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Background
Being born too small, such as low birth weight at term 
(LBWT)—defined as birth weight below 2500 g for full-term 
pregnancy—is considered an adverse birth outcome because it 
is associated with infant mortality, physical and cognitive dis-
abilities, and long-term health issues.1-3 However, this absolute 
parameter does not take into consideration gestational age. To 
account for variability in birth weight at different gestations, 
another parameter called small for gestational age (SGA) is 
used. Small for gestational age is defined as birth weight below 
the 10th centile weight, based on sex and weeks of gestation.4

In Canada, the average rate of SGA was reported to be 9.1% 
and low birth weight (LBW; all gestational ages < 2500 g) was 
6.4%, during 2015 to 2017,5 whereas in Alberta, the rate of SGA 
was 10.1% and LBW was 7.1%. Refer to supplemental Figure S1 
to see how these values have been increasing since before the 
beginning of our study. Disorders related to short gestation and 
LBW are the second leading cause of infant death in Canada.6 
Both these outcomes are associated with adverse consequences 

with higher rates of admission to neonatal intensive care units 
(NICUs), resulting in higher economic and social costs.2,7 
Newborns admitted to NICUs—and who are also SGA and/or 
LBWT (ie, 37 or more weeks gestation)—are considered criti-
cally ill (ci); ie, ciSGA and ciLBWT.

Maternal conditions (eg, preexisting and pregnancy-related 
health conditions, behavior, and nutrition) are important risk 
factors for SGA/LBWT,8-11 but they do not fully explain the 
occurrence. The role of environmental factors in causation of 
SGA/LBWT has been suspected; however, no firm conclusion/
attribution has been delineated in previous studies.12-15 To 
reveal patterns and associations between SGA/LBWT and the 
environment that may not be evident in traditional spatial epide-
miology, spatial statistics and geographic data mining in geo-
graphical information system (GIS) allow for spatial-temporal 
variation because interactions of the environment are not con-
stant.16 Geographical information systems are valuable for 
understanding patterns and the differences among births and 
SGA/LBWT because GIS provide various mapping techniques 
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for public health data.17-19 Using GIS to also analyze spatiotem-
poral patterns has the potential to identify priority areas for 
management and intervention, as has been established in other 
space-time pattern studies in health, crime, and conservation.20-23 
Kirby et al24 described common spatiotemporal clustering meth-
ods used to detect hot spots, which may be defined as “unusual 
concentrations of health events in space and time.”17 A natural 
application for spatiotemporal analysis are birth events,25 and 
one such study by Ozdenerol et al found various methods gener-
ated vastly differing, but somewhat complementary, results from 
the same individual data. Here, we apply the newer emerging hot 
spot analysis (EHSA), which has not previously been applied to 
any birth outcomes, including SGA/LBWT.

Thus, our objective was to examine how hot spot patterns—
in space and time—compare among pregnancies that resulted 
in SGA/LBWT and those that resulted in ciSGA/ciLBWT. In 
addition, and in an effort to further understanding of the expo-
some (ie, the measure of all the exposures of an individual in a 
lifetime and how those exposures relate to health), we aimed to 
understand where the patterns coincide with the surrounding 
environment, specifically land use and area-level socioeco-
nomic status (SES).

Methods
Study design and setting

We conducted our retrospective study between the years 2006 
and 2010 inclusive using Canadian Neonatal Network (CNN) 
and Alberta Perinatal Health Program (APHP) databases.

The CNN maintains a standardized NICU database that 
included all admissions to NICUs in 19 urban centers in 
Canada.26 The database has shown a very high internal consist-
ency and reliability.27 The APHP databases included all births, 
whereas the CNN database included critically ill births (which 
were also included in APHP database), which allowed us to 
compare patterns of all SGA/LBWT births with patterns of 
critically ill SGA/LBWT births. Due to the restriction of on-
site access to each database, these databases were not linked; 
however, the resulting space-time hot spot patterns can be 
compared between the 2 groups of neonates.

We defined the primary areas served by the CNN NICUs as 
census metropolitan areas (CMAs). A CMA is essentially 
urban core and surrounding municipalities integrated by com-
muting flows and having a minimum total population of 
100 000.28 According to census geography hierarchy, a CMA is 
composed of contiguous census subdivisions that may cross 
census division and provincial boundaries. Our study area 
involved the Calgary and Edmonton CMAs, shown in Figure 
1, and described in Table 1 in terms of size and population.

The APHP is an administrative clinical registry that collects 
and standardizes demographic information on all hospital births 
and out of hospital births (attended by registered midwives) for 
the province of Alberta.29 The provincial data were subset to the 
2 CMAs to compare with the CNN data. Calgary had 5 years 
(2006-2010) of CNN data, but Edmonton had 3 years because 
the participating hospital did not join the CNN until 2008.

Both CNN and APHP provided anonymized records of 
birth weight (grams), gestational age (completed weeks), sex, 
single/multiple, admission status (CNN only), pregnancy out-
come (APHP only), and the residential postal code. As depicted 
in Figure 2, we selected singletons at first admission (CNN) 
and live births (APHP) with valid postal codes. The large 
reduction of records in the CNN database was due primarily to 
our initial selection criteria of only including postal codes 
located inside each CMA.

Dependent variables

Outcomes of interest were LBWT, defined as birth weight 
below 2500 g at weeks 37 to 42, and SGA, defined as birth 
weight below the 10th centile for gestational age and sex 
according to Canadian reference values.4 Small for gestational 
age and LBWT were from the APHP database. The critically 
ill (ci)—ciSGA or ciLBWT—were classified as those SGA 
and LBWT neonates who were also admitted to the NICU 
and were from the CNN database.

Independent variables

To help understand the SGA/LBWT patterns, we examined 
their relationships with landscape-level variables relevant to 
birth outcomes. These included the surrounding land use and 
the area-level SES.

Figure 1. The study focused on the Calgary and Edmonton Census 

Metropolitan Areas (CMA), in the province of Alberta, Canada, served by 

hospitals with neonatal intensive care units participating in the Canadian 

Neonatal Network.
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Digital Mapping Technologies Inc. (DMTI) Spatial pro-
vided a land use classification for the urban areas across 
Canada.30 We grouped the 7 standardized patterns of con-
struction and activity that land was used for into 4 general 
categories: services (commercial, government/institution), 
open areas (open area, parks and recreation, waterbody), resi-
dential, and industry (resource and industry). Due to linkage 
with environmental pollutants, the primary category of 
interest was industry, defined as land occupied by establish-
ments engaged in the mechanical or chemical transforma-
tion of materials or substances into new products or land set 
aside for the extraction or production of renewable and non-
renewable resources. The land use categories are mapped for 

Calgary in Supplemental Figure S2A and Edmonton in 
Supplemental Figure S3A.

Chan et al31 provided a comprehensive index of Canadian 
SES that is suitable for research in health and environmental 
pollutants. The area-level SES index was developed from the 
2006 Census Canada by incorporating 22 variables on culture, 
potential existence of indoor environmental pollutants, envi-
ronmental injustice indicators, and deprivation variables in a 
principal components analysis for each dissemination area 
(DA). A DA was the smallest, relatively stable, geographic unit 
within which all census data were distributed and was com-
posed of contiguous dissemination blocks having a total popu-
lation of 400 to 700.28 We grouped the SES reported as quintile 
values into the following levels—low (1 and 2), medium (3 and 
4), and high (5)—to indicate relative SES for the DA. The SES 
levels are mapped for Calgary in Supplemental Figure S2B and 
Edmonton in Supplemental Figure S3B.

Geolocation

In a process called geolocation, we assigned the latitude and 
longitude coordinates to the CNN and APHP records by join-
ing the 6-character postal codes to DMTI Spatial’s Platinum 
Postal Code Suite database.32 This database consists of popula-
tion-weighted centroids of the postal code delivery unit. To 
ensure static locations throughout the study period, we uniquely 
selected postal codes from 2001 through 2013 (the time span 
was necessary due to addition of new postal codes and retire-
ment of old ones).

Figure 3 shows the analytical steps that are described in the 
sections below. We used Esri’s ArcGIS Desktop 10.633 and Pro 
2.034 software.

Spatial-temporal patterns

We analyzed the distributions and patterns of each SGA/
LBWT and all births—for both the CNN and APHP data—
in the context of both space and time using the ArcGIS space-
time pattern mining tools.35 For each CMA, we transformed 
the postal codes time-stamped by birthdate into multidimen-
sional data cubes, stored as network Common Data Form 
(netCDF) files, by (1) aggregating the points—spatially in 
1-km-high hexagon bins and temporally in 1-month time 
slices, (2) summing the binary values of SGA or LBWT, (3) 
filling empty bins with zeros, and (4) aligning to a reference 
time equal to the beginning of the study ( January 1, 2006 for 

Table 1. Census Metropolitan Area (CMA) characteristics from the 2011 Census for Canada.

CMA AREA (KM2) POPUlATION

TOTAl WOMEN: 15 TO 44 y INFANTS: 0 TO 4 y

Calgary 5108 1 214 839 272 320 80 855

Edmonton 9427 1 159 869 252 085 73 645

Figure 2. The birth locations from (A) Canadian Neonatal Network 

(CNN) and (B) Alberta Perinatal Health Program (APHP) data were 

subset to valid postal codes within the extent of Census Metropolitan 

Areas (CMAs): Calgary (2006-2010) and Edmonton (2008-2010). cilBWT 

indicates critically ill low birth weight at term; ciSGA, critically ill small for 

gestational age; lBWT, low birth weight at term; NICU, neonatal intensive 

care unit; SGA, small for gestational age.
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Calgary and January 1, 2008 for the Edmonton CMA). The 
Mann-Kendall statistic evaluated the trend in SGA/LBWT 
point counts for each data cube.

The hexagon was chosen because it is more natural in shape, 
better represents connectivity, and minimizes edge effects36; 

the 1-km size fit within typical city neighborhoods and helped 
protect individual privacy. The 1-month time-step interval fit 
within a trimester. Bins were filled with zeros because SGA 
and LBWT are considered rare events, counted in whole num-
bers, and therefore interpolation would not be appropriate. The 

Figure 3. Flow chart of GIS commands for analyzing small newborns in space and time. APHP indicates Alberta Perinatal Health Program; CNN, 

Canadian Neonatal Network; GIS, geographical information system; lBWT, low birth weight at term; netCDF, network Common Data Form; SES, 

socioeconomic status; SGA, small for gestational age.



Nielsen et al 5

reference time ensured all SGA/LBWT would have the same 
start date for comparison purposes. On average, 32 postal codes 
were aggregated into 1-km hexagons, with a mean size of 
0.866 km2 or 86.6 ha.

Emerging hot spot analysis analyzed each data cube by cal-
culating statistically significant hot and cold spot trends in 
SGA and LBWT using 2 statistics. The Getis-Ord Gi* statis-
tic assessed the location and degree of spatial clustering by cal-
culating the z score, P value, and hot spot bin classification. 
The Mann-Kendall statistic evaluated these measures to assess 
temporal trends and then categorized locations according to 
Supplemental Table S1. The interested reader may refer to 
Esri35 and Harris et al23 for fuller details on the spatiotemporal 
statistics and the standard categories resulting from EHSA.

To simulate city neighborhood sizes, we used a fixed dis-
tance of 2001 m (note: the additional 1 m ensured that com-
plete hexagons were included), which encompassed the current 
hexagon and 2 adjacent hexagons (2.5-3 km). To simulate a 
trimester, we used 2 time steps, which included the current 
month and previous 2 months (3 months). Hot spot maps were 
output to visualize the spatial-temporal significance of SGA, 
LBWT, and all births (from APHP only) in each CMA for the 
study period.

Neighborhood proportions

For both the independent variables, we reclassified the categor-
ical values (land use, n = 4; SES, n = 3) into separate binary sur-
faces, where “1” indicated presence and “0” indicated absence. 
Then, we applied a neighborhood moving-window analysis, 
called focal statistics. Calculating the mean statistic within a 
2500-m radius on the binary surfaces resulted in proportions. 
We assigned the proportions of land use and SES to the cen-
troids of the hexagons that resulted from the EHSA for each 
SGA/LBWT. The 2500-m neighborhood estimated the pro-
portions of each land use or SES class within the distance 
defined for the EHSA described above.

Statistical analyses

For each CMA, we spatially joined all hot/cold spots maps, cal-
culated Spearman correlation on the pattern categories ranked 
from coldest to hottest, and used the resulting statistics to deter-
mine the association of (1) SGA/LBWT with all births or (2) 
critically ill cases with all SGA/LBWT of the same type. The 
categories were also correlated with the land use and SES pro-
portions to help determine any relationships with SGA/LBWT.

To explore the relationship of each SGA/LBWT hot spots 
and surrounding proportions of land use and SES, we used 
logistic regression. Binary variables were coded as “1” for all hot 
spot categories and as “0” for non–hot spot categories. Because 
the land use and SES categories were each mutually exclusive 
proportions, we specified residential and high SES as the refer-
ence categories to test our hypothesis that the target categories 

of industry and low SES have the highest associations with 
SGA/LBWT hot spot patterns, if no collinearity exists. To 
account for areas having more births, we included the covariate 
sum of births (from APHP data) in each hexagon bin over the 
entire study period. We used STATA 12 statistical software.37 
Because we were interested only in the significance of the effect 
of 1 independent variable (X) on the response (Y), and the data 
were not appropriate for implying risk, only the coefficients 
were calculated (ie, logarithm of the odds ratios), along with 
the 95% confidence intervals (CIs) and P values. We used the 
magnitude of the coefficient, whether the CIs were on the 
same side of 0 as the coefficient, and P values < .05 to identify 
the stronger associations.

Results
Characteristics of the study population

The 2 CMAs varied in the raw counts of all births, all small 
newborns (SGA or LBWT), and critically ill small newborns. 
As shown in Table 2, Calgary had 77 711 total births over 
5 years; there were 7907 (10.2%) SGA, 505 (0.7%) ciSGA, 
1462 (1.9%) LBWT, and 126 (0.2%) ciLBWT. For Edmonton’s 
43 548 births over 3 years, there were 3817 (8.8%) SGA, 163 
(0.4%) ciSGA, 679 (1.6%) LBWT, and 40 (0.1%) ciLBWT.

Space-time cube trends

When the space-time cubes were created, information on the 
overall data trend was reported. The nonparametric Mann-
Kendall statistic, an aspatial time-series analysis, indicated 
whether the events increased or decreased over time by evaluat-
ing count values for the locations in each 3-month time-step 
interval for our study. Table 3 contains the trend statistics, 
which showed increasing trends for every SGA/LBWT and 
births, in both CMAs. The Mann-Kendall statistics ranged 
from 1.86 to 4.89 (P values: <.01-.06) in Calgary and 2.56 to 
6.72 (P values: <.01-.01) in Edmonton; both were positive and 
much higher than the expected zero value if there was no trend.

Emerging hot spot patterns

The space-time analyses occurred within a 3-dimensional 
model, but the results were multiple categories, explained in 
Supplemental Table S1, and are only suitable for representation 
in 2-dimensional maps. Table 3 identifies the patterns that 
resulted from the EHSA for each SGA/LBWT in the CMAs. 
Because the areal and temporal extents differed in each study 
area, the proportions of each category are shown. The EHSA 
pattern categories are defined in Supplemental Table S1 within 
the context of Calgary’s 60-month and Edmonton’s 36-month 
time series. Calgary had more variability in hot/cold spots with 
2 to 12 categories; Edmonton had 2 to 5 categories. The largest 
proportions of both CMAs had no patterns. Small amounts of 
new hot spots were present for SGA/LBWT and ciSGA, but 
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Table 2. Census Metropolitan Area (CMA) number of records from the Alberta Perinatal Health Program (APHP) and Canadian Neonatal Network 
(CNN) databases for only the records having valid 6-character postal codes.

CMA yEARS APHP CNN

BIRTHS SGA lBWT NICU ADMISSIONS CISGA CIlBWT

Calgary 2006-2010 77 711 7907 1462 2908 505 126

Edmonton 2008-2010 43 548 3817 679 1242 163 40

Both CMAs 121 259 11 724 2141 4150 668 166

Abbreviations: cilBWT, critically ill low birth weight at term; ciSGA, critically ill small for gestational age; lBWT, low birth weight at term; NICU, neonatal intensive care 
unit; SGA, small for gestational age.
Edmonton did not report all admissions >33 weeks gestation.

Table 3. Space-time cubes and emerging hot spot analyses exhibiting increasing trends across Alberta Perinatal Health Program (APHP) all births, 
small for gestational age (SGA), low birth weight at term (lBWT) and Canadian Neonatal Network (CNN) critically ill (ci) SGA and lBWT.

CAlGARy EDMONTON

 APHP = 865 lOCATIONS CNN = 568 lOCATIONS APHP = 1032 lOCATIONS CNN = 442 lOCATIONS

 BIRTHS SGA lBWT CISGA CIlBWT BIRTHS SGA lBWT CISGA CIlBWT

Trend ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Mann-Kendall 
statistic

4.89 3.07 1.86 3.65 2.22 6.72 6.66 5.72 3.71 2.56

P value <.01 <.01 .06 <.01 .03 <.01 <.01 <.01 <.01 .01

Sparseness  
(% non-zero)

52.75 12.8 2.70 1.46 0.36 27.57 5.38 1.07 0.56 0.14

No pattern 0.508 0.874 0.939 0.979 0.944 0.421 0.684 0.898 0.937 0.939

Hot spots

 New − 0.001 0.010 0.002 0.018 − 0.008 0.004 0.014 −

 Consecutive 0.003 − − 0.004 0.018 0.002 0.045 0.002 0.011 0.009

 Intensifying 0.112 0.015 − − − − − − − −

 Persistent 0.045 0.020 − − − − − − − −

 Diminishing 0.013 0.003 − − − − − − − −

 Sporadic 0.082 0.084 0.051 0.016 0.021 0.009 0.264 0.096 0.038 0.052

 Oscillating 0.006 − − − − 0.513 − − − −

 Historical 0.001 0.001 − − − − − − − −

Cold spots

 New 0.001 − − − − − − − − −

 Consecutive − − − − − − − − − −

 Intensifying 0.043 − − − − − − − − −

 Persistent 0.090 − − − − − − − − −

 Diminishing 0.014 − − − − 0.016 − − − −

 Sporadic 0.082 − − − − 0.040 − − − −

 Oscillating − − − − − − − − − −

 Historical − − − − − − − − − −

Hot/cold trends 0.492 0.126 0.061 0.021 0.056 0.579 0.316 0.102 0.063 0.061

Category count 12 6 2 3 3 5 3 3 3 2

Proportion of each hot/cold spot category is shown; pattern categories are defined in Supplemental Table S1.
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none for Edmonton’s ciLBWT. Consecutive hot spots occurred 
in all SGA/LBWT for Edmonton, but only for ciSGA/ciL-
BWT and all births in Calgary. Intensifying, persistent, and 
diminishing hot spots occurred in Calgary for all births and 
SGA. Sporadic hot spots were present in all births and every 
SGA/LBWT, with the highest proportion in Edmonton’s 
SGA. Oscillating hot spots had the highest proportion in 
Edmonton but occurred in both CMAs for all births. Cold 
spots occurred in both CMAs (Calgary had 6 cold categories; 
Edmonton had 2), but only for all births. Overall, the propor-
tions of each pattern indicated that sporadic and consecutive 
hot spots dominated the trends, and births in both CMAs also 
exhibited cold spots.

Pattern comparisons among SGA/LBWT

In Edmonton, there were oscillating hot spots for all births 
covering most of the core CMA (Figure 4). Figure 5A shows 
distinct areas of SGA occurred in a large band from the north-
east through central to west, across the south, and in outlying 
communities. Much smaller areas were seen for ciSGA: north-
central, west, and southeast (Figure 5B). Figure 6A shows hot 
spots for LBWT in the north-northwest, north-central, south-
east, west of central, west, and south. Three distinct areas were 
seen for ciLBWT: northwest, south-southeast, and an outlying 
community (Figure 6B).

Refer to the supplemental material to see the hot spot pat-
terns in Calgary (Supplemental Figures S4-S8). Enlargements 
of Figures 4 through 6 of the Edmonton CMA are also available 
in the supplemental material (Supplemental Figures S9-S13).

Table 4 reports the Spearman correlations among all births, 
SGA/LBWT, and ciSGA/ciLBWT. For both CMAs, the 
associations ranged from ρ 0.09 to 0.48, P < .05, with the high-
est between all births-SGA. The correlations decreased from 

SGA/LBWT to ciSGA/ciLBWT (P < .05): in Edmonton, all 
births-SGA was ρ = 0.48, SGA-ciSGA was ρ = 0.18, all births-
LBWT was ρ = 0.18, and LBWT-ciLBWT was ρ = 0.13; simi-
lar correlations were seen in Calgary.

Associations of space-time patterns with land use 
and SES

The direction and relative rho values of Spearman correlations 
gave insight to which land use and SES categories had any 
relationships with the SGA/LBWT space-time hot spot pat-
terns. As shown in Supplemental Table S2, all births and SGA 
were associated the most with land use and SES categories for 
ρ > |0.4.|

In Edmonton, SGA hot spots were positively associated 
with low SES (ρ = 0.43), residential land use (ρ = 0.44), and 
negatively with open areas (ρ = –0.40) but were also negatively 
associated with high SES (ρ = –0.41); no strong associations 
were seen for LBWT or either ciSGA/ciLBWT.

In Calgary, SGA hot spots were negatively associated with 
high SES (ρ = –0.42); no strong associations were seen for all 
births, LBWT, or either ciSGA/ciLBWT.

Supplemental Table S3 indicates the correlation between 
land use and area-level SES, suggesting the variables of interest 
were relatively less independent in the Edmonton CMA, but 
independent in the Calgary CMA. Open areas and services were 
noticeably negatively correlated (Edmonton ρ = –0.73; Calgary 
ρ = –0.66), and the same negative relationship was seen for open 
areas and residential (Edmonton ρ = –0.84; Calgary ρ = –0.85).

The logistic regression model coefficients are displayed in 
Table 5, where residential land use and high SES were the 
reference variables. According to the pseudo R2 values, the 
model fit ranged from 0.30 (ciSGA, Edmonton) to 0.45 
(SGA, Calgary and Edmonton), meaning 30% to 45% of the 

Figure 4. Emerging hot spots of all births in the Edmonton CMA. CMA indicates census metropolitan areas.
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SGA/LBWT hot spot variations were explained by area-level 
land use and SES.

In Edmonton (P < .05), SGA hot spots were surrounded by 
low SES (β = 3.4 [95% CI: 2.4, 4.4]) and medium SES (β = 3.3 
[95% CI: 2.4, 4.3]), LBWT hot spots were surrounded by low 
SES (β = 4.5 [95% CI: 3.2, 5.7]), ciSGA hot spots had slightly 
more open areas (β = 1.6 [95% CI: 0.5, 2.7]), and ciLBWT hot 
spots had more industry (β = 2.3 [95% CI: 0.4, 4.2]) and open 
areas (β = 1.6 [95% CI: 0.5, 2.8]). Due to high correlation of 
most land use variables with low SES (Supplemental Table S2), 
we calculated the variance inflation factors (VIFs: Supplemental 
Table S4). According to the VIF <10 threshold indicated by 
Chatterjee and Hadi,38 our VIFs ⩽4.19 suggest that collinear-
ity among SES and land use was not problematic. In 
Supplemental Table S5, we show the β coefficients from 

logistic regression analyses of only SES in Edmonton and only 
SES and industrial land use in Calgary adjusted by total births. 
When land cover variables were removed from the model and 
only SES remained, the coefficients for SES were relatively sta-
ble (Supplemental Table S5). This illustrates that inferences on 
SES were robust regardless of inclusion of land use variables.

In Calgary, the associations were the same as seen in 
Edmonton with the exception that the ciSGA hot spots were 
not significantly different from the reference.

Discussion
Hot spots for ciSGA and ciLBWT occurred in different loca-
tions than all SGA/LBWT, but hot spots of both SGA and 
LBWT logically occurred in the same locations as hot spots for 
all births. The differing locations were counterintuitive for the 

Figure 5. Emerging hot spots of (A) SGA and (B) critically ill SGA in the Edmonton CMA. CMA indicates census metropolitan areas; SGA, small for 

gestational age.
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critically ill hot spots, suggesting there may be neighborhood-
level environmental influences unevenly distributed across the 
cities or other unmeasured variables in play.

The increasing trends of SGA/LBWT in each CMA were 
supported by increasing trends of all births: SGA/LBWT hot 
spot space-time clusters were increasing because birth hot spots 
were increasing. However, the locations did not coincide across 
the study areas, and the relatively low correlation values (ie, ρ 
0.10 to <0.30)39 with the critically ill quantified this difference 
in hot spot patterns. If the critically ill hot spots were in the same 
locations as SGA/LBWT, then there may be homogeneous risk 
factors for both conditions at those locations. We suspect that 
different aspects of the exposome may be participating differ-
ently and more strongly for critically ill and SGA/LBWT in dif-
ferent locations for these multifactorial health conditions.

The regression coefficients supported that low SES and 
industrial land use had the highest associations, depending on 
the birth outcome. Although similar spatial associations with 
low SES have been reported before,40-42 the association with 
land use has received less attention. The low regression coeffi-
cients for the ciSGA/ciLBWT suggest that maternal factors 
and/or other environmental exposures, such as urban air pollut-
ants, may be additionally important for these types of cases.15,43,44 
Higher amounts of surrounding open spaces were associated 
with ciSGA and ciLBWT hot spots, implying that there may be 
less access to health services and supported by the negative cor-
relations of open spaces with services, as others have also sug-
gested.40,42 The opposite associations were seen between all and 
critically ill newborns: land use was not significant with all small 
newborns, and SES was not significant with the critically ill.

Figure 6. Emerging hot spots of (A) lBWT and (B) critically ill lBWT SGA in the Edmonton CMA. CMA indicates census metropolitan areas; lBWT, low 

birth weight at term; SGA, small for gestational age.
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In Canada, there is a paucity of published studies on the 
spatial and temporal trends of SGA/LBWT, especially for the 
critically ill small newborns. Statistics Canada has reported 

that small newborns are increasing over time for our geograph-
ical areas of interest.5 Nielsen et al45 published on the spatial 
distribution of SGA and LBWT for the entire province but 

Table 4. Spearman correlation (ρ) statistics comparing emerging hot spot patterns for all births, SGA/lBWT, and critically ill (ci) SGA/lBWT by 
Census Metropolitan Area (CMA).

SPEARMAN ρ EDMONTON CAlGARy

BIRTHS SGA lBWT CISGA CIlBWT BIRTHS SGA lBWT CISGA CIlBWT

Births 1 1  

SGA 0.48* 1 0.47* 1  

lBWT 0.18* 0.23* 1 0.31* 0.47* 1  

ciSGA 0.10* 0.20* 0.19* 1 0.09* −0.03 0.08 1  

cilBWT 0.12* −0.13* 0.13* 0.09 1 0.17* −0.01 0.15* 0.23* 1

Abbreviations: cilBWT, critically ill low birth weight at term; ciSGA, critically ill small for gestational age; lBWT, low birth weight at term; SGA, small for gestational age.
Significant ρ values (P < .05) are marked with an asterisk (*).

Table 5. logistic regression β coefficients (and 95% CI) for all SGA/lBWT and ciSGA/cilBWT modeled with proportions of surrounding land use 
categories and level of socioeconomic status (SES).

SGA lBWT CISGA CIlBWT

EDMONTON MODEl β COEFFICIENT (95% CI)

 Services −30.1 (−40.2, −20.1)* −34.9 (−47.3, −22.4)* −15.2 (−25.3, −5.1)* −13.5 (−23.8, −3.1)*

 Open areas −7.0 (−8.4, −5.5)* −4.2 (−5.9, −2.6)* 1.6 (0.5, 2.7)* 1.6 (0.5, 2.8)*

 Industry −5.7 (−7.5, −3.9)* −6.1 (−8.7, −3.6)* 1.1 (−0.7, 2.9) 2.3 (0.4, 4.2)*

 SES low 3.4 (2.4, 4.4)* 4.5 (3.2, 5.7)* 0.6 (−0.3, 1.6) 0.5 (−0.4, 1.5)

 SES medium 3.3 (2.4, 4.3)* 0.9 (−0.4, 2.2) −0.3 (−0.9, 0.4) −0.6 (−1.3, 0.1)

 Sum births 0.01 (0.01, 0.01)* −0.03 (−0.03, −0.02)* 0.00 (0.00, 0.01) −0.03 (−0.04, −0.03)*

 Intercept 1.2 (0.1, 2.2)* 0.88 (−0.13, 1.89) −0.7 (−2.3, 0.8) 1.0 (0.0, 2.0)

 lR χ2 579.5 494.2 203.6 537.2

 Pseudo R2 0.45 0.36 0.30 0.39

CAlGARy MODEl β COEFFICIENT (95% CI)

 Services 5.8 (−17.0, 28.6) 4.5 (−21.5, 30.6) −18.6 (−37.8, 0.7) −7.5 (−23.4, 8.5)

 Open areas −1.4 (−3.8, 1.0) −0.4 (−3.0, 2.1) 0.9 (−0.3, 2.2) 1.7 (0.6, 2.8)*

 Industry 2.3 (−0.2, 4.7) −3.5 (−7.5, 0.6) 0.8 (−1.3, 2.9) 3.4 (1.6, 5.2)*

 SES low 4.9 (3.7, 6.2)* 3.9 (2.5, 5.4)* 0.8 (−0.1, 1.8) 0.1 (−0.7, 0.9)

 SES medium 1.4 (−0.2, 3.0) 1.1 (−1.0, 3.2) 0.2 (−0.6, 1.0) −0.4 (−1.1, 0.3)

 Sum births 0.01 (0.01, 0.01)* −0.04 (−0.04, −0.03)* 0.01 (0.00, 0.01)* −0.02 (−0.02, −0.02)*

 Intercept −5.4 (−7.4, −3.4)* 0.5 (−0.7, 1.7) −5.1 (−7.3, −2.8)* −0.3 (−1.3, 0.7)

 lR χ2 294.5 503.1 129.3 368.2

 Pseudo R2 0.45 0.45 0.32 0.32

Abbreviations: cilBWT, critically ill low birth weight at term; ciSGA, critically ill small for gestational age; CI, confidence interval; lBWT, low birth weight at term; lR, 
likelihood ratio; SGA, small for gestational age.
Residential and high SES were the reference categories; lR χ2 significance is P < .001; significant coefficients (P < .05) are marked by an asterisk (*); number of 
locations are indicated in Table 3.
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comparisons cannot be made due to methodological differ-
ences. As for ciSGA/ciLBWT, there are no published temporal 
trends for each city participating in the CNN to compare to. 
The space-time patterns demonstrated here agree with the 
increasing national trend, but additionally pinpoint the loca-
tions of where there are hot spots of concern.

Although we had access to all records from the APHP and 
CNN databases, the postal code locations may not have been as 
accurate for the less urban areas in each CMA. Similarly, the 
SES index outside of urban areas did not have as accurate spa-
tial resolution because the DAs may be vast. Larger areas are 
encompassed by the postal delivery units and DAs in rural areas.

The CNN data collection methods differed between the 2 
CMAs, where Edmonton did not report critically ill newborns 
having gestational ages >33 weeks unless they were admitted 
to the surgical unit. Although the results appear to be similar to 
the Calgary CMA, the data reporting and year of participation 
difference mean direct comparisons cannot be made between 
the CMAs. This study was not hospital-specific, meaning that 
the analysis was based on the maternal residential postal code 
and may include a miniscule number of NICU admissions to 
hospitals not in the same CMA as the residences. This also 
meant that critically ill births from mothers living in the CMA 
may have been reported at another facility and therefore not 
captured in the CNN database.

Although the reporting of coefficients (log of odds ratios) 
from the logistic regression model may not be suitable for alter-
native objectives (eg, in epidemiology or planning policy), the 
beta coefficients were useful for investigating whether any asso-
ciations existed. We kept the statistical analyses to be as simple 
as possible due to data limitations. The collinearity observed 
between land use and low SES, especially in Edmonton, sug-
gests the participation of more complex variable interactions. 
More sophisticated calculations may be performed in the future 
to explore interactions with other environmental variables. For a 
more epidemiological approach, future research may use 
rates,25,46 if the heath databases are amenable.

The observational study design precluded any casual rela-
tionships, but instead identified differences on where hot spot 
patterns corresponded in space and time for birth outcomes in 
the 2 main cities of Alberta.

For this analysis, we prepared a static postal code file span-
ning beyond the minimum and maximum years of the study. 
This was necessary because growing communities received 
more postal delivery routes over time, so that later births were 
counted in the same spatial location as earlier births.

Instead of blindly assigning land use and SES values at the 
centroid, spatial inaccuracy was minimized by measuring the 
proportions of land use and SES categories surrounding the 
focal hot spot hexagons. The hexagon size was subject to the 
modifiable areal unit problem.47 Although the positioning of the 
hexagon grid may not be optimal for all areas of each CMA, the 
1-km dimension was found by experimentation to be appropri-
ate for urban neighborhood analysis. And as mentioned above, 

hexagons have less edge effects than squares and more closely 
match the circular neighborhood used in focal statistics.36

The user-friendly space-time cube tools allowed for rapid 
visualization and quantification of areas with statistically sig-
nificant increasing or decreasing trends of SGA/LBWT. The 
choice of spatial and temporal aggregation can be changed to 
address different research questions that may inform policy 
decisions on where to focus on monitoring or mitigating 
potential risk factors at the identified hot spots.

We were able to map the spatiotemporal trends of babies 
born too small, which had the end result of 2-dimensional 
maps for the entire time period. Then, we took the analysis to 
the next level by associating those patterns with the surround-
ing environment to discover potential processes.

Conclusions
The mapping of spatial-temporal hot spots indicated that 
ciSGA/ciLBWT admitted to NICUs occurred in different 
areas than all SGA/LBWT—not what would be expected, 
which was that the critically ill would occur randomly, but there 
were space-time hot spots indicating they were not and there 
was low correlation with hot spots for all. The dominant area-
level associations with all SGA and LBWT hot spot patterns 
were primarily higher proportions of surrounding low SES and 
industrial land use, directly answering our research objective to 
help understand why the patterns were different. Less has been 
known about the space-time distributions and environmental 
association of the critically ill. In this study, we identified that 
only surrounding land use was associated with ciLBWT. 
However, industrial land use or SES was not related to the 
ciSGA hot spots, suggesting that different mechanisms may be 
in place and indicating that further research is warranted on 
including environmental exposures (such as air pollution from 
traffic and industrial sources) and maternal factors in the hot 
spot analyses. Space-time cubes and emerging hot spot analyses 
promise to be useful for any public health investigation in space 
and time. This is the first known study examining spatial-tem-
poral hot spots of all and critically ill SGA/LBWT.
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