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Abstract

Computational phenotyping is the process of converting heterogeneous electronic health records 

(EHRs) into meaningful clinical concepts. Unsupervised phenotyping methods have the potential 

to leverage a vast amount of labeled EHR data for phenotype discovery. However, existing 

unsupervised phenotyping methods do not incorporate current medical knowledge and cannot 

directly handle missing, or noisy data.

We propose Rubik, a constrained non-negative tensor factorization and completion method for 

phenotyping. Rubik incorporates 1) guidance constraints to align with existing medical 

knowledge, and 2) pairwise constraints for obtaining distinct, non-overlapping phenotypes. Rubik 

also has built-in tensor completion that can significantly alleviate the impact of noisy and missing 

data. We utilize the Alternating Direction Method of Multipliers (ADMM) framework to tensor 

factorization and completion, which can be easily scaled through parallel computing. We evaluate 

Rubik on two EHR datasets, one of which contains 647,118 records for 7,744 patients from an 

outpatient clinic, the other of which is a public dataset containing 1,018,614 CMS claims records 

for 472,645 patients. Our results show that Rubik can discover more meaningful and distinct 

phenotypes than the baselines. In particular, by using knowledge guidance constraints, Rubik can 

also discover sub-phenotypes for several major diseases. Rubik also runs around seven times faster 

than current state-of-the-art tensor methods. Finally, Rubik is scalable to large datasets containing 

millions of EHR records.
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1. INTRODUCTION

The widespread adoption of EHR systems in the United States and many other countries has 

resulted in a tsunami of EHR data, which is becoming an increasingly important source of 

detailed medical information. Successful phenotyping efforts on EHR data can enable many 

important applications, such as clinical predictive modeling [12, 27] and EHR-based 

genomic association studies [12, 17, 27]. Furthermore, medical professionals are 

accustomed to reasoning based on concise and meaningful phenotypes. Thus, it is imperative 

that robust phenotyping methods be developed and refined to keep up with the growing 

volume and heterogeneity of EHR data.

A typical phenotyping algorithm takes EHR data as input, and defines a group or several 

groups of patients, each of which is referred to as a phenotype. An example of a phenotype 

is shown in Table 1, which depicts a collection of diseases and associated medications that 

may co-occur in a patient1. In Table 1 and in all subsequent displays of phenotypes 

throughout the paper, the diagnoses and medications are shown by rank order of importance.

Most existing phenotyping methods are supervised approaches, which are either expert-

defined rule-based methods [16] or classification methods [8]. However, as labeled data are 

difficult to obtain, efficient unsupervised phenotyping approaches are needed to leverage the 

vast amount of unlabeled EHR data for discovering multiple interconnected phenotypes. The 

only such algorithm to our knowledge is based on sparse nonnegative tensor factorization 

[14, 15], which models interconnected data as tensors and discovers sparse nonnegative 

factors as phenotypes. However, there are still several formidable challenges in unsupervised 

phenotyping methods:

• Leverage of existing knowledge. Existing medical knowledge, such as a 

physician’s experience or a medical ontology, should be incorporated into the 

phenotyping algorithms in order to identify more meaningful phenotypes that 

align more closely with existing medical knowledge.

• Deriving distinct phenotypes. Existing unsupervised phenotyping methods, 

such as Marble [15], can lead to overlapping phenotypes which hinder their 

interpretation. Ideally, the resulting phenotypes should be distinct without much 

overlap.

• Missing and noisy data. EHR data often contain missing and noisy records. It is 

important to ensure that phenotyping algorithms remain robust against missing 

and noisy data.

• Scalability. Real world EHR data contains millions of records and spans 

multiple dimensions. It is important to develop innovative phenotyping methods 

that scale well with increases in data size.

Contributions: We propose Rubik, an unsupervised phenotyping method based on tensor 

factorization and completion, which addresses all the aforementioned challenges:

1Note that individuals that belong to a phenotype will often have some, but not all, of the diagnoses and medications listed in the 
phenotype definition.
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• We incorporate guidance constraints based upon medical knowledge in order to 

derive clinically meaningful phenotypes.

• We introduce pairwise constraints in the formulation to ensure distinct 

phenotypes.

• Our proposed algorithm embeds efficient tensor completion, thereby alleviating 

both missing and noisy information in EHR tensors.

• We design a scalable algorithm based on Alternating Direction Method of 

Multipliers (ADMM) for solving this problem, which significantly outperforms 

several baseline methods.

We evaluate Rubik on two large EHR datasets. Our results demonstrate that Rubik achieves 

at least a 60% reduction in the number of overlapping phenotypes compared to Marble as a 

baseline [15]. Rubik also increases the number of meaningful phenotypes by 50%. 

Furthermore, the phenotypes and the baseline characteristics derived from the real EHR data 

are consistent with existing studies on the population. Rubik is also much more 

computationally scalable compared to all baseline methods, with up to a 7-fold decrease in 

running time over the baselines.

Table 2 compares the properties between our model and other tensor methods.

Outline:

The remainder of the paper is organized as follows. We review preliminaries in Sec. 2. We 

present our framework in Sec. 3. Datasets and experimental evaluation are discussed in Sec. 

4. Related work is summarized in Sec. 5. Finally, we conclude by discussing future research 

directions.

2. PRELIMINARIES

This section describes the preliminaries of tensor factorization. Table 3 defines symbols 

commonly used in the paper.

DEFINITION 1. A rank-one Nth order tensor 𝒳 is the outer product of N vectors, a(1) ◦ a(2) ◦ · 

· · ◦ a(N), where each element 𝒳
i

= 𝒳 i1, i2, ⋯, iN = ai1
1 ai2

2 ⋯aiN
N .

DEFINITION 2. The Kronecker product of two matrices A ⊗ B of sizes IA × R and IB × R 
respectively, produces a matrix of size IAIB × R2

A ⊗ B =

a11B ⋯ a1RB
⋮ ⋱ ⋮

aIa1B ⋯ aIARB

DEFINITION 3. Khatri Rao product of two matrices A ⊙ B of sizes Ia × R and IB × R 

respectively, produces a matrix C of size IaIb × R such that C = [a1 ⊗ b1 · · · aR ⊗ bR].

Wang et al. Page 3

KDD. Author manuscript; available in PMC 2019 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DEFINITION 4. The mode-n matricization of 𝒳, denoted by X n ∈ ℝ
In × I1⋯In − 1In + 1IN  is 

the process of reordering the elements of a N -way array into a matrix.

DEFINITION 5. The CANDECOMP-PARAFAC (CP) approach approximates the original 

tensor χ as a sum of rank-one tensors and is expressed as

𝒳 ≈
r = 1

R
Ar

1 ∘ ⋯ ∘ Ar
N = 〚 A 1 ; ⋯; A N 〛

where Ar
n  corresponds to the rth column of A(n). We call A 1 , ⋯, A N  the factor matrices 

and use 〚 ⋅ 〛 for a short-hand notation of the sum of rank-one tensors.

3. RUBIK

We first formulate the problem and then provide a general overview of the formulation. 

Finally, we present an efficient optimization algorithm for solving the problem.

3.1 Formulation

We formulate our model as a constrained tensor optimization, where four constraints (one 

hard and three soft) are involved:

• Completion: This is the hard constraint. The unknown full tensor 𝒳 matches the 

observed elements in the partially observed tensor 𝒪.

• Guidance: A subset of columns in a factor matrix A(p) are close to the columns 

represented by prior knowledge A p .

• Pairwise constraints: The columns in a factor matrix A(k) should be close to 

orthogonal.

• Non-negativity: The factor matrices A(1), …, A(N) contain only nonnegative 

entries to enhance interpretability.

• Sparsity: We adjust the sparsity of each factor matrix A(n) by removing non-zero 

entries less than γn.

min
𝒳, 𝒯, 𝒞

Φ 𝒳, 𝒯, 𝒞 ,       s . t . 𝒫Ω 𝒳 = 𝒫Ω 𝒪
Completion

where,
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Φ = 𝒳 − 𝒞 − 𝒯 F
2

Factorization error
+

λa
2 A p − A p W

F

2

Guidance information

+
λq
2 Q − A k TA k

F
2

Pairwise constraint

𝒯 = 〚 A 1 ; ⋯; A N 〛 ∈ Ω𝒯
Interaction tensor

, 𝒞 = 〚 u 1 ; ⋯; u N 〛 ∈ Ω𝒞
Bias tensor

Ω𝒯 = ΩA1
× ⋯ × ΩAN

, ΩAN
= A ∈ 0 ∪ γn, + ∞

In × R

Sparse representation

Ω𝒞 = Ωu1
× ⋯ × ΩuN

, Ωun
= u ∈ 0, + ∞

In × 1

(1)

Next, we formally define all the necessary notations in Table 4.

In particular, the unknown full tensor 𝒳 is approximated by two terms, 1) a rank one bias 

tensor 𝒞 and 2) a rank-R interaction tensor 𝒯. The bias tensor 𝒞 captures the base-line 

characteristics of the entire tensor, which is a rank-one tensor with all positive vectors 

〚 u 1 , ⋯, u N 〛. The interaction tensor 𝒯 is a CP tensor model, with nonnegative 

constraints on all factor matrices. Let Q ∈ ℝ+
R × R denote the pairwise constraints for a 

specific factor matrix say A(k) with positive λq capturing the weights of this constraint. In 

our experiments, we set Q to be an identity matrix. The guidance knowledge is encoded as a 

vector where positive entries indicate relevant feature dimensions. For example, we can have 

a guidance vector corresponding to a hypertension diagnosis, where the hypertension-related 

entries are set to positive values (e.g., one), and the remaining entries are zero. Now, let us 

assume that we have R′ guidance vectors (R′ ≤ R). To ease subsequent derivation, we 

construct the guidance matrix A p  by adding zero columns to make A p  of the same size as 

the corresponding factor matrix A p ∈ ℝ+
I p × R

. Then, to ignore the effects of those zero 

columns, we multiply the difference between A(p) and A p  by a weight matrix

W= I 0
0 0

where I ∈ ℝR′ × R′ is the identity matrix.

Next, we explain the intuition behind the model.

3.2 Problem Overview

At a high-level, Rubik aims to simultaneously conduct the non-negative CP factorization and 

recover the non-negative low rank tensor 𝒳 from a partially observed tensor 𝒪. This idea is 
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captured through the Factorization error and Completion term in Eq. 1. Note that each 

A k ∈ ℝ+
Ik × R

 has an estimated rank of R. Hence the interaction tensor 𝒯 has rank up to R 

and the low rank property is enforced.

Bias tensor.—Rubik includes a rank-one bias tensor 𝒞 to capture the baseline 

characteristics common in the overall population, which is similar to Marble [15]. In 

phenotyping applications, it represents the common characteristics of the nth phenotype 

amongst the entire population (e.g., the value of the element in the diagnosis mode of the 

bias tensor corresponding to hypertension represents the overall possibility of any given 

patient having hypertension).

Guidance information.—In real world applications, we may know guidance information 

that can be encoded into the corresponding factor matrices. For example, we might have the 

knowledge that some phenotypes should be related to hypertension. Utilizing this guidance 

information can lead to more intuitive and understandable phenotypes. This constraint is 

captured through the Guidance information term in Eq. 1.

Pairwise constraints.—We hope to discover distinct phenotypes in order to obtain more 

concise and interpretable results. We can penalize the cases where phenotypes have 

overlapping dimensions (e.g., two common diagnoses between two phenotype candidates 

from the diagnosis mode). This constraint is captured through the Pairwise constraint term in 

Eq. 1.

3.3 Algorithm

Next we describe the detailed algorithm. The main idea is to decouple constraints using an 

Alternating Direction Method of Multipliers (ADMM) scheme [4]. For each mode, the 

algorithm first computes the factor matrix associated with the interaction tensor. Once the 

interaction factor matrix is computed, the bias vector is computed. The whole process is 

repeated until convergence occurs.

3.3.1 Convex Subproblem—Originally, the objective function Φ is non-convex with 

respect to A(k) due to the fourth order term in pairwise constraints Q − A k TA k
F
2

. By 

variable substitution A(k) = B(k) in Q − A k TA k
F
2

 from Eq. 1, we obtain the equivalent 

form of Φ

Ψ = 𝒳 − 𝒞 − 𝒯 F
2 +

λa
2 A p − A p W

F
2

+
λq
2 Q − B k TA k

F
2

Note that the objective function Ψ is now convex w.r.t. A(k).

Using a similar variable substitution technique, Eq. 1 is reformulated into the following 

equivalent form:
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min
𝒳, 𝒯, 𝒞, ℬ, 𝒱

Ψ

s . t . B k = A k , B k ∈ ΩAn, n = 1, ⋯, N

v n = u n ,   v n ∈ Ωun, n = 1, ⋯, N

𝒫Ω 𝒳 = 𝒫Ω 𝒪

(2)

where B = B 1 , ⋯, B N  and 𝒱 = v 1 , ⋯, v N  are the collections of auxiliary variables.

3.3.2 Solving Scheme—The partial augmented Lagrangian function for Ψ is:

ℒ = Ψ +
n = 1

N
p n , v n − u n + η

2 v n − u n
F
2

+
n = 1

N
Y n , B n − A n + μ

2 B n − A n
F
2

(3)

where 𝒴 = Y 1 , ⋯, Y N  and 𝒫 = p 1 , ⋯, p N  are the set of Lagrange multipliers. 

X, Y =
i j

Xi jY i j denotes the inner product of two matrices X and Y. {η, μ} are penalty 

parameters, which can be adjusted efficiently according to [21].

Here we solve Eq. 3 by successively minimizing the Lagrangian with respect to each 

variable in block coordinate descent procedures. Each iteration involves updating one 

variable, with the other variables fixed to their most recent values. The updating rules are as 

follows.

Update the interaction tensor.—Without loss of generality, we assume that the prior 

and pairwise guidance information are on the nth mode. One can easily modify λa; λq to 

zero if there is no guidance information on a particular mode. Set ℛ = 𝒳 − 𝒞, which is the 

residual tensor left over after subtracting the effects of the bias tensor in objective function 

Ψ. To compute At + 1
n , the smooth optimization problem is formulated as follows:

min
A n

A n Π n T − R n F
2

+
λq
2 Q − Bt

n TA n
F
2 +

λa
2 A n − A n W

F

2

+
μt
2 A n − Bt

n − Yt
n /μt F

2

(4)

where ∏(n) is defined as
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Π n = At
N ⊙ ⋯ ⊙ At

n + 1 ⊙ At + 1
n − 1 ⊙ ⋯ ⊙ At + 1

1

Next, setting the derivatives of Eq. 4 with respect to A(n) to zero yields the Sylvester 

equation:

At + 1
n X + YAt + 1

n = Z

X = 2 Π n T Π n + λaW + μtI
Y = λqBt

n Bt
n T

Z = 2R n Π n + λaA n + λqBt
n + μtBt

n + Yt
n

(5)

The Sylvester equation can be solved by several numerical approaches. Here we use the one 

implemented as dlyap function in MATLAB.

To solve for the auxiliary variable B(n), we obtain the following optimization problem.

min
B n ∈ ΩAn

Yt
n , At + 1

n − B n +
μt
2 B n − At + 1

n
F
2

(6)

The closed form update for B(n) is:

Bt + 1
n =

At + 1
n + 1

μt
Yt

n if γn ≤ At + 1
n + 1

μt
Yt

n

0 otherwise
(7)

Efficient computation of (∏(n))T∏(n). For two matrices M,N, we have the following 

property of the Khatri-Rao product [30]:

M ⊙ N T M ⊙ N = MTM ∗ NTN

As a result, we can efficiently compute (∏(n))T∏(n) as

Π n T Π n = Vt
N ∗ ⋯ ∗ Vt

n + 1 ∗ Vt + 1
n − 1 ∗ ⋯ ∗ Vt + 1

1

where V m = A m TA m ∈ ℝk × k for all m ≠ n.

Update the bias tensor.—At this point, we set ε to be the residual tensor left over after 

subtracting the effects of interaction tensor in objective function Φ. ℰ = 𝒳 − 𝒯. For each 

u(n), we solve the following problem,
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min
u n

u n Λ n T − E n F

2
+

ηt
2 u n − v n − p n /ηt F

2

where E(n) is the mode-n matricization of tensor ℰ. Λ(n) is defined as:

Λ n = ut
N ⊙ ⋯ ⊙ ut

n + 1 ⊙ ut + 1
n − 1 ⊙ ⋯ ⊙ ut + 1

1

The closed form solution for u(n) is

ut + 1
n 2E n Λ n + ηtv n + pt

n 2 Λ n T Λ n + ηtI
−1

(8)

The optimization problem for auxiliary variable v(n) is:

min
v n ≽ 0

= p n , u n − v n +
ηt
2 u n − v n

F
2

The closed form solution is

Algorithm   1   MINIMIZE Ψ
1:   Input:   𝒪, A, W, Q, λa, λq

      2:   Initialize   A0
n  randomly,   set   Y0

n = 0,   p0
n = 0,

          n ∈ 1, …, N , μ0 = 10−7, η0 = 10−7, μmax = 1015,

          ηmax = 1011,   ρ = 1.05 .

    3:   repeat
    4:      for   n = 1:N   do
  5:          Update At + 1

n  and Bt + 1
n  by Eq.5 and Eq.7

    6:          Update ut + 1
n  and vt + 1

n  by Eq.8 and Eq.9

    7:          Update Yt + 1
n  and pt + 1

n  by Eq.10 and Eq.11

8:      end   for
  9:      Update 𝒳t + 1 by Eq.12

10:      Update parameter μt + 1 by μt + 1 = min ρμt, μmax

11:      Update parameter ηt + 1 by ηt + 1 = min ρηt, ηmax

12:   until   max At + 1
n − Bt + 1

n
F

, n ∈ 1, ⋯, N ≤ ϵ

13:   return     𝒯, 𝒞

The closed form solution is
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vt + 1
n = max 0, ut + 1

n + 1
ηt

pt
n (9)

Update Lagrange multipliers.—We optimize the Lagrange multipliers using gradient 

ascent. Yt + 1
n , pt + 1

n  can be directly updated by

Yt + 1
n = Yt

n + μt Bt + 1
n − At + 1

n (10)

pt + 1
n = pt

n + ηt vt + 1
n − ut + 1

n (11)

Update the full tensor.: We now have the following optimization problem w.r.t. 𝒳:

min
𝒳

𝒳 − 𝒯t + 1 − 𝒞t + 1 F
2  s . t . , 𝒫Ω 𝒳 = 𝒫Ω 𝒪

The optimal solution is

𝒳t + 1 = 𝒫
Ωc 𝒯t + 1 + 𝒞t + 1 + 𝒫Ω 𝒪 (12)

where Ωc is the complement of Ω, i.e. the set of indexes of the unobserved entries.

Based on the above analysis, we develop the ADMM scheme for Rubik, as described in 

Algorithm 1.

3.4 Analysis and Discussion

Parallelization.—Our scheme follows the Gauss-Seidel type of updating rule. The Jacobi 

type updating rules can easily be implemented with slight modification. As a result, our 

algorithm can be parallelized and scaled to handle large datasets.

Flexible extension.—Rubik can be easily modified to incorporate other types of 

guidance, depending on the domain application. For instance, in the analysis of brain fMRI 

data [10], we might need to consider pairwise relationships between different factor 

matrices. This cross-mode regularization can also be easily incorporated in our framework.

Complexity analysis.—The time complexity is mainly consumed by computing ∏(n) and 

A(n) in Eq. 5, which is O R
i = 1

N

j ≠ n

N
I j + R

j = 1
N I j . Now, let us denote the size of the 

largest mode as D. Then Rubik has the complexity of O(DN). Although Rubik incorporates 

guidance information, the computational complexity remains the same as state-of-the-art 
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methods such as Marble [15], CP-APR [15] and WCP [1]. These competitors have similar 

time complexity, but they are much slower in practice due to their gradient based solving 

scheme and time consuming line search. By contrast, Rubik yields closed-form updates at 

each iteration.

4. EXPERIMENTS

4.1. Datasets

We evaluate Rubik with two EHR datasets, from Vanderbilt University and the Center for 

Medicare and Medicaid Services (CMS), each of which contains diagnosis and medication 

information and is roughly in the form of a tensor. Raw diagnosis data in both datasets are 

encoded following the International Classification of Diseases (ICD-9) classification system. 

To avoid an overly sparse concept space, similar diagnoses codes were grouped together 

according to the Phenome-wide Association Study (PheWAS) terminology [11] and 

medications were grouped by their corresponding classes using the RxNorm ontology3.

Vanderbilt.—We use a de-identified EHR dataset from Vanderbilt University Medical 

Center with 7,744 patients over 5 years of observation. We construct a 3rd order tensor with 

patient, diagnosis and medication modes of size 7,744 by 1,059 by 501, respectively. The 

tensor element 𝒳 i, j, k = 1 if patient i is prescribed with medication k for treating diagnosis 

j.4

CMS.—We used a subset of the publicly available CMS 2008–2010 Data Entrepreneurs’ 

Synthetic Public Use File (DE-SynPUF) dataset from the CMS [6]. For this dataset, the 

tensor element is based on all co-occurrences of prescription medication events and 

diagnoses from outpatient claims of the same patient happening on the same date, for years 

2008–2010. Specifically, we constructed a tensor representing 472,645 patients by 11,424 

diagnoses by 262,312 medication events.

The goal of our evaluation is four fold:

1. Phenotype discovery: Analyze how Rubik discovers meaningful and distinct 

phenotypes with different combinations of guidance.

2. Noise analysis: Evaluate Rubik’s performance with different scenarios of noisy 

and missing data.

3. Scalability: Assess the scalability of Rubik in comparison to the state-of-art 

methods for tensor factorization and completion.

4. Constraints analysis: Analyze the contribution of different constraints towards 

model performance.

In particular, the phenotype discovery and noise analysis are evaluated using the Vanderbilt 
data because it is real, while scalability is evaluated on both datasets. To tune hyper-

parameters λa and λq, we run experiments with different values and select the ones that give 

3http://www.nlm.nih.gov/research/umls/rxnorm/
4We assume a medication may be used to treat a specific diagnosis if both diagnosis and medication occurred within 1 week.
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most meaningful results. We compare Rubik with several baseline models as described 

below:

• Marble: This method applies sparse tensor factorization for computational 

phenotyping [15].

• TF-BPP: This is the block principle pivoting method [18] for non-negative CP 

tensor factorization.

• CP-APR: This method is designed for non-negative CP Possion factorization 

[9].

• WCP: This is a gradient based tensor completion approach [1].

• FaLRTC: This approach recovers a tensor by minimizing the nuclear norm of 

unfolding matrices [22].

4.2 Phenotype Discovery

Phenotype discovery is evaluated on multiple aspects, including: 1) qualitative validation of 

bias tensor and interaction tensors and 2) distinctness of resulting phenotypes. We choose 

Marble as the competitor, since it is the only other method that generate sparse phenotypes, 

which is clinically important.

4.2.1 Meaningful Bias Tensor—A major benefit of Rubik is that it captures the 

characteristics of the overall population. Note that the Centers for Disease Control and 

Prevention (CDC) estimates that 80% of older adults suffer from at least one chronic 

condition and 50% have two or more chronic conditions [7]. In our bias tensor, fice of the 

ten diagnoses are chronic conditions, which supports the CDC claim. In addition, the 

original data had a large percentage of patients with hypertension and related co-morbidities, 

such as chronic kidney disease, disorders of lipoid metabolism and diabetes. Most of the 

elements (for diagnosis and medication modes) in the bias tensor shown in Table 5 are also 

found among the most commonly occurring elements in the original data. Based on the 

above observations, we can see that the elements of the bias tensor factor are meaningful and 

that they accurately reflect the stereotypical type of patients in the Vanderbilt dataset.

4.2.2 Meaningful Interaction Tensor—Next, we evaluate whether the interaction 

tensor can capture meaningful phenotypes. To do so, we conducted a survey with three 

domain experts, who did not know which model they were evaluating or introduce the 

guidance. Each expert assessed 30 phenotypes (as in Table 1) from Rubik and 30 phenotypes 

from Marble. For Rubik, we introduced four phenotypes with partial diagnosis guidance. For 

each phenotype, the experts assigned one of three choices: 1) YES - clinically meaningful, 

2) POSS - possibly meaningful, 3) NOT - not meaningful.

We report the distribution of answers in Figure 1. The inter-rater agreement is 0.82, 

indicating a high agreement. Rubik performs significantly better than the baseline method. 

On average, the domain experts determined 65% (19.5 out of 30) of the Rubik phenotypes to 

be clinically meaningful, with another 32% of them to be possibly clinically meaningful. On 

the other hand, the clinicians determined only 31% of the baseline Marble derived 
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phenotypes to be clinically meaningful, and 51% of Marble derived phenotypes to be 

clinically meaningful. Only 3% of Rubik derived phenotypes were determined to be not 

meaningful, while 18% of Marble derived phenotypes were considered not meaningful. 

These results collectively suggest that Rubik may be capable of discovering meaningful 

phenotypes.

4.2.3 Discovering Subphenotypes—Here we demonstrate how novel combinations 

of guidance information and pairwise constraints can lead to the discovery of fine-grained 

subphenotypes. In this analysis, we add the diagnosis guidance to hypertension, type 1 
diabetes, type 2 diabetes and heart failure separately.

To gain an intuitive feel for how guidance works, let us use the guidance for hypertension as 

an example. We construct the guidance matrix A 2  as follows. Assume the index 

corresponding to hypertension to be n. Then, we set the nth entry of vector A1
2  and A2

2  to 

be one and all other entries equal to zero. The pairwise constraint will push A1
2  and A2

2  to 

be as orthogonal as possible (i.e., small cosine similarity). In other words, the resulting 

factors will share less common entries, and will thus be more distinct. In summary, by 

introducing multiple identical guidance factors (e.g., 2 hypertension vectors), the algorithm 

can derive different subphenotypes which fall into a broader phenotype described by the 

guidance factors.

Table 6 shows an example phenotype for hypertension patients that was discovered using 

Marble. While this phenotype may be clinically meaningful, it is possible to stratify the 

patients in this phenotype into more specific subgroups. Table 7 demonstrates the two 

subphenotypes discovered by Rubik with the hypertension guidance, which effectively 

include non-overlapping subsets of diseases and medications from the Marble derived 

phenotype.

In a similar fashion to the evaluation of the interaction tensor, we asked domain experts to 

evaluate the meaningfulness of subphenotypes. Rubik incorporated four guidance constraints 

(for four separate diseases), and generated two subphenotypes for each guidance constraint, 

resulting in eight possible subphenotypes. Domain experts were asked to evaluate whether or 

not each subphenotype was made sense as a subtype of the original constraint. The inter-

rater agreement is 0.81. On average, the clinicians identified 62.5% (5 out of 8) of all 

subphenotypes as clinically meaningful, and the remaining 37.5% of subphenotypes to be 

possibly clinically meaningful. None of the subphenotypes were identified as not clinically 

meaningful. These results suggest that Rubik can be effective for discovering subphenotypes 

given knowledge guided constraints on the disease mode.

4.2.4 More Distinct Phenotypes—One important objective of phenotyping is to 

discover distinct phenotypes. In this experiment, we show that adding pairwise constraints 

guidance reduces the overlap between phenotypes. We also fix λa = 0 and change the weight 

of pairwise constraint (λq) to evaluate the sensitivity of Rubik to this constraint.
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We first define cosine similarities between two vectors x and y as cos x, y = x, y
x y

. Then we 

use AvgOverlap to measure the degree of overlapping between all phenotype pairs. This is 

defined as the average of the cosine similarities between all phenotype pairs in the diagnosis 

mode. The formulation for AvgOverlap is as follows.

AvgOverlap = m = 1
R

n > m
R

cos Am
2 , An

2

R R − 1 /2

where Am
2  denotes the mth column of factor matrix A(2), which is the vector representation 

of the mth phenotype on the diagnosis mode.

Figure 2 shows the change of average cosine similarity as a function of λq. We can see that 

the average similarity tends to stabilize when λq is larger than 10. Figure 2 also compares 

Rubik with Marble, CP-APR and TF-BPP. Note that the three competitors do not incorporate 

pairwise constraints and clearly lead to significantly overlap in their phenotypes. As such, 

we can conclude that adding the pairwise constraints can effectively lead to more distinct 

phenotypes.

4.3 Noise Analysis

There are multiple sources of noise in real clinical applications. For example, part of the 

EHR data could be missing or simply incorrect. Alternatively, the clinical guidance could be 

noisy. To test Rubik against such conditions, we systematically evaluate different scenarios 

of noise. The results are summarized over 10 independent runs.

4.3.1 Robustness to Missing Data—The EHR data may have missing records. 

Consequentially, the observed binary tensor 𝒪 might contain missing values. To emulate the 

missing data, we flip the value of each non-zero cell 𝒪
i

 to zero with probability p.

Let 𝒯 = 〚 A 1 ; ⋯; A N 〛 be the solution without missing data and 

𝒯p = 〚 Ap 1 ; ⋯; Ap N 〛 be the solution with missing data level p on the input tensor 𝒪. 

We first pair 𝒯p with 𝒯 using a greedy algorithm. Then we define the average cosine 

similarities (AvgSim) between 𝒯 and 𝒯p as

AvgSim 𝒯, 𝒯p = n = 1
N

r = 1
R cos Ar

n , Ar
p n

NR (13)

Figure 3 shows the change in similarity measures with the change of missing-data level. It 

can be seen that Rubik performs well even if 30% of the data is missing, indicating its 

robustness. By contrast, the other baseline methods are not robust to missing data quantities 

as small as 10%.

Wang et al. Page 14

KDD. Author manuscript; available in PMC 2019 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3.2 Robustness to Noisy Data—In creating documentation in the EHR dataset, 

clinicians may introduce erroneous diagnosis and medication information. The implication 

of such errors is that the observed binary tensor 𝒪 will also contain noise. To emulate this 

setting, we randomly select zero value cells, such that the total number of selected cells is 

equal to the number of non-zero cells. Then, for each cell in this collection, we flip its value 

with probability p. The difference from introducing missing data is that we introduce 

multiple incorrect ones as noisy data while missing data case will remove multiple correct 

ones.

Figure 4 shows that Rubik performs well - even when the noise level is as high as 20% – 

30%. One intuitive explanation for such a high tolerance is that the model is dependent on 

the observed tensor, as well as various constraints. In summary, Rubik is resilient to noise. 

As such, Rubik will provide more generalizable phenotypes than its competitors.

4.3.3 Robustness to Incorrect Guidance—At times, guidance knowledge may be 

incorrectly documented (or the state of medical belief may be incorrect). Take hypertension 
for example, to simulate incorrect guidance on this diagnosis, we randomly pick K (we use 4 

in our experiments) entries from the corresponding column in the guidance matrix A 2  and 

set it to be one with probability p. Note K is small here for two reasons. First, in 

phenotyping applications we hope to achieve sparse solutions, which implies that the 

guidance should also be sparse. Second, medical experts do not typically have much 

guidance on a particular phenotype.

We then compare the cosine similarity between the phenotypes obtained by correct and 

incorrect guidance. Figure 5 demonstrates that as the level of incorrect guidance increases 

the cosine similarity slowly decreases. Therefore, even when a significant portion of the 

guidance is incorrect, the phenotype can remain fairly close to the original.

4.3.4 Parameter Tuning—Rubik computes the sparse factor representation using a set 

of predefined thresholds γn, which provide a tunable knob to adjust the sparsity of the 

candidate phenotypes. In our experiment, we numerically evaluate the sensitivity of the 

sparse solution with respect to different threshold values. To do so, we randomly 

downsample the tensor 𝒪 by 50% and run Rubik on this smaller tensor. The above procedure 

is averaged over 10 independent runs.

Figure 6 shows the distribution of the non-zero factor values along the three modes. For all 

three plots, there is a noticeable difference in size between the first two bins, which suggests 

the threshold occur at the start of the second bin. Thus, for the paper, we set γ = 0.00005, 

0.0001 and 0.01 for the patient, diagnosis and medication modes, respectively.

4.4 Scalability

We test the scalability of Rubik on both datasets. We randomly sample a different number of 

patients from the datasets and construct the tensors. The results are summarized over 10 

independent runs and the performance is measured in runtime (seconds).
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Figure 7 reports the runtime comparison of different tensor factorization methods on the V 
anderbilt dataset. We can clearly see the advantage of our framework over CP-APR. 

Specifically, the runtime is reduced by 70%. TF-BPP is comparable to Rubik on the V 
anderbilt dataset. For the CMS dataset, Rubik is around six times faster than the two 

baselines.

For the tensor completion task, Figure 7 shows that Rubik is nearly 5–7 times faster than 

WCP and FaLRTC. Figure 8 further demonstrates Rubik’s superiority over these methods. 

Note that FaLRTC and WCP will reach their maximum default number of iterations before 

the algorithm actually converges on the CMS dataset, so that more time is actually needed to 

complete the baselines.

4.5 Constraints Analysis

We investigate the sensitivity of Rubik with regard to three constraints: completion, 

guidance and pairwise constraints. We begin by running Rubik under baseline conditions 

without any constraints. Then, we iteratively add constraints independently and compute 

AvgSim (Eq. 13) between the solution obtained with that constraint and without that 

constraint. Then, we normalize all AvgSim scores and let them sum to one. The contribution 

of each constraint is measured by the normalized AvgSim score. Note that we did not 

incorporate guidance information into Rubik on the CMS dataset.

Figure 9 reports the proportion of each constraint’s contribution to the overall model. The 

bars labeled Basic represent the baseline performance of the model without any constraints 

imposed. The bars labeled Pairwise, Guidance and Completion represent the contributions of 

the corresponding constraints, respectively. We see that all of the constraints represent a 

significant contribution to the model’s overall performance. Amongst the constraints, the 

pairwise constraint provides the largest contribution to the performance.

5. RELATED WORK

Non-negative Tensor Factorization.

Kolda [19] provided a comprehensive overview of tensor factorization models [19]. It is 

desirable to impose a non-negativity constraint on tensor factorizations in order to facilitate 

easier interpretation when analyzing non-negative data. Existing non-negative matrix 

factorization algorithms can be extended to non-negative tensor factorization. Welling and 

Webber proposed multiplicative update algorithm [32]. Chi and Kolda [9] proposed 

nonnegative CP alternation Possion regression (CP-APR) model. Kim et al. [18] proposed an 

alternating non-negative least square method with a block pivoting technique.

Constrained Factorization.

Incorporating guidance in tensor factorization has drawn some attention over the past few 

years. Carroll et al. [5] used linear constraints. Davidson [10] proposed a framework to 

incorporate pattern constraints for network analysis of fMRI data. However, this method is 

domain specific and might not be applicable to other areas such as computational 

phenotyping. Narita [25] provided a framework to incorporate auxiliary information to 
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improve the quality of factorization. However, this work fails to incorporate nonnegativity as 

constraints to the factor matrix. Solving for non-negativity constraints usually requires a 

nontrivial calculation step.

Coupled Factorization.

In this case, we have additional data matrices that share the same dimension as the tensor. 

The goal is to jointly factorizing the tensor and matrices [13]. Acar et al. [2] used first order 

optimization techniques. There are also scalable algorithms on Hadoop [3, 26]. However, 

this framework does not directly cover all the constraints we need in our application.

Tensor Completion.

Liu et al. [22] and Signoretto [29] generalized matrix completion to the tensor case to 

recover a low-rank tensor. They defined the nuclear norm of a tensor as a convex 

combination of nuclear norms of its unfolding matrices. Tomioka and Suzuki [31] proposed 

a latent norm regularized approach. Liu et al. [23] substituted the nuclear norm of unfolding 

matrices by the nuclear norm of each factor matrix of its CP decomposition. A number of 

other alternatives have also been discussed in [20, 24, 28]. However, these methods suffer 

from high computational cost of SVDs at each iteration, preventing it from scaling to large 

scale problems.

Without minimizing the nuclear norm, Acar et al. [1] proposed to apply tensor factorization 

in missing data to achieve low rank tensor completion. However, none of these methods are 

guaranteed to output a non-negative factor matrix for each mode or non-negative tensor. As a 

consequence they are not applicable to our non-negative tensor setting. Incorporating non-

negativity as constraints to factor matrices, Xu et al. [33] proposed an alternating proximal 

gradient method for non-negative tensor completion. However, they did not take the 

guidance information into account and their gradient based method is not scalable to large 

datasets.

In summary, existing tensor factorization and completion methods are not applicable to 

computational phenotyping.

6. CONCLUSION

This paper presents Rubik, a novel knowledge-guided tensor factorization and completion 

framework to fit EHR data. The resulting phenotypes are concise, distinct, and interpretable. 

One distinguishing aspect of Rubik is that it is able to discover subphenotypes. Furthermore, 

Rubik captures the baseline characteristics of the overall population via an augmented bias 

tensor.

In the experiments, we demonstrate the effectiveness of adding the guidance on diagnosis. 

Rubik can also incorporate guidance from other sources such as medications and patients. 

We also demonstrate the scalability of Rubik on simulated EHRs in a dataset with millions 

of records. Rubik can potentially be used to rapidly characterize and manage a large number 

of diseases, thereby promising a novel solution that can benefit very large segments of the 
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population. Future work will focus on evaluating Rubik on larger datasets and conduct larger 

medical validations with experts.
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Figure 1: 
A comparison of the meaningfulness of the phenotypes discovered by Marble and Rubik.
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Figure 2: 
The average level of overlap in the phenotypes as a function of the pairwise constraint 

coefficient λq.
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Figure 3: 
An average similarity comparison of different methods as a function of the missing data 

level.
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Figure 4: 
An average similarity comparison of different methods as a function of the noise level.
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Figure 5: 
The similarity between the true solution and the solution under incorrect guidance as a 

function of the incorrect guidance level.
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Figure 6: 
The count of non-zero elements along the three modes as a function of the thresholding 

parameters.
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Figure 7: 
A runtime comparison of different methods on the V anderbilt dataset as a function of the 

number of patients.
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Figure 8: 
A runtime comparison of different methods on the CMS dataset as a function of the number 

of patients.
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Figure 9: 
Proportion of contribution of each constraint.
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Table 1:

An example of a phenotype that a group of patients may exhibit. The diagnoses and medications are shown in 

rank order of importance.

Diagnoses Medications

Hypertension Statins

Ischemic heart disease Angiotensin receptor blockers

Hyperlipidemia ACE inhibitors

Obesity Loop diuretics

Cardioselective beta blockers
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Table 3:

Common symbols used throughout the paper.

Symbol Description

⊙ Khatri-Rao product

◦ outer product

* element-wise product

N number of modes

R number of latent phenotypes

𝒳, 𝒪 tensor

A,B matrix

Ak kth column of A

u, v vector

i tensor element index (i1, i2,···, iN)

𝒳 i tensor element at index i

X(n) mode-n matricization of tensor 𝒳
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Table 4:

Notations for Rubik

Notation Definition

𝒳 ∈ ℝ+
I1 × ⋯ × IN unknown full tensor partially observed tensor the set of observed indices set all but elements in Ω to zero

𝒪 ∈ ℝ+
I1 × ⋯ × IN

Ω

𝒫Ω

𝒳 ≈ 𝒞 + 𝒯 𝒞: rank-one bias tensor

𝒯: rank-R interaction tensor2

A p ∈ ℝ+
I p × R guidance matrix on mode-p pairwise constraint matrix weight matrix for guidance constraints

Q ∈ ℝ+
R × R

W ∈ ℛR × R

2A rank-R tensor is defined as the sum of R rank-one tensor
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Table 5:

Elements of the diagnosis and medication modes in the bias tensor.

Diagnoses Medications

Hypertension Statins

Disorders of lipoid metabolism Loop diuretics

Heart failure Miscellaneous analgesics

Respiratory & chest symptoms Antihistamines

Chronic kidney disease Vitamins

Other and unspecified anemias Calcium channel blockers

Diabetes mellitus type 2 Beta blockers

Digestive symptoms Salicylates

Other diseases of lung ACE inhibitors
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Table 6:

An example of a Marble-derived phenotype.

Diagnoses Medications

Chronic kidney disease Central sympatholytics

Hypertension Angiotensin receptor blockers

Unspecified anemias ACE inhibitors

Fluid electrolyte imbalance Immunosuppressants

Type 2 diabetes mellitus Loop diuretics

Other kidney disorders Gabapentin

KDD. Author manuscript; available in PMC 2019 August 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 35

Table 7:

Examples of Rubik-derived subphenotypes. The two tables show separate subgroups of hyper-tension patients: 

A) metabolic syndrome, and B) secondary hypertension due to renovascular disease.

A. Metabolic syndrome phenotype

Diagnoses Medications

Hypertension Calcineurin inhibitors

Chronic kidney disease Insulin

Ischemic heart disease Immunosuppressants

Disorders of lipoid metabolism ACE inhibitors

Anemia of chronic disease Calcium channel blockers

Antibiotics

Statins

Calcium

Cox-2 inhibitors

B. Secondary hypertension phenotype

Diagnoses Medications

Secondary hypertension Class V antiarrhythmics

Fluid & electrolyte imbalance Salicylates

Unspecified anemias Antianginal agents

Hypertension ACE inhibitors

Calcium channel blockers

Immunosuppressants
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