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ABSTRACT Yellow fever virus (YFV) is a human Flavivirus reemerging in parts of the
world. While a vaccine is available, large outbreaks have recently occurred in Brazil
and certain African countries. Development of an effective antiviral against YFV is
crucial, as there is no available effective drug against YFV. We have identified several
novel nucleoside analogs with potent antiviral activity against YFV with 50% effec-
tive concentration (EC50) values between 0.25 and 1 �M with selectivity indices over
100 in culture.
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Yellow fever virus (YFV) is the prototype virus of the genus Flavivirus from the
Flaviviridae family with a single-stranded, positive-sense RNA genome consisting of

approximately 11 kb that encode three structural and seven nonstructural proteins (1).
Yellow fever is endemic to tropical areas of Africa and South America and is primarily
transmitted between nonhuman primates by mosquitoes (mainly from two genera,
Haemagogus and Aedes). While YFV infection in most nonhuman primates is asymp-
tomatic (with the exception of some New World monkeys), severe clinical illness can
result in humans, with reported mortality rates of �20% in Africa and up to 60% in
South America (2).

Currently, there are no available antiviral drugs to combat YFV. An effective vaccine
against YFV was developed in 1937 (3), but it is not recommended for persons over the
age of 60. Despite the available vaccine, outbreaks continue to occur in areas where
large-scale vaccination efforts have not been successfully implemented. Furthermore,
according to the World Health Organization (http://www.who.int/csr/don/22-january
-2018-yellow-fever-brazil/en/), the possibility exists for a viremic traveler to spread YFV
from its current endemic range to new areas harboring significant Aedes aegypti
populations, such as India, Southeast Asia, and even some southern regions of the
United States. Recent outbreaks of YFV in both Brazil and Nigeria (between 2017 and
2018) resulting in a substantial number of deaths further illustrate the persistent threat
to humans and potential spreading of the virus if not carefully managed and contained
(http://www.who.int/csr/don/22-december-2017-yellow-fever-nigeria/en/). Because YFV
continues to be a significant public health threat, the development of antiviral thera-
pies to treat infected individuals remains highly pertinent.

In this study, we evaluated an in-house library of 21 synthesized nucleoside analogs
for their potential in vitro antiviral activity against YFV. Compounds 1 to 13 and 16 to
21 were prepared following published protocols (4–14) while compounds 14 and 15
were synthesized according to the chemistry protocols that are described in the
supplemental material. The focused library (Fig. 1) was evaluated for toxicity using
an MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium) method (15) (Table 1). Compound 16 (sofosbuvir, an FDA approved
hepatitis C virus [HCV] polymerase inhibitor) was used as our positive control with
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reported activity against YFV (16). Briefly, the cytotoxic concentration of drug required
to reduce cell viability by 50% (CC50) values were determined for each test compound
in the following two cell types: human rhabdomyosarcoma (RD) cell line and Huh-7
cells. Overall, 13 of the 21 compounds were found to have CC50 values of �50 �M in
both cell types. In addition, the maximum nontoxic concentrations (MNTCs) were also
determined for each compound.

Next, 21 compounds were selected for further evaluation to determine their anti-

FIG 1 Chemical structures of compounds 1 to 21.
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YFV activity. To avoid the potential of drug toxicity that would interfere with viral
cytopathic effect (CPE), compounds were evaluated at nontoxic concentrations. The
resultant inhibitory effect of each test compound was calculated as a percentage of
decrease in YFV CPE. In this case, the RD cell line was chosen for our antiviral evaluation,
as YFV exhibits significant and visible CPE in this cell line compared to that in Huh-7
cells. Briefly, a monolayer of RD cells was prepared in 96-well plates. The cells were then
infected with 1 multiplicity of infection (MOI) of YFV (17D strain) followed by treatment
with a single nontoxic dose of each compound in triplicate. The vehicle control wells
were treated with 0.1% dimethyl sulfoxide (DMSO) diluted in the working medium. The
plate was then incubated for 96 h at which time the virus-control wells produced
detectable CPE. To determine the probable inhibitory CPE of test compounds, an MTS
assay was performed (15). We identified 10 nucleoside analogs with significant inhib-
itory effect (�80% CPE inhibition) against YFV replication (summarized in Table 1).
Therefore, these compounds were chosen for further studies to identify the potency of
the compounds and their concentration-dependent manner.

The dose-response antiviral activity of each effective drug was determined by
initially measuring the reduction in the number of viral foci as a semiquantitative
method using two different cell lines (RD and Huh-7). Briefly, confluent monolayers of
RD cells in a 96-well microplate were infected with 0.1 MOI of YFV followed by
treatment with increasing concentrations of each compound up to its respective MNTC
dose. Then, cells were overlaid with 1.5% carboxymethyl cellulose (CMC) containing
minimal essential medium (MEM) with 2% fetal bovine serum (FBS). Viral foci were
stained and visualized using antiflavivirus group antigen (4G2; Millipore), followed by
horseradish peroxidase (HRP) anti-mouse IgG and TrueBlue substrate, and imaged
using CTL ImmunoSpot S6 micro analyzer 2 on day 2 after treatment (Fig. 2).

The effective compounds were further quantified and confirmed with a secondary,
virus yield reduction assay using an optimized in-house reverse transcription-
quantitative PCR (qRT-PCR) to determine the YFV RNA copy number after 3 days
posttreatment from collected supernatants compared to the results from infected

TABLE 1 Cytotoxicity and anti-YFV activity of nucleoside analogs

Compound

Huh-7 cells RD cells
Virus CPE inhibition
in RD cells (%)CC50

a (�M) MNTCa (�M) CC50
a (�M) MNTCa (�M)

1 �100 �20 56 �20 44.7 � 0.4
2 81 �20 94 �20 54.3 � 0.4
3 60 �20 �100 �20 26 � 1.1
4 �100 �20 30.9 �20 99.5 � 0.3
5 �100 �20 �100 �20 �2
6 �100 �20 �100 �20 �5
7 �100 �20 �100 �20 �2
8 37 �20 80 �20 �2
9 �100 �20 �100 �20 95 � 1
10 70 �20 �100 �20 99.5 � 0.3
11 22 15 �100 �20 99.9 � 0.1
12 �100 �20 �100 �20 �5
13 17 �10 77 �20 99 � 0.4
14 10 5 11 7 99.8 � 0.1d

15 7 5 12 7.5 99.9 � 0.1d

16b �100 �20 �100 �20 98 � 0.7
17 2.9 2 10.5 6.5 99.5 � 0.8c

18 11.5 5.5 32.5 16 90.5 � 1d

19 �100 �20 �100 �20 �5
20 62 �20 �100 �20 �2
21 �100 �20 �100 �20 99 � 0.2
aCytotoxicity of all nucleoside analogs was measured using MTS assay to calculate the CC50 and maximum
nontoxic concentration (MNTC) of each compound.

bSofosbuvir (positive control).
cCompound 17 was tested at 1.5 �M for its anti-YFV activity because of its MNTC.
dCompounds 14, 15, and 18 were tested in 5 �M for their anti-YFV activity because of their MNTCs. All other
compounds were tested in 20 �M against YFV in a CPE inhibition assay using MTS assay.
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nontreated cells and noninfected and nontreated cells as controls (Table 2). qRT-PCR
was performed using the probe/primer mix (forward primer, 5=-GCA CGG ATG TAA CAG
ACT GAA GA-3=; reverse primer, 5=-CCA GGC CGA ACC TGT CAT-3=; and probe, 5=-56-
FAM/CG ACT GTG T/ZEN/G GTC CGG CCC TC/3IABkFQ-3=) and qScript Tough master mix
(Quantabio, USA). Quantitative PCR measurement was performed using the StepOne-
Plus real-time PCR system (Roche, Germany) according to the manufacturer’s protocol.

The median effective concentration (EC50) and the concentration with 90% of

FIG 2 Foci-forming unit reduction assay. Compounds 9, 10, and 21 as the most promising showed
significant inhibitory effect against YFV compared to that of sofosbuvir (compound 16) as a drug control.

TABLE 2 Anti-YFV activity in RD and Huh-7 cells

Compound

RD cellsa Huh-7 cellsa

EC50 (�M) EC90 (�M) SI EC50 (�M) EC90 (�M) SI

10 0.25 � 0.01 0.49 � 0.03 �400 0.55 � 0.03 3.8 � 0.1 �100
16 0.34 � 0.01 3.3 � 0.1 30 1.2 � 0.07 5.3 � 0.2 83
11 0.87 � 0.03 2.3 � 0.2 �100 1.1 � 0.01 2.1 � 0.1 20
17 0.17 � 0.01 0.5 � 0.08 61 0.16 � 0.01 0.42 � 0.07 18
18 1.36 � 0.03 5.3 � 0.2 23 1.43 � 0.08 6.2 � 0.15 8
15 0.25 � 0.001 0.5 � 0.1 48 0.18 � 0.01 0.47 � 0.02 38
14 0.66 � 0.003 1.1 � 0.02 16 0.37 � 0.03 1.3 � 0.17 27
13 1.1 � 0.01 2.6 � 0.15 70 1.2 � 0.05 10 � 0.7 14
9 0.51 � 0.01 3.9 � 0.2 �200 1 � 0.03 6.8 � 0.43 �100
21 2.1 � 0.1 10.1 � 0.2 �50 0.97 � 0.01 1.3 � 0.12 �100
aAll EC50 and EC90 values are presented as mean � SD.
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inhibitory effect (EC90) were calculated using GraphPad Prism for Windows version 5
(GraphPad Software Inc., San Diego, CA) as the means � standard deviation (SD) of the
mean from triplicate assay from three independent experiments. The selectivity index
(SI) values for effective compounds also have been calculated by the ratio of CC50/EC50

for each compound (Table 2). As it is shown in Table 2, compounds 10, 9, and 21
showed significant activity with great selectivity index values higher than 100 in Huh-7
cells.

Based on the primary antiviral assays, the 2=-F derivatives (e.g., compounds 5, 6, and
7) did not exhibit any in vitro anti-YFV activity up to 20 �M (Table 1). Compound 8,
another 2=-F nucleoside, known to inhibit respiratory syncytial virus (RSV) replication,
was also inactive at that concentration. More interestingly, compound 4 (�-D-N4-
hydroxycytidine), a known inhibitor of chikungunya virus (CHIKV) and HCV replication,
displayed an EC50 of 0.5 �M and 0.63 �M in RD and Huh-7 cells, respectively. In a similar
manner, FDA-approved HCV polymerase inhibitor compound 16 (sofosbuvir) was active
in both cell lines with EC50 values of 0.25 and 1.2 �M in RD and Huh-7 cells, respectively.
However, De Freitas and colleagues reported the activity of sofosbuvir against YFV 17D
strain in Huh-7 with an EC50 of 4.8 �M (16). The difference between their EC50 and ours
could be due to the methods used for virus yield reduction, as they used a plaque
reduction assay and we used qRT-PCR as a more sensitive and quantitative method.
Novel thio prodrugs of sofosbuvir that were previously reported to be more potent
than sofosbuvir itself against HCV were also evaluated in the YF assays, but neither the
RP nor the SP isomer (where R stands for rectus [right], S stands for sinister [left], and p
stands for phosphorus center) appeared markedly more potent than sofosbuvir (Table
2). In addition, both compounds 17 and 18 displayed cytotoxicity in the low micromolar
range in both RD and Huh-7 cells, which seems to be a severe limitation for this type
of monophosphate prodrug. The 2=-C-methyl-uridine prodrugs were then tested as an
RP/SP mixture (compound 13) and as pure RP and SP isomers (compounds 11 and 12).
It is worth noting that both compounds 11 and 13 displayed anti-YF activity in the
submicromolar range while compound 12 was inactive up to 20 �M. This difference of
potency between RP and SP isomers is a phenomenon that may be explained by the fact
that the enzymes responsible for the cleavage of the prodrug moiety are preferentially
selective for one phosphorous isomer over the other. As for sofosbuvir (compound 16),
we also tested the corresponding thio prodrugs of 2=-C-methyl-uridine but again,
despite both isomers displaying EC50 values in the submicromolar range, they also
proved to be toxic in both RD and Huh-7 cells. Other 2=-C-methyl-ribonucleosides
known to inhibit HCV replication (e.g., compounds 1, 2, 3, 9, and 10) were also
examined along with the 7-deaza purine analogs (compounds 9 and 10), which showed
anti-YF activity with EC50 values ranging between 0.25 and 1 �M. In contrast, the
2=-C-methyl-cytidine analogs (including compounds 1, 2, and 3) did not exhibit signif-
icant anti-YFV activity up to 20 �M (Table 2), whereas Julander and colleagues reported
the activity of 2=-C-methyl-cytidine against YFV 17D with an EC50 of 10 �M in Vero cells
(17). This difference could be due to the use of different MOIs of virus. We have used
1 MOI of YFV 17D for our primary antiviral assays, and they used a markedly lower
0.0001 MOI of the same virus that could lead to the different EC50 values. The other
affecting factor could be the difference between the types of cells used in their studies
and ours. However, according to our data, the EC50 value for that compound (com-
pound 1) is �20 �M, which is close to their finding.

However, in several studies, the effect of different nucleoside analogs has been
discussed against flaviviruses. The activity of 3=,5=di-O-trityluridine was shown against
dengue virus (DENV) and YFV in cell culture systems with EC50 values of 1.5 and
0.83 �M, respectively (18). In the case of adenosine analogs, several compounds have
been developed and identified, such as NITD008 and NITD203, through in vitro and in
vivo studies, but none were considered for further development (19–21). In one recent
study, 2=-modified nucleoside analogs were developed and evaluated against DENV
and Zika virus (ZIKV) in cell culture systems with significant antiviral activity (22). Several
nucleoside analogs and their novel derivatives also have shown antiviral activity against
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tick-borne encephalitis virus and West Nile virus as other flaviviruses but have yet to be
developed as antiviral drugs (23, 24).

The intracellular metabolisms of the following four compounds in RD cells were
evaluated: compound 10 as our main lead compound, sofosbuvir (compound 16) as a
drug control, together with compounds 14 and 15 as potent novel compounds but
with marked toxicity. Briefly, RD cells were seeded at 1 � 106 cells per well in 12-well
plates and incubated with 10 or 50 �M of the four compounds, including compounds
10, 16, 14, and 15. At 4 h, cells were washed twice by ice-cold phosphate-buffered saline
(PBS) and resuspended in 70% ice-cold methanol overnight at �20°C. The supernatants
were then dried and reconstituted with the high-pressure liquid chromatography
(HPLC) mobile phase before being subjected to liquid chromatography-mass spectrom-
etry (LC-MS) analysis. All of the four compounds were metabolized and phosphorylated
to their corresponding nucleoside triphosphates (Fig. 3). For compounds 14 and 15, a
small amount of 2=-C-methyl-CTP was also detected in addition to the main metabolite,
the nucleoside triphosphate 2=-C-methyl-UTP. Also, for those compounds (including 14
and 15) that generated the same nucleoside triphosphates, the levels of nucleoside
5=-triphosphates were positively correlated with their anti-YFV potency in RD cells.
Nevertheless, the respective concentrations for the 4 natural ribonucleotide triphos-
phates (rNTPs) in RD and Huh-7 cells were comparable without any significant differ-
ence (data not shown).

In conclusion, we have identified compounds 9, 10, and 21 as our first line of
potential candidate drugs with antiviral activity to YFV that warrant further investiga-
tion. It is worth noting that compounds 9 and 10 as 2=-C-Me ribonucleosides and
compound 21 as a prodrug for 2=-di-Cl-uridine showed the most potent (submicromo-
lar) activity with the greatest selectivity index (SI � 100) among the effective com-
pounds, even compared to sofosbuvir as our drug control. As a future plan, we will
evaluate the in vivo anti-YFV efficacy of our lead compounds as well as perform
pharmacokinetic studies. Therefore, the approaches and findings presented here and
our future plan offer promise to reduce the global burden of YFV as an emerging/
reemerging Flavivirus.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC
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