lines, injected fish were grown to adulthood and outcrossed to AB 

wildtype fish. The nature of mutation created by CRISPR/Cas9 in the F1 progeny was 

identified by sequencing of subcloned PCR products. Carriers were then outcrossed to 

establish mutant lines. Genomic DNA extracted as previously described [16] from a fin clip 

of adult zebrafish was used for PCR genotyping (gpr137ba wt-fw 5′-

CTGCTGTTCCTGTCC -3′; gpr137ba 5nt-del mutant-fw 5′-

CTGTACCTGCTGTTCCTGTCCATC -3′;gpr137ba-rv 5′-

ACCTTGGCCTCCAGGTAGAT-3′). Wild type (212bp) and mutant (218bp) amplicons 

were obtained by annealing the primers at 60°C or 64°C for the wild type and mutant mix, 

respectively.

2.7. RNA isolation and real-time quantitative PCR (qPCR)

RNA was isolated from cells or fish scales using Trizol reagent (Life Technologies). The 

scales were disrupted with bullet blender (Nextadvance Navy, 3 min, speed 8). The 

homogenized solution was then extracted with chloroform/isopropanol and 500ng of RNA 

was used to generate cDNA (Affinity Script RT-PCR cDNA Synthesis Kit, Agilent 

Technology). Real-time quantitative PCR (qPCR) was performed in duplicate using 10ng of 

cDNA per reaction using Sybr green reagent (Life Technologies). Primers for Hprt were 

previously described [20]; primers for mouse Gpr137b or zebrafish gpr137ba, gpr137bb, 

osteocalcin and sp7 were designed using Primerblast [21] (Table 1). Data was normalized to 

Hprt (mouse) or tubulin (zebrafish) housekeeping genes.

2.8. Western Blot

Membrane proteins were isolated following published protocols [23]. Briefly, cells were 

lysed in distilled H2O, snap frozen in liquid nitrogen and subjected to multiple cycles of 

ultracentrifugation. The final pellet was resuspended in 8M Urea and 10mM DTT. Protein 

concentration was measured with the Bradford assay (BioRad). Membrane protein enriched 

extracts were separated by SDS-PAGE and transferred to nitrocellulose membranes, which 

were then incubated over-night at 4°C with the primary antibodies rabbit anti-mouse 

GPR137b (Proteintech) and anti-LAMP-1 (clone, 1D4B, Biolegend). The binding of the 

primary antibody was detected with enhanced chemiluminescence (ECL) detection reagent 

(GE Healthcare Lifesciences).

2.9. Immunofluorescence

Cultured osteoclasts and osteoblasts were fixed in 4% PFA and permeabilized with 0.3% 

Triton X-100. After blocking with 10% normal goad serum diluted in 0.25% BSA, cultures 
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were incubated with anti-mouse GPR137b (Proteintech) followed by goat anti-rabbit IgG 

AlexaFluor 555 (Thermofisher) in PBS/0.25%BSA buffer. Co-staining with phalloidin 

(Thermofisher) and DAPI (Thermofisher) was performed to assist with cell identification. 

After imaging, wells were stained for alkaline phosphatase or TRAP activity as previously 

described [24]. Images were acquired using an Olympus FSX100 (epifluorescence) and 

Leica DM 2000 (brightfield).

2.10. Whole mount staining of scales

Zebrafish scales were collected bilaterally from anterior to posterior along the mid-line of 

the trunk of gpr137ba−/− and wildtype siblings.

2.10.1. TRAP staining: To visualize osteoclasts, scales were fixed in 10% formalin and 

incubated with TRAP staining solution (100μg/ml Naphtol AS-Mx phosphate, 1% N,N-

Dimethylformamide, 600μg/ml Fast Red LB Violet salt in 0.1M acetate buffer) at 37°C for 

10-15 minutes. The number of scales with TRAP staining was manually counted. Ten scales 

per fish at 8wpf and 10 fish per group (gpr137ba−/− and wild type siblings) were evaluated.

2.10.2. Von Kossa staining: Scales were stained with von Kossa solution (2.5% silver 

nitrate in aqueous solution) for 30 minutes at room temperature. Quantification of the 

percentage of resorbed area per scale was performed by applying a threshold to the image in 

Image J [12]. Ten scales per fish at 6, 8 and 12 wpf) and 10 fish per group (gpr137ba−/− and 

wild type siblings) were evaluated.

2.11. Micro-computed tomography (Micro-CT)

8wpf fish were euthanized with an overdose of tricaine methane sulfonate (MS222, 200-300 

mg/L) solution, fixed in 10% formalin for 24h and preserved in 70% ethanol solution. 

Caudal vertebrae were imaged by micro-CT with a voxel size of 6 micron, using an X-ray 

tube potential of 55 kVp, an X-ray intensity of 0.145 mA and an integration time of 600 ms 

(Scanco mCT35). Vertebral analysis was performed using custom software to determine 

neural arch area and angle, vertebral volume and bone mineral density, as described 

previously [22]. With the exception of the arch angle, all parameters were normalized to the 

length of the fish, as described previously [22].

2.12. In vivo bone formation assay

For the in vivo bone formation assay, fish were stained overnight in 100μg/ml calcein 

(Sigma-Aldrich). After 14 days, fish were stained overnight in alizarin red solution 

(100μg/ml alizarin red, 10μM HEPES, pH 7.0, Sigma-Aldrich). Fish were then anesthetized 

with Tricaine and their infraorbital bones 3 (IO3) [25] and scales were imaged under a 

fluorescence stereomicroscope. We started this experiment when fish were 4, 6 and 8wpf 

and ended at 6, 8 and 12 wpf, respectively.

The area of total bone (calcein+alizarin red stains, TB) and pre-existent bone (calcein stain 

alone, CB) were measured with ImageJ software [26]. The percentage of new bone formed 

in the 14 days (the area stained with alizarin red only) was calculated with the formula: % 

new bone formed = 100 × (1-CB/TB).
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2.13. Statistical Analysis

Comparisons between two groups were analyzed with unpaired Student’s t-test or Mann-

Whitney test, for normal or nonparametric distributions, respectively. Analysis of variance 

(ANOVA) with Tukey’s multiple comparison test was used to compare 3 or more groups. 

The normality of the data was evaluated with the Shapiro-Wilk test, p-value of 0.05 or lower 

was considered significant. All statistical analyses were performed with GraphPad Prism 

software. Error bars represent standard deviation (SD) of biological replicates. All 

experiments were performed at least 3 times, except when otherwise indicated.

3. Results

3.1. GPR137b is expressed in mature mouse osteoclasts (OC).

A strategy for detecting regulators of osteoclast biology is to screen for genes differentially 

regulated among myeloid cell lineages. In broad expression analysis, Gpr137b came out as 

highly expressed in osteoclasts compared to other bone marrow myeloid cell types [7]. To 

further refine earlier evidence of expression differences between osteoclasts and other 

myeloid cells, we examined Gpr137b mRNA and protein in bone marrow-derived OC 

differentiated from myeloid precursors in the presence of RANKL using qPCR. Compared 

bone marrow macrophages (BMM) the expression of this receptor was highly abundant in 

mature osteoclasts (5 days after differentiation). Furthermore, Gpr137b expression increased 

during osteoclastogenesis, comparing pre-osteoclasts (pre-OC) formed after 2 days of 

RANKL exposure with mature osteoclasts exposed to RANKL for 7 days (Figure 1A). The 

higher expression in mature osteoclasts suggests a potential role for this receptor during late 

phases of differentiation or osteoclast function. To confirm GPR137b protein expression, 

lysosomal membrane preparations isolated from BMM and OC were probed for the presence 

of GPR137b, using LAMP-1 as loading control. GPR137b protein was detected in BMM, 

but was substantially increased in mature OC (Figure 1B). In contrast, Gpr137b expression 

was barely detectable in osteoblast cells (Figure 1C). Immunofluorescence of osteoclasts 

(Figure 1D) and osteoblasts (Figure 1E) differentiated in vitro confirmed the presence of 

GPR137b protein in osteoclasts but not in osteoblasts.

3.2. Loss-of-function of GPR137b promotes osteoclastogenesis and bone resorption.

In order to examine the role of GPR137b in osteoclast function, we used CRISPR/Cas9 to 

delete Gpr137b in Hoxb8-expressing immortalized mouse myeloid progenitors [31]. Hoxb8 
cells can differentiate into osteoclasts when cultured in the presence of specific growth 

factors [13, 32, 33]. Bone marrow progenitors isolated from Cas9-expressing transgenic 

mice were used to generate Hoxb8 cells [13]. Cas9 expressing-Hoxb8 cells were then 

transduced with lentivirus expressing either a guide RNA (gRNA) complementary to a 

sequence located in exon 1 of the Gpr137b gene (Hoxb8::gRNAGpr137b) or a control 

gRNA targeting EGFP (Hoxb8::EGFP, Figures 2A, B). Cells were then differentiated in the 

presence of M-CSF, RANKL and IL-1 to generate osteoclasts. Compared to Hoxb8::EGFP, 

Hoxb8::gRNAGpr137b cells expressed substantially reduced amount of GPR137b protein 

(Figure 2C). Interestingly, TRAP staining demonstrated that Hoxb8::gRNAGpr137b 
precursors differentiated into more numerous and larger osteoclasts than control cells 

(Figures 2D–E). The population of cells in these preparations are heterogeneous, thus the 
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clearest analysis of differentiation and function of osteoclasts is their ability to resorb matrix 

rather than expression of transcript levels of specific markers in the bulk population. 

Accordingly, we assessed resorption activity and found increased resorption by 

Hoxb8:gRNAGpr137b osteoclasts cultured on hydroxyapatite-covered wells (Figure 2F, G). 

These data indicate that in vitro reduction of GPR137b function enhances osteoclast 

differentiation and activity, suggesting that GPR137b acts as a repressor of 

osteoclastogenesis.

3.3. Generation of gpr137ba-deficient zebrafish.

Our analyses suggest an essential role for GPR137b in regulating osteoclast differentiation 

and activity. However, the complex interactions of intracellular coupling during bone 

homeostasis cannot be addressed in an in vitro setting. Zebrafish is emerging as a useful and 

cost-effective tool to study bone metabolism in vivo [34]. Many of the molecular pathways 

that regulate bone metabolism, including RANKL and M-CSF, are conserved across 

mammals and teleost fish species. In addition, like in mammals, zebrafish bone is cellular, 

containing osteoblasts, osteoclasts and osteocytes [35, 36]. Thus, we leveraged zebrafish to 

investigate the effects of loss of Gpr137b expression on bone development and remodeling.

The gpr137b gene is highly conserved across multiple species (Supplemental Table 1) [9]. 

All teleost fish share an ancestral whole genome duplication with lineage specific 

differentiation or loss of duplicated paralogues. Zebrafish retain two paralogs of gpr137b: 

gpr137ba and gpr137bb. Phylogenetic comparison among paralogues and orthologues 

showed that gpr137ba clustered closely to the mouse orthologue Gpr137b. Gpr137bb 
strongly differentiated (Supplemental Figure 1A, Supplemental Table 2). Analysis of the two 

paralogs during zebrafish development indicated that gpr137ba transcription increased in 

late juvenile stages coincident with the formation of the adult skeleton (Supplemental Figure 

1B). In contrast, gpr137bb was mostly expressed at 4 days post-fertilization when 

ossification of the larval skeleton is just beginning (Supplemental Figure 1C). Thus, we 

focused on the zebrafish gpr137ba paralogue to examine the relevance of gpr137b function. 

We employed CRISPR/Cas9 targeted gene editing to generate a zebrafish mutant with 

predicted loss of gpr137ba function. Using gRNA designed against exon 3 of the gpr137ba 
gene, we generated and isolated a mutant line (mh107) harboring a 5bp deletion in the 

targeted region (Figure 3A, B). This allele is predicted to cause a frameshift mutation 

leading to a premature stop codon at amino acid 163 (Figure 3B, C). Assessment of mRNA 

for gpr137ba in bone showed substantially reduced expression in mutant fish compared with 

wild type siblings (Figure 3D), suggesting that stability of the mutant transcript was also 

impaired or, alternatively, the number of cells expressing gpr137ba in skeletal tissues was 

decreased.

3.4. Loss-of-function of gpr137ba in zebrafish increases bone resorption.

gpr137ba−/− zebrafish are viable and fertile and display no obvious adult phenotypes (Figure 

4A). To examine skeletal remodeling in these fish, we took advantage of the fact that 

zebrafish scales are numerous independent skeletal units and are immediately accessible for 

study [37–39]. Staining scales for TRAP, we found that gpr137ba−/− zebrafish have a 

variable but similar percentage of TRAP+ scales as wild type siblings (Figure 4B, C). 
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However, gpr137ba−/− fish have increased resorption activity on their scales, identified and 

quantified by the focal absence of von Kossa staining for mineralized matrix (Figure 4D, E). 

Thus, similar to mouse bone marrow derived osteoclasts, loss of gpr137ba in zebrafish 

appears to increase osteoclast activity.

3.5. Loss-of-function of gpr137ba in zebrafish alters skeletal morphology.

In teleost fishes, like other vertebrates, remodeling is important in shaping form and function 

of the skeleton. In zebrafish and other small laboratory fishes, structures of the vertebrae are 

sensitive to changes in remodeling [17, 22, 41, 42]. Thus, we looked at the formation of 

vertebrae in order to address functional consequences of gpr137ba deficiency. During late 

zebrafish juvenile development (14-21 dpf), osteoclasts accumulate around forming 

vertebral arches [17]. We assessed changes in vertebral morphology of gpr137ba−/− mutants 

by micro-computed tomography (micro-CT) using previously described methods for 

zebrafish [22]. Radiographic analysis of comparably aged and sized adults focused on the 

first caudal vertebrae, C1 (Figure 5A, B). Measures of vertebral morphology in gpr137ba 
mutant fish, including tissue bone mineral density (BMD), and volume were comparable to 

wild type siblings (Figure 5C, D). Vertebral arch area, radius and length were also similar 

(data not shown). However, the angle that the neural arch forms with the vertebral body had 

significant higher amplitude in gpr137ba−/− mutants (Figure 5E). Similar results were 

obtained with caudal vertebrae 2 (data not shown). Previous analysis of csf1ra−/− mutant 

zebrafish, which have reduced number of osteoclasts, showed a similar but opposite 

modification (reduction) of arch angle [22]. This suggests that the angle between the arches 

and the vertebral bodies is sensitive to the alteration of osteoclast development and activity. 

This finding is consistent with the hypothesis that GPR137b acts as a repressor of osteoclast 

activity.

3.6. Gpr137ba-deficient zebrafish have high bone turnover.

During skeletal homeostasis the action of osteoclasts and osteoblasts is balanced to maintain 

bone shape and form. Through coupling events that are not well delineated, increased 

resorption typically results in a reciprocal increase in osteoblast activity. Given the lack of 

obvious teratology in the mutant, we hypothesized that the increased osteoclast activity in 

gpr137ba−/− zebrafish is balanced by increased bone formation, such that the effect of the 

mutation on overall skeletal morphology is minimal.

To examine osteoblast function in this mutant, we first examined the expression of hallmark 

osteoblast markers in adult scales of mutants and wild type siblings. Expression of 

osteocalcin and sp7 (osterix) were increased in gpr137b−/− scales compared to age and size 

matched wild type siblings suggesting increased osteoblast function (Supplemental Figure 

2A, B). In order to measure bone formation rate in vivo, we used a dual alizarin red and 

calcein labeling methodology to determine bone accrual over time [43, 44]. We focused on 

bone formation in scales and the infraorbital bones, as both have a simple flat shape useful 

for determining changes in growth rate. The area of the new bone formed in a 14 day 

interval was measured for scales (Supplemental Figure 2C,D) and infraorbital bone 3 

(Figure 6A, B). We find that the area of new bone formed between 8-10 wpf was 
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significantly larger in gpr137ba−/− zebrafish at both of these sites, suggesting an increased 

rate of bone formation compared to wild type siblings.

In addition, when we compared bone formation with bone resorption at specific time-points 

over a period of 6 weeks (6-12 wpf), we can clearly delineate an initial modelling phase (6 

wpf) characterized by an extraordinarily high rate of bone formation and very low bone 

resorption. This initial modeling phase is followed by a remodeling phase in adulthood 

defined by a gradual decrease of bone formation accompanied by increased resorption 

(Figure 6C and Supplemental Figure 3). Overlapping gpr137ba−/− and wild type data, the 

mutant shows a significant increase in bone resorption at 8wpf that is maintained throughout 

time and is accompanied by a reactive and significant increase in bone formation at 10 wpf. 

Thus, we conclude that, in young adult fish, loss of gpr137ba results in increased bone 

remodeling.

4. Discussion

Osteoclasts are specialized cells of the hematopoietic lineage that resorb bone by secreting 

acid and proteolytic enzymes onto the mineralized surface of bone. These cells are key to the 

remodeling and shaping of the skeleton in all vertebrates. In this study, we describe the 

conserved function of an orphan G-protein coupled receptor, GPR137b, that is primarily 

expressed in osteoclasts and acts a negative regulator of osteoclast activity.

More than 1100 GPCR genes have been identified in the mouse genome and about 600 in 

the zebrafish. Many GPCR are highly conserved across species [45, 46]. Several GPCR 

family members expressed by osteoblasts are important skeletal regulators, including 

PTHR1, the receptor for parathyroid hormone (PTH) and PTH related peptide (PTHrP) [47]. 

Recent work has shown that GPR4, a receptor for protons, regulates RANKL expression in 

osteoblasts, indirectly promoting osteoclastogenesis [48]. The calcitonin receptor (CTR) is 

the only GPCR a role in osteoclast regulation extensively studied to date [5, 6, 49], however 

other GPCR have been implicated in osteoclast differentiation and/or function. Activation of 

GPR40, GPR41, GPR43 and GPR120 by lipid metabolites, or GPR55 by cannabinoids, has 

inhibitory effects on osteoclastogenesis [50–53] and LGR4 (GPR48) was shown to be an 

alternative, inhibitory receptor for RANKL [54]. We suggest that GPR137b is an important 

GPCR that is essential to restrain osteoclast function. The mechanism by which this, or other 

GPRs in this class, function in this capacity has yet to be defined.

Zebrafish is emerging as a valuable model to study the genetic and developmental aspects 

regulating bone dynamics and remodeling. Although quite distantly related to humans, 

zebrafish have become a reliable model for bone diseases such as osteogenesis imperfecta 

[34]. Additionally, fish have been used to study the effect of drug treatments such as 

glucocorticoids and bisphosphonates in models of osteoporosis [55–57]. Thus, zebrafish are 

predictive of bone phenotypes in mammalian bone and useful models for a growing set of 

human skeletal dysplasias. This is not surprising due to the fact that the skeleton is an 

ancestral trait shared by vertebrate lineages. Given the ease of genetic analysis and 

experimental accessibility, we chose to study the in vivo function of GPR137b on 

skeletogenesis using loss-of-function genetic models in the zebrafish.

Urso et al. Page 10

Bone. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Osteoclast–dependent bone remodeling in zebrafish and other teleost fish is abundant during 

formation of the vertebral arches during early juvenile stages (3-4 weeks post fertilization). 

As a demonstration of the role of remodeling in fish skeletal development, decreased 

osteoclast function in either zebrafish or medaka results in bone accumulation leading to 

deformity of the arches [17, 58]. Similarly, we have found that arch development is one of 

the more sensitive and precise measures of increased or reduced remodeling in the zebrafish 

[22]. The increased angle of the neural arches in gpr137ba mutants is consistent with these 

findings indicating an increase in remodeling activity. In contrast, csf1ra−/− zebrafish 

mutants which are deficient in osteoclasts exhibit decreased angle formation [22, 59]. We 

speculate that the subtleness of overt morphological defects of gpr137ba−/− mutants is due to 

compensation by osteoblasts. This hypothesis is supported by the increased expression of 

markers for bone formation in the scales and increased bone formation observed in gpr137ba 
mutant fish. While we cannot completely exclude a direct effect of gpr137ba-deficiency on 

osteoblast function, this is less likely as bone formation in juveniles with low bone 

resorption is similar to wild type. In mammals, osteoclast and osteoblast activity are 

coordinated by crosstalk mechanisms that include growth factors released from the matrix 

during osteoclast resorption (e.g. TGF-β and IGF-1) and factors secreted by osteoclasts, 

referred to as clastokines [3]. Whether coupling exists in fishes is unclear, though recent 

work in medaka suggests that it may [60].

Our data suggests that coupling mechanisms linking bone resorption and bone formation 

likely exist in zebrafish, as they do in mammals. Therefore, zebrafish may be a useful model 

to interrogate and identify signals that regulate the communication between bone cells. Our 

work points to a potential shift in regulation of coupling through development (Figure 6C). 

While early juvenile development is accompanied by increased growth and low resorption, 

this balance flips within a short period of time as growth of the skeleton slows. It is only 

during this period that we observe changes in osteoclast activity due to loss of gpr137ba. 

The lack of an early difference in the osteoclast activity may be simply due to efficient bone 

formation rate, wherein any resorption is being quickly accommodated. However, this shift 

may point to specific changes in coupling between these two skeletal cell types in 

development. Although this remains an open question, the timing of this change with 

fundamentally different stages of skeletal growth (development vs homeostasis) would lend 

support to specific differences in the regulation of coupling between osteoblast and 

osteoclasts.

Through analysis of gpr137ba-deficient zebrafish, we demonstrate the functional relevance 

of GPR137b for bone remodeling. Our results indicate that, similar to in vitro analyses of 

mouse osteoclasts, the absence of this receptor enhances osteoclastogenesis and resorption 

activity, leading to heightened bone resorption. We therefore propose that GPR137b is a 

conserved negative regulator of osteoclastogenesis in vertebrates, although the specific 

ligand(s) and signaling pathway(s) triggered are not known. Our data extends the class of 

conserved and essential inhibitory signals for osteoclast function [61–65]. Given advances in 

small molecule development to simulate or inhibit GPCR receptors [66]. GPR137b 

represents a potential target for drug treatment of osteoporosis or osteopetrosis.
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Highlights

• Gpr137b is a seven-pass transmembrane receptor expressed by osteoclasts

• Decreasing Gpr137b in osteoclast precursors led to increased osteoclast 

differentiation and bone resorption activity in vitro.

• Loss-of-function gpr137ba zebrafish mutants demonstrated increased bone 

resorption

• We propose that GPR137b is a conserved negative regulator of 

osteoclastogenesis in vertebrates
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Figure 1 - Gpr137b is expressed in mouse osteoclasts in vitro and in vivo.
(A-E) Osteoclasts (OC) and bone marrow macrophages (BMM) were differentiated in vitro 
from bone marrow precursors with M-CSF alone (BMM) or in combination with RANKL 

(OC). Bone marrow stromal cell derived osteoblast (OB) cultures differentiated in the 

presence of ascorbic acid and beta-glycerophosphate for 14 days. (A) Gpr137b mRNA 

expression evaluated by qPCR in BMM, pre-OC and mature OC and (B) GPR137b protein 

detected by Western Blot in BMM and OC. Lysosomal-associated membrane protein 1 

(LAMP-1) was used as loading control for the membrane protein-enriched extract. (C) 

Gpr137b mRNA expression in OB and OC by qPCR. (D-E) GPR137b expression in 

osteoclasts and osteoblasts in in vitro cultures. (D) Osteoclasts differentiated from bone 

marrow cells with M-CSF and RANKL in vitro stained with anti-GPR137b (red), phalloidin 

(green) and DAPI (blue); TRAP staining (inset) (E) osteoblasts differentiated in vitro from 

calvarial cells for 21 days and stained as in (D). Alkaline phosphatase staining performed as 

a control for OB (inset). Scale bar, 100 μm. Experiments were performed at least 3 times. 

Bars on graphs represent mean±SD, *p<0.05, ***p<0.001, ****p<0.0001 determined by 

ANOVA or unpaired Student’s t-test.
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Figure 2 - Gpr137b deficiency promotes OC differentiation and bone resorption in vitro.
(A) Schematic of the Gpr137b gene indicating the gRNA target site on exon 1. (B-G) 

Differentiated Hoxb8 cells transduced with gRNA lentivirus. (B) Heteroduplex PCR 

followed by T7 Endonuclease I digestion detailing the presence of site-specific modification 

in the cells transduced with gRNA. (C) Western blot from membrane protein-enriched 

extracts showing GPR137b and LAMP-1 protein expression in control (eGFP) and 

transduced (Gpr137B−/−) cells. (D) Representative picture showing Hoxb8::eGFP and 

Hoxb8::gRNA gpr137b−/− cells differentiated on plastic and stained for TRAP activity. Scale 

bar 200μm. (E) Graph showing number of TRAP+ cells with 3 or more nuclei counted per 

cultured well and the average size of TRAP+ cells per well. (F-G) Hoxb8::eGFP and 

Hoxb8::gRNA gpr137b−/− were differentiated on osteo-assay plates. Cells were removed 

and the matrix was stained with von Kossa and pyrogallol to visualize the resorbtion pits 

(white spots). (F) Representative picture showing the matrix stained after 10 days of culture. 

Scale bar 500 μm. (G) Graph showing the quantification of resorbed area per well. Graphs 

represent mean±SD, **p<0.01, ****p<0.0001 determined by unpaired Student’s t-test or 

Mann Whitney test.
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Figure 3 - Generation of mutant zebrafish deficient for gpr137ba.
(A) Schematic of zebrafish gpr137ba indicating the gRNA target site on exon 3 (*). (B) 

Sequence of wild type and mutated gpr137ba gene showing deletion (mh107) leading to a 

frame shift and a predicted premature stop codon. (C) Cartoon of the predicted Gpr137ba 

protein showing the effect of the deletion (L139H;fs24X). (D) qPCR on cDNA from calvaria 

showing gpr137ba mRNA expression in wild type and gpr137ba−/− mutants. Graph 

represents mean±SD, n=3 where each sample represents a pool of 3 wildtype or 4 gpr137ba
−/− fish, **p<0.01, unpaired Student’s t-test. TM= transmembrane domain.
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Figure 4 - Increased bone resorption in gpr137ba mutant zebrafish.
(A) Representative pictures of adult (12 wpf) gpr137ba−/− and wild type siblings. (B-E) 

Scales were collected from 8 weeks post fertilization. (B) Representative pictures of TRAP 

staining on scales indicated by black arrows. (C) Evaluation of the percentage of TRAP+ 

scales collected per individual gpr137ba−/− fish compared to wild type siblings (minimum 

10 scales per fish were blindly evaluated). Graph represents mean±SD, n=10 fish. (D) 

Representative von Kossa staining of scales showing resorption pits (yellow arrow). (E) 

Quantification of percentage of resorbed area per individual scale collected from gpr137ba
−/− and compared to wild type siblings. Graphs represent mean±SD, n=100 scales (10 fish) 

****p<0.0001, Mann-Whitney test.
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Figure 5 - Analysis of caudal vertebrae reveals altered bone morphology in gpr137ba mutants.
gpr137ba−/− and wild type zebrafish siblings were scanned by micro-CT (voxel size 6 

microns). Representative images of (A) frontal and (B) lateral views of vertebrae from 

gpr137ba−/− and wildtype siblings. The first caudal vertebra was analyzed (C-E) 

Quantification of morphometry (C) volume, (D) bone mineral density (BMD) and (E) angle 

(n=26 wildtype, n=27 gpr137ba−/−). Graphs represent mean±SD, **p<0.01, unpaired 

Student’s t-test.
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Figure 6. Effect of gpr137ba−/− on skeletal homeostasis during zebrafish development.
Bone formation in gpr137ba deficient fish as measured by differential fluorophore 

incorporation (A) Representative images showing the infraorbital bone 3 (IO3) on live fish. 

Inset shows the difference between red and green staining (white arrow) representing the 

new bone formed in 14 days. Scale bar: 1mm. (B) Quantification of new bone formed during 

14 days in IO3. Graph represents mean ± SD, data points represent the average between left 

and right IO3, **p<0.01, unpaired Student’s t-test. (C) Model showing changes in bone 

homeostasis during development in wild type and gpr137ba−/− zebrafish. Juvenile fish show 

an initial phase of bone modeling characterized by uncoupled bone formation and bone 

resorption. At this age, bone formation largely supersedes bone resorption. When fish reach 

adulthood, the rate of bone formation gradually decreases while bone resorption increases. 

During this phase, bone formation and resorption are coupled in space and time. Detailed 

bone formation and resorption data during wild type and gpr137ba−/− zebrafish growth is 

shown in supplemental figure 3.
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Table 1 –

Quantitative RT-PCR primer list.

Gene Species Forward Reverse

Gpr137b M.musculus CTACCTGGCCTCACTTTTCATC GCCCGAGAGGTGTAGAGCA

Hprt M.musculus GTTAAGCAGTACAGCCCCAAA AGGGCATATCCAACAACAAACTT

sp7 D.rerio GACCCTCACTGGACTGCTTC CGAATTTGTTGCAGGTCGCA

osteocalcin D.rerio TCTTCTGCTGCCTGATGACTG CGAGCTGAAATGGAGTCAGGT

gpr137ba D.rerio TCTGTACTTCGCACAGGTCA ACAGGAACAGCAGGTACAGC

gpr137bb D.rerio GCCTGTACAAAGTGGCCAAG ATCACGGTCACCTGACACAC

tubulin D.rerio GTACGTGGGTGAGGGTATGG ACACAGCAGGCAGCATTTCTA
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