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The aging process in the liver is driven by alterations of the genome and epigenome that contribute
to dysregulation of mitochondrial function and nutrient sensing pathways, leading to cellular senes-
cence and low-grade inflammation. These changes promote multiple phenotypic changes in all liver
cells (hepatocytes, liver sinusoidal endothelial, hepatic stellate and Kiipffer cells) and impairment of

gﬁﬁfﬂgﬁa hepatic function. In particular, age-related changes in the liver sinusoidal endothelial cells are a
Hepatocyte significant but under-recognized risk factor for the development of age-related cardiometabolic
Genetic disease.
Nutrient sensing pathways © 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Mitochondrial dysfunction Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
Senescence by-nc-nd/4.0/).
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1. Introduction

Aging leads to the progressive impairment of homeostasis at geno-
mic, cellular, tissue and whole organism levels, which reduce survival
and fertility while increasing the risk of disease and death. At the cellu-
lar level, aging is secondary to multiple processes that have been de-
scribed as the ‘Hallmarks of Aging’: epigenetic alterations, genomic
instability, telomere attrition, loss of proteostasis, dysregulation of nu-
trient sensing, altered intracellular communication, mitochondrial dys-
function, stem cell exhaustion, cellular senescence, inflammation and
impaired adaption to stress [1]. Aging is more influential than any
other risk factor for the development of chronic diseases such as
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neurodegeneration, cardiovascular disease, diabetes mellitus, osteopo-
rosis and cancer; furthermore, there is considerable overlap between
the Hallmarks of Aging and the pathogenic mechanisms for these
diseases [2].

The liver is a complex metabolic organ that is essential for maintain-
ing whole body homeostasis via regulation of energy metabolism, xeno-
biotic and endobiotic clearance, and molecular biosynthesis [3],
therefore age-related changes in liver function contribute to systemic
susceptibility to age-related diseases. For example, the liver regulates
systemic energy metabolism via hepatic glucose and lipid homeostasis,
steroid biosynthesis/degradation and insulin signaling [3]. Thus, the
liver plays a key role in mediating the beneficial effects of nutritional

Advanced age liver

°
Lipoproteins
Insulin
Adhesion RCarboh?d;:t?d
receptors ‘emain in blo

Senescent
Hepatocyte

Fig. 1. The aging liver. In the young liver solutes such as lipoproteins, insulin and carbohydrates are able to diffuse between the blood and hepatocytes, via the LSECs fenestrations.
Intercellular communication via the release of vascular endothelial growth factor (VEGF) from hepatocytes and nitric oxide (NO) and hepatocyte growth factor (HGF) from LSECs and
HSCs maintain the homeostatic phenotype of these liver cells. With age there are multiple changes to each cell type impairing the VEGF, NO and HGF dynamic. Hepatocytes
demonstrate increased polyploidy and DNA damage, accumulation of lipofuscin, reduced mitochondrial oxidative capacity, increased oxidative stress and reactive oxygen species
(ROS) and senescent cell accumulation with senescence associated secretory phenotype (SASP) (Section 2). SASP promotes recruitment of inflammatory cells. LSECs have reduced
fenestrations, impaired angiocrine factor release and cellular autophagy as well as increased cell adhesion marker expression (Section 3). HSCs demonstrate phenotypical changes such
as increased lipid loading, collagen and lamina production leading to basal membrane (BM) deposition, impaired vitamin A metabolism, promoting low-grade inflammation
(Section 4). KCs accumulate within the liver with age and adhere to the adhesion markers expressed on LSECs. KCs contribute to the low-grade inflammation of the liver and drive
interleukin 6 (IL-6) release but demonstrate impaired phagocytosis (Section 5). Abbreviations: a: activated; dx: dysfunction; q: quiescent.
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interventions such as caloric restriction (CR) and protein restriction on
aging and age-related disease. On the other hand, dysregulation of he-
patic energy metabolism contributes to common age-related conditions
such as insulin resistance, diabetes mellitus and non-alcoholic fatty liver
disease (NAFLD) [4,5].

The Hallmarks of Aging impact directly on all the different types of
liver cells: hepatocytes, liver sinusoidal endothelial cells (LSECs), he-
patic stellate cells (HSCs) and Kiipffer cells (KCs). Most research on
aging in the liver has focused on hepatocytes and there is substantial lit-
erature on the Hallmarks of Aging and these cells. Moreover, many stud-
ies of the aging liver have used liver tissue which is primarily
hepatocytes. For the other three liver cell types, there is much less
known about the effects of aging at the cellular level. Here, the effects
of aging all liver cell types are reviewed, then integrated in a unified
model at the organ level.

2. Hepatocytes

Hepatocytes are the parenchymal cells of the liver responsible for
the majority of hepatic functions. Hepatocytes synthesize albumin, fi-
brinogen, and lipoproteins; regulate fatty acid and carbohydrate metab-
olism; synthesize cholesterol and bile salts; and contribute to drug and
xenobiotic metabolism. These processes are regulated by targeted gene
transcription, endoplasmic reticular protein synthesis, mitochondrial
respiratory processes and autophagy [3,6-8]. Hepatocytes also control
liver growth and repair via release of growth factors, particularly vascu-
lar endothelial growth factor (VEGF) (Fig. 1) [7].

With aging, there is evidence of genomic instability in hepato-
cytes. The number of hepatocytes decreases, associated with re-
duced rates of DNA synthesis and repair in addition to increased
numbers of polyploid hepatocytes [9]. Oxidative stress leads to ac-
cumulation of products of lipid peroxidation and elevated nuclear
DNA lesions such as 8-oxo-deoxyguanine [10]. There is dysregula-
tion of senescence-associated signaling pathways such as p16, p21
and p53 [11]. In old mice, larger nuclei with high density DNA in-
dicate an increase in the packing levels of condensed chromatins
as suggested by increased extended chromatin fibres [12]. There
is decreased expression of sirtuin 1 (SIRT1) and peroxisome
proliferator-activated receptor gamma coactivator 1-a (PGC-1a),
and lower concentrations of nicotinamide adenine dinucleotide
(NAD™) which lead to dysregulation of glycolysis, triglyceride syn-
thesis, and lipid metabolism [13]. Sirtuin 6 expression also de-
creases and is associated with accumulation of DNA damage [13].

In a recent study it was shown that a subset of hepatocytes express
high levels of telomerase [14]. This subset was further observed to pro-
mote repopulation of hepatocytes during normal homeostasis and fol-
lowing liver injury. Comparison between subtypes of hepatocytes
using RNA sequencing demonstrated that metabolic activity is re-
pressed and there is an acceleration of regenerative activity in hepato-
cytes with high telomerase expression.

Telomere shortening correlates with hepatocyte cell senescence and
with the degree of hepatic cirrhosis and fibrosis. The extent to which
telomere shortening contributes to senescent hepatocytes is debated
[15,16] because hepatocytes are relatively resistant to replicative aging
and the effects of telomere attrition [17]. Aging in hepatocytes is associ-
ated with various markers of cellular senescence such as increased het-
erochromatin protein 13, elevated senescence-associated-p-
galactosidase activity, p21, p16 and 'y-H2AX [18]. Senescence may also
be promoted by pathways independent of telomere shortening such
as genomic damage, mitogens and other proliferation signals [19]. p53
is critical in cellular senescence in normal liver aging and models of
DNA damage [20], and regulation of p53 is dependent on nutrient sens-
ing pathways in NAFLD [21].

In hepatocytes age-associated DNA hyper-methylation has been re-
ported for 18S and 28S ribosomal RNA genes in mice [22]. Specifically,
negative correction between DNA methylation and hepatic glucokinase

expression was also shown in old rats, where eleven CpG sites had age-
related methylation in hepatic glucokinase promoter regions, this sug-
gesting age-dependent susceptibility to hepatic insulin resistance and
diabetes [23].

Impairment of metabolic pathways in the aging liver may be related
to hepatocyte senescence. Senescent hepatocytes have altered expres-
sion of the Glut2 and Glut4 [24] as well as other genes involved in he-
patic metabolism of glucose, lipids and proteins such as PI3K/Akt,
MAPK, Jak/S, NF-«B, TGF@, IGF1 and Ca/cAMP [25]. Aging hepatocytes
have reduced mitochondrial enzymes (mitochondrial nitric oxide syn-
thase, manganese superoxide dismutase, complexes [ and IV) [26] and
senescent hepatocytes release cytokines such as interleukin 6 (IL-6),
tumor necrosis factor 1-a (TNFa) and interleukin 8 (IL-8) that contrib-
ute to age-related inflammation (referred to as the senescence associ-
ated secretory phenotype) (Fig. 1) [19,27]. Senescent hepatocytes
have increased lipid droplet accumulation, decreased mitochondrial ox-
idizing capacity and increased production of reactive oxygen species
(ROS) [28]. Similar findings are found in steatotic livers [29] providing
an explanation for the increased incidence of NAFLD and non-
alcoholic steatohepatitis in older people.

There are numerous age-related changes in mitochondria in hepato-
cytes. These include decreased mitochondrial biogenesis and autopha-
gic degradation of mitochondria (mitophagy), dissociation of ATP
synthase and increased accumulation of ROS leading to mitochondria
DNA damage and impairment of respiratory chain complexes
[4,30-32]. Age-dependent structural changes in the cristae and inner
membrane of the mitochondria are observed, and mitochondria are
often enlarged (‘mega-mitochondria’) [30]. In hepatocytes from Ercc1-
deficient mice (a model of premature aging) abnormal mitochondrial
morphology linked to mitochondrial dysfunction was observed [33].
These cells had reduced oxygen consumption, impaired mitochondrial
membrane potential and proton leakage leading to elevated oxidative
stress [33].

Autophagy is a key target of aging in the liver. There are three types
of autophagy: macroautophagy, microautophagy and chaperone-
mediated autophagy [8]. Macroautophagy is the most important for
maintaining hepatic homeostasis [34]. The central role played by au-
tophagy is proteolysis and hydrolysis of lipid stores and glycogen
[8,35]. Homeostatic regulation of autophagy is dependent on energy
sensing (upregulated during fasting or starvation), the circadian liver
clock (cyclic patterns of cytochrome 1 upregulates gluconeogenesis),
while high levels of ATP, insulin and free fatty acids downregulate au-
tophagy [35]. Autophagy is suppressed in old livers [36] with a signifi-
cant reduction in the number of hepatocytes that have autophagic
vesicles in old mice [37]. The rate of autophagy-mediated proteolysis
decreases with age [38], which possibly involves age-related impair-
ment to the lipid kinase phosphatigylinositol-3-OH-kinase and p70 S6
kinase pathways [39]. The reduction in autophagy is promoted by
changes in energy sensing pathways that occur with aging [40,41].
Age-associated decline in macroautophagy and chaperone-mediated
autophagy lead to elevated levels of oxidized proteins and lipid peroxi-
dation, protein misfolding and aggregation and in vivo elevation of ala-
nine transaminase [40]. Chaperone-mediated autophagy is also
impaired by aging that can lead to a gradual loss of proteostasis
[42,43]. Overall, inadequate removal of damaged proteins leads to
formation of protein aggregates such as lipofuscins, which are com-
monly observed in aged hepatocytes [44-46]. Subsequently, buildup
of lipofuscins can increase the production of ROS that further inhibits
autophagy [42,44].

Liver regeneration and repair is driven by a complex network of mi-
togenic growth factors, non-mitogenic cytokines, paracrine mediators
and transcription factors [47]. With aging, there is a reduction in liver
regeneration following partial hepatectomy [7]. No changes in VEGF ex-
pression are observed with age [48], however there is a reduced or ab-
sent activation of liver regeneration S-phase specific genes, DNA pol+,
c-Myc, Cdc2 and Foxo1B and these are thought to contribute to reduced
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and delayed DNA replication and signaling cascades which control pro-
liferation and repair of hepatocytes [7]. Age-associated oxidative stress
inhibits activation of progenitor liver cells, thus causing further deple-
tion of hepatocytes and liver mass [49].

3. Liver Endothelial Sinusoidal Cells

LSECs, the endothelial cells that line the hepatic sinusoids, have a
number of important physiological roles, including facilitating bidirec-
tional transfer of substrates between blood and hepatocytes, endocyto-
sis of circulating proteins, regulation of immunotolerance, and
maintaining sinusoidal microenvironment. With aging there are sub-
stantial changes in the structure and function of LSECs which impact
on hepatic function and systemic risk of cardiometabolic disease.
Given that old age is associated with changes in blood vessels in all
other tissues and is a key contributor to many organ-level diseases, it
is not surprising that aging influences LSECs [50].

LSECs have a unique morphology that minimizes barriers for the ex-
change of substrates. LSECs are very thin and the cytoplasm is perfo-
rated by numerous nano-pores called fenestrations. Fenestrations
have a diameter between 50 and 250 nm, and are mostly clustered
into groups of 10-100 or more, called ‘sieve plates’ that occupy about
5% of the cell surface area. Fenestrations are dynamic structures and
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may vary in size and number in response to metabolites, cytokines,
and oxygen concentration. In young animals, there is minimal basal
lamina and collagen in the extravascular space (‘space of Disse’) again
minimizing transport barriers. Pseudocapillarization is a term that has
been used to describe the morphological changes that occur in LSEC
with old age, which include: reduction in the number and size of fenes-
trations (Fig. 2a); thickening of the endothelium; deposition of basal
lamina and collagen; altered expression of antigens such as von
Willebrands factor, CD31 and collagen; and increased perisinusoidal
staining with Masson's Trichome and Sirius Red (Fig. 1). This has been
documented in several species including mice, rats, non-human pri-
mates and humans, and in mouse models of premature aging
(ERCC1~/~ mouse, Werner mouse) [29,45,51]. The loss of fenestrations
has particular importance for susceptibility to cardiometabolic disease.
Fenestrations are portals for the uptake of chylomicron remnants and
insulin, and loss of fenestrations secondary to aging (and acutely follow-
ing treatment with poloxamer 407) can lead to hyperlipidemia and he-
patic insulin resistance by impairing the uptake of lipoproteins and
insulin [52]. In addition, LSECs also play an essential role in the clearance
of circulating macromolecules including collagen degradation products,
hyaluronan and antibodies. With aging, this endocytotic activity, as
measured by the uptake of formaldehyde-treated serum albumin is
diminished [53].
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Fig. 2. Summary of changes that occur in the liver sinusoidal endothelial cell with aging. (a) loss of fenestrations and (b) pathways promoting ROS and cellular senescence in aging LSECs.
Abbreviations: AMPK: 5’ adenosine monophosphate-activated protein kinase; BM: bone marrow; cGMP: cyclic guanosine monophosphate; EPC: endothelial progenitor cell; HGF:
hepatocyte growth factor; ICAM-1: intercellular adhesion molecule 1; Id1: inhibitor of differentiation/DNA binding protein 1; IL-6: interleukin 6; NAD: nicotinamide adenine
dinucleotide; NO: nitric oxide; ROS: reactive oxygen species; SIRT1: sirtuin 1; VEGF: vascular endothelial growth factor; WF: von Willebrand factor.
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From the therapeutic perspective it has been proposed that reversal
or prevention of age-related loss of fenestrations might improve sys-
temic cardiometabolic health in old age. Fenestrations are regulated
by mechanisms that influence the actin cytoskeleton and lipid rafts
[54], and several agents that putatively act on this pathway were
found to increase fenestrations in LSECs isolated from old mice, includ-
ing 7-ketocholesterol, sildenafil, amlodipine, cytochalasin D, bosentan,
2.5-dimethoxy-4-iodoamphetamine and TNF-related apoptosis-
inducing ligand. In addition, two drugs that delay aging by regulating
the nutrient sensing pathways [55], nicotinamide mononucleotide and
metformin [55,56] were also found to increase fenestrations in LSECs
from old mice. This provides indirect evidence that aging is associated
with dysregulated nutrient sensing pathways (one of the Hallmarks of
Aging) in LSECs.

In LSECs, autophagy is important for cellular homeostasis. In mice
and rat models of fibrosis induction the loss of endothelial autophagy
reduces intrahepatic nitric oxide (NO) and impairs response to oxida-
tive stress in LSECs and surrounding cells [57]. The release of NO from
LSECs is critically importance for regulation of liver metabolism as it in-
fluences hepatic blood flow [58], glucose tolerance and fat content [59],
maintenance of HSC quiescence, suppression of pro-fibrotic pathways
[60] and prevention of stenosis [58].

With aging in LSEC (Fig. 2), there is a downregulation of the
vasodilatory pathways (NO bioavailability, endothelial NO synthase
protein expression, cyclic guanosine monophosphate, haem
oxygenase-1) [61] and several angiocrine receptors (stabilin-2, CD32b
and VEGF-R2). These changes are associated with increases in portal
pressure and vascular resistance leading to reduced hepatic blood
flow. There is also an increase intercellular adhesion molecule 1 expres-
sion in LSECs which leads to a substantial increase in leukocyte adhe-
sion, further contributing to reduced sinusoidal blood flow [62]. Aging
LSECs are in a moderate pro-inflammatory state as evidenced by in-
creased CD68 positive cells and elevated expression of IL-6 [61] and
there is upregulation of p16 and downregulation of SIRT1, which
might influence cellular senescence [61]. In addition, there is reduced
mRNA expression of Wnt2 and Hgf which are involved in regulation of
hepatocyte regeneration [61].

Although the Hallmarks of Aging have been studied in endothelial
cells more broadly [63], as yet there has not been any comprehensive in-
vestigation of these processes in LSECs specifically. Therefore, the effects
of aging on mitochondrial function, epigenetics, oxidative stress and
telomeres in LSECs remain largely unknown. Given the potential signif-
icance of the LSEC in maintaining cardiometabolic health and as a po-
tential therapeutic target, this remains an important focus for future
research.

4. Hepatic Stellate Cells

HSCs are pericytes located within the space of Disse that are in-
volved in vitamin A and lipid storage, regulate extracellular matrix me-
tabolism and possibly influence sinusoidal blood flow via contractile
properties. When activated, HSCs lose their characteristic fat-filled ves-
icles and produce collagen, and this is a key initiating process in the de-
velopment of hepatic fibrosis and cirrhosis. Therefore mechanisms
underlying HSC activation have been a major focus of research into
the pathogenesis of hepatic fibrosis [64], however there have only
been a few studies investigating the effects of aging on HSCs [61,65,66].

Electron microscopy revealed that old age is associated with a
marked increase in the number and size of lipid droplets in HSCs in
mice and non-human primates, which can become so large that they
protrude into the sinusoidal lumen and become visible by light micros-
copy as ‘signet ring cells’ [51,65]. There is an increase in the number of
HSCs and a proportional increase in the number of cells that stain posi-
tive for the markers of HSC activation, alpha-smooth muscle actin
(aSMA) and desmin.

It has been recently reported that in aging rats, there is increased ex-
pression of aSMA, collagen 11 and 12 and p-moesin [61]. These are
markers of HSC activation and collagen deposition. Increased desmin
protein expression and elevated HSC-related platelet derived growth
factor (PDGF) receptor-3 were also observed [61]. PDGF in the liver is
a critical mitogen to drive HSC proliferation and migration. PDGFR-f3 is
highly upregulated in activated HSCs [61]. In addition, this study in old
rats also reported elevated patatin-like phospholipase domain-
containing protein 3 and decreased cellular retinol-binding protein I ex-
pression in liver tissue consistent with changes in vitamin A metabo-
lism. Mitochondrial superoxide expression was not significantly
affected by aging [61]; however, in human liver tissue, telomere attri-
tion has been reported [67].

There is some uncertainty about whether HSCs are activated in old
age. On one hand, HSC activation in associated with loss of lipid drop-
lets, which is not consistent with aging HSCs. On the other hand, there
is altered expression of several proteins consistent with HSC activation
[61]. In liver diseases, these two processes usually occur in parallel. It
seems that in old age, there is dissociation between lipid droplet metab-
olism and HSC activation (Fig. 1).

5. Kiipffer Cells

KCs are resident liver macrophages located within the lumen of the
liver sinusoids. KCs produce soluble cell mediators such as TNFo and IL-
6 as part of the innate immune response to infections and phagocytose
macromolecules that are too large to be endocytosed by the LSECs. KC
activation is seen in most types of liver disease. Although there have
been many studies on aging and macrophages, there has not been
much research reported on the effects of aging on KCs in the liver
[61,67-70].

The effects of aging on macrophages include reduced phagocytosis
and autophagy and increased production of cytokines that contribute
to the inflammatory phenotype of old age (‘inflammaging’). One of
the first studies undertaken in rats showed that aging is associated
with increased numbers of KCs which were basally activated in accor-
dance of the ultrastructural morphology with reduced phagocytotic
activity measured by the hepatic uptake of microspheres [68]. In an-
other study, aging was associated with a redistribution of KCs into the
lymphoid collections that are frequently seen in old rodent livers [69].
Recruitment of KC may be mediated by increased secretion of MCP-1
by aging hepatocytes [71]; however, MCP-1 is not essential for KC acti-
vation [72]. In old rats, there was an increase in the RNA expression of
the inflammatory cytokine IL-6 in KCs which suggests that KCs might
be one source of elevated IL-6 that is characteristic of old age [61]. Addi-
tionally, activation of KCs contributes to the pro-inflammatory state of
the hepatic sinusoid. However there were no age-related changes in
the expression of other markers of KC including TNFa, Mrc1, Argl or
IL-10[61].

6. The Liver and the Hallmarks of Aging

Many studies have examined the effects of aging on liver tissue
rather than individual cell types. These studies primarily reflect changes
in hepatocytes and have often reported the effects of aging on genetic
and mitochondrial changes in the liver. Overall, age-related changes in
liver tissue are similar to other tissues with respect to the Hallmarks
of Aging. These are summarized below.

6.1. Genomic Instability

Genomic instability results from the accumulation of genetic dam-
age throughout life promoted by exogenous factors and via DNA repli-
cation errors, hydrolytic reactions, oxidative stress and changes in
gene transcription [10]. Mouse models of accelerated aging induced by
mutation of DNA repair have shown that the aging liver accumulates



1156 NJ. Hunt et al. / Computational and Structural Biotechnology Journal 17 (2019) 1151-1161

genomic rearrangements [73]. Aging mice livers have chromosomal
translocations and deletions of up to 66 megabases, possibly mediated
by ROS [10]. The aging liver has increased incidence of polyploid hepa-
tocytes with a reduced rate of DNA synthesis and repair [9]. As discussed
in Section 2 this likely contributes to cellular metabolic dysfunction
[10,74].

Genomic instability is thought to be a significant initiator of the
aging phenotype in the liver. The promotion of genomic instability is
further mediated by progressive DNA damage and epigenetic mutations
as discussed below. These mutations have been identified as a marker
that spans the progression between aging and diseased stages of the
liver, with greater mutations observed in old, diseased livers [10]. It is
aclear area of interest to identify pathways of genetic and epigenetic in-
stability to target in aging (targeting CR pathways [75]), age-related dis-
ease [76] and liver diseases [77].

6.2. Telomere Attrition

Most studies of aging and telomeres have focused on leukocyte telo-
mere length. However in a study of the effects of aging on mouse telo-
meres in different tissues it was found that telomeres in the liver
decreased in length up until 25 months of age, along with similar
changes in leukocytes, hippocampus, pituitary, retina, kidney, skeletal
muscle and skin [78]. One study in humans found that telomere length
in the liver was shortened in centenarians compared to newborns [79],
while there was a reduction in the percentage of longer telomeres in
livers of rats by 15 months of age [80].

6.3. Epigenetic Alterations

Dysregulation of the transcriptional networks and chromatin state
that underpin gene expression is a crucial factor in aging [81]. There is
a complex set of processes involved in regulating gene expression and
influenced by aging including DNA methylation, transcription factors,
histone marks, nucleosome positioning, and non-coding RNAs. Old age
in most tissues is associated with reduced heterochromatin, character-
ized by loss of histone marks and nucleosome occupancy. Overall,
there is hypomethylation of DNA within heterochromatin and hyper-
methylation of transcriptionally active regions [82,83].

In the liver, there are age-related changes in DNA methylation that
correlate with chronological age [84,85]. In a study of human livers,
aging was associated with a substantial change in DNA methylation at
least until the age of 60 years, consistent with Horvath and Raj [86]s'
epigenetic clock, a conserved pattern of age-related changes in DNA
methylation. This was associated with changes in gene expression that
included pathways involved with inflammation, metabolism and Wnt
signaling [87]. Interventions that delay aging such as CR and rapamycin
also influence epigenetic changes in the liver [88]. Specifically, CR acts
on lipid biosynthesis genes and rapamycin on genes coding for growth
factors and growth hormone receptors [89].

The aging mouse has many changes in the transcription network
[83,90], including importantly alterations in Forkhead box O (FOXO), a
key transcription factor implicated in aging [91]. FOXO influences NO
regulation, hyperinsulinemia [92] and activation of HSCs [93] through
its effects on downstream genes such as glucose 6-phosphatase, phos-
phoenolpyruvate carboxykinase, insulin-like growth factor-binding
protein 1, PGC-1a, pyruvate Dehydrogenase Kinase 4, and
hydroxymethylglutaryl-CoA synthase [94]. FOXO is regulated by
NAD™"/SIRT1, insulin like growth factor 1 (IGF-1), 5 adenosine
monophosphate-activated protein kinase (AMPK) and oxidative stress,
all of which are influenced by aging (Fig. 3) [95].

Nucleosome positioning is also critical for gene expression and most
DNA-related processes. There are age-related changes in nucleosome
occupancy in the mouse liver which contributes to metabolic dysfunc-
tion [96]. Nucleosome occupancy decreases with age as a result of

reduced activity of histone chaperones and reduced production of core
histone production and post-translational modifications [96].

As a consequence of these changes in regulation of transcription
there are age-related changes in the liver transcriptome. In the mouse
liver, these involve three main sets of interacting networks that include
genes involved with inflammation, proliferative homeostasis (between
cellular proliferation and death networks) and lipid metabolism (syn-
thesis and oxidation) [90].

There are also changes in the expression on non-coding RNAs. For
example, long-non coding RNAs including NEAT1, MEG3, Rian and Mirg
are differentially expressed in the aging mouse liver [90]. Aging also ef-
fects the expression of some microRNAs (miR). These include: miR-146
which influences mitochondrial function and inflammation [97]; miR-
146a, miR-376¢ and miR-411 which are associated with metabolic in-
flammation [98]; and miR-34a and miR-93 which target genes such as
Spl, nrf-2, SIRT1, Mgst1 and influence cellular senescence and oxidative
stress [99,100].

6.4. Loss of Proteostasis

Proteostasis is the synthesis, folding, trafficking and degradation of
proteins [42]. Loss of proteostasis contributes to the burden of misfolded
proteins (via endoplasmic reticulum stress [101]), oxidative stress and
cellular damage within the liver [102]. The drivers of age-related loss
of proteostasis loss are primarily epigenetic [103]. Defective autophagy,
a key component of the proteostasis network, is a conserved feature of
aging across tissues and organisms, and in the liver is secondary in
part to defects in intracellular trafficking of lysosomes and
autophagosomes [104]. In human livers, proteasome activity is well pre-
served with only subtle changes in proteasome subunit composition
[105].

6.5. Response to ER Stress

In response to stress stimuli, ER signaling is promoted by heat shock
proteins (HSPs). However, a marked decline of HSP70, HSP27 and
HSP90 induction is observed in senescent and hepatocytes from old
rats [106]. This decline in the availability and/or function of HSPs with
age can then lead to accumulation of damaged proteins and loss of
proteostasis. This damage can be further compounded by the decline
of autophagic degradation with aging [44,107].

Accumulation of HSPs promotes the unfolded protein response
(UPR), a highly conserved protective response that maintains cellular
homeostasis Age-related deactivation of the UPR in the endoplasmic re-
ticulum and mitochondria of hepatocytes is well documented, and has
been shown to cause accumulation of misfolded proteins and increase
in lipogenesis and lipotoxicity, amplification of ROS and inflammatory
stress signaling, leading to an overall predisposition to age-related
liver diseases such as steatosis and NAFLD [108]. Conversely, improve-
ment of age-related UPR signaling pathways has been shown to induce
activation of mitochondria leading to increased mitochondrial biogene-
sis and overall cell function [109].

6.6. Deregulated Nutrient Sensing

The nutrient sensing pathways mediate the effects of nutrition on
aging and have a pivotal role in regulating the rate of aging. The major
nutrient sensing pathways include the mammalian target of rapamycin
(mTOR), sirtuins, AMPK and insulin/insulin-like growth factor signaling
pathways [110,111]. The liver has the central role in regulating the sys-
temic response to nutrition, therefore age-related changes in the nutri-
ent sensing pathways in the liver may have substantial systemic effects.

Insulin and insulin like growth factor signaling pathways have an
important role in energy metabolism and growth. Reduced IIS, en-
hanced insulin sensitivity and reduced plasma IGF-1 are associated
with longevity, while the opposite are related to metabolic disorders
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that contribute to mortality [6,112]. The aging liver has reduced insulin
sensitivity and contributes to impaired insulin clearance, in part second-
ary to age-related changes in the liver sinusoidal endothelium [52].
Growth hormone and IGF-I levels decline during normal aging and pre-
mature aging models resulting in insulin resistance, glucose intolerance,
increased lipogenesis and lipid accumulation and fibrosis [113]. Meta-
bolic pathways that contribute to insulin resistance are glycolysis (pyru-
vate dehydrogenase), lipogenesis (free fatty acid) and the citric acid
cycle (TCA flux), which are impaired in the aging the liver and improved
with CR[6,114-116].

AMPK signaling in many tissues declines with age, which impairs
cellular homeostasis and mitochondrial function [117]. In the mouse
liver, aging is associated with increased AMPK phosphorylation and ac-
tivity. However, downstream pathways are not activated, and there is
an absence of any response to hypoxia, indicating overall impairment
of the AMPK pathway [118].

SIRT1 is a key orthologue of the class Il histone deacetylases that are
involved in the regulation of multiple transcription and protein targets
relevant for aging (p53, FOXO, PGC-1ax and NF-kB [119,120] influencing
glucose homeostasis and lipid metabolism [115,121], FOXO [122], au-
tophagy [123], inflammation [124], apoptosis [125], and cellular
[126]). SIRT1 activity is dependent on NAD* and has been shown to
be critical to the beneficial effects of CR on longevity [114]. As the liver
ages, SIRT1 is downregulated possibly secondary to repression by the

CCAAT/enhancer-binding-protein/histone deacetylasel complex [121].
Moreover, there are age-related reductions in liver NAD " which further
impairs SIRT1 function [61]. In a recent study, the liver was demon-
strated to have age-related transcriptomic decline in NAD* biosynthesis
pathways, NAD scavenger cycle regulation and a decline in protein acet-
ylation via changes in circadian regulated pathways [127]. This group
showed that interventions such as CR promote activation of NAD*/
SIRT1 pathways to reduce age-related hepatic acetyl-CoA metabolism.

mTOR regulates many processes implicated in aging including cell
growth, protein synthesis, autophagy and insulin metabolism. Inhibi-
tion of mTOR with rapamycin delays aging and increases lifespan
[128]. The effects of aging on mTOR activity in the liver is unclear with
studies showing no change [129], increased activity [130] or decreased
activity [131].

6.7. Mitochondrial Dysfunction

Many changes in mitochondria have been reported in the aging liver
including mitochondrial DNA mutations [132], oxidative stress, im-
paired oxidative phosphorylation and structural changes [26]. Such
changes reduce cellular bioenergetics and increase oxidative injury
but also drive cells towards cellular senescence [133].

Computation modeling of ROS levels in cell cultures has shown that
individual cells enter senescence at a time-invariant ROS level [133].
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Separately, Passos, Nelson [134] proved that a drive towards a cellular
senescence state involves ROS production from mitochondrial dysfunc-
tion. In relation to normal aging where ROS may be reduced and mito-
chondrial functionality maintained these models would agrees with
Niemann, Johne [132]. Overall this data demonstrates that ROS regula-
tions is highly important for mitochondrial dysfunction and for the tran-
sition towards cellular senescence with the drivers for the production of
excess ROS are dependent on the interactions between epigenetic, nu-
trient sensing, cellular stress and proteostasis pathways [135].

6.8. Cellular Senescence

Cellular senescence describes irreversible cell cycle arrest and is
thought to be predominantly driven by telomere attrition. It is associ-
ated with the secretion of inflammatory cytokines called the ‘senes-
cence associated secretory phenotype’. Cell senescence-associated
with telomere length shortening has been confirmed in livers of old
human donors [136]. In addition to telomere shortening, changes to
the nuclear size, DNA content, increased p21 [137,138], y-H2AX [139]
and P-galactosidase expression [140], formation of senescence-
associated heterochromatin foci [141], genetic mutations of the telome-
rase enzyme complex [142] have all been confirmed to be features of se-
nescence in human livers during normal aging and liver disease. In mice,
the presence of increased senescent cells has been shown by the posi-
tive identification of (i) cellular markers [143,144]; (ii) senescence asso-
ciated secretory phenotype [27], (iii) gene signatures of cellular
senescence [145] and transcriptome phenotype markers [90]. While
Cellular senescence has been implicated in age-related changes within
the liver [144], and while the field remains contentious with multiple
studies offering differing viewpoints White, Milholland [144],
Aravinthan and Alexander [146], Morsiani, Bacalini [147]. White,
Milholland [90] hepatocyte senescence and fat accumulation in aging
mice was dependent of dietary intake [28]. It is generally accepted
that hepatocytes and HSCs display a senescent phenotype with chrono-
logical age. The rate at which as cell can become senescent is thought to
be dependent on the interplay of genetics and environmental factors
such as toxin exposure, virus and of particular interest dietary influence
with a recent study showing that hepatocyte senescence and fat accu-
mulation in aging mice is dependent on dietary caloric and macronutri-
ent intake [28].

6.9. Stem Cell Exhaustion

The effects of aging on liver progenitor cells has not been widely
studied. Old age in mice was associated with reduced activation and
proliferation of in situ liver progenitor cells following injury, but normal
proliferative capacity of in vitro liver progenitor cells following isolation.
It was concluded that impaired stem cell responses in the aged liver are
secondary to inflammation rather than intrinsic deficits [49].

6.10. Altered Intercellular Communication

The function of the liver depends upon intercellular communication
between hepatocytes, HSCs, KCs and LSECs using a wide array of sub-
strates including cytokines such as TNFq, eicosanoids, NO, growth fac-
tors such as VEGF, extracellular matrix components and carbon
monoxide [148]. There have been few studies on how these intercellular
communications may change with aging in the liver. A recent study has
reported that aging is associated with diminished synthesis of vasodila-
tors and a proinflammatory state indicating dysregulation of the cells of
the hepatic sinusoid [61]. It should also be noted that LSEC, which lies at
the interface between blood and hepatocytes will have a pivotal role in
regulating the interaction between the liver and circulating cytokines
and growth factors, as well as the uptake of xenobiotics and endobiotics.

6.11. Aging Human Liver

The human liver demonstrates similar epigenetic, proteostasis, dys-
functional nutrient sensing, mitochondrial and senescent cell age re-
lated changes as to those observed in mice and rats. Recently the age-
related changes in the human liver have been reviewed within a more
clinical context [147]. Regarding associations between rodent models
and humans, similar patterns of DNA methylation, histone modifica-
tions, CpG methylation, telomere shortening, and cellular senescence
have been shown in aging human liver tissue [79,140,149,150]. DNA
methylation has been shown to correlate with chronological aging in
the human liver and accelerated methylation has been further linked
to BMI and obesity [150]. Age-related changes in mitochondria, oxida-
tive phosphorylation and electron transport genes have been demon-
strated in the human liver in addition to changes in the expression of
cell adhesion genes [150].

7. Summary and Outlook

The aging process in the liver is promoted by alterations in the ge-
nome and epigenome that contribute to dysregulation of mitochondrial
function and nutrient sensing pathways. This leads to cellular senes-
cence and low-grade inflammation facilitating multiple phenotypic
changes in all liver cells (hepatocytes, liver sinusoidal endothelial, he-
patic stellate and Kiipffer cells) as shown in Fig. 1. The interconnectome
between these pathways has been shown by the recent applications of
-omics studies to investigate age-related changes that occur in the
liver (Fig. 3). In 1985 one of the founding fathers of hepatology, Hans
Popper (Sem Liver Disease) made the prescient statement that “the ef-
fect of age on the liver and of the liver on aging is full of promise if avail-
able methodologies are rigorously applied”. Since that time there has
been a dramatic increase in technologies, particularly the various -
omics, that have profoundly influenced our understanding of the
aging liver. We can now start to integrate the effects of aging from its
initiating events in the genome and epigenome through to whole
organ changes.

Finally, of the cells of the liver, LSECs are a significant but under-
recognized risk factor for the development of age-related cardiometa-
bolic disease. We have highlighted that these cells are drastically
changed during aging (Section 3 and Fig. 2) but may also act as a thera-
peutic target for age-related cardiometabolic diseases [115].
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