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ABSTRACT Relebactam is a novel class A/C �-lactamase inhibitor that restores imi-
penem in vitro activity against multidrug-resistant and carbapenem-nonsusceptible
Pseudomonas aeruginosa. Time-kill analyses were performed to evaluate the poten-
tial role of imipenem-relebactam in combination with amikacin or colistin against P.
aeruginosa. Ten clinical P. aeruginosa isolates (9 imipenem nonsusceptible) with
imipenem-relebactam MICs ranging from 1/4 to 8/4 �g/ml were included. The isolates
had varied susceptibilities to imipenem (1 to 32 �g/ml), amikacin (4 to 128 �g/ml), and
colistin (0.5 to 1 �g/ml). Duplicate 24-h time-kill studies were conducted using the aver-
age steady-state concentrations (Cssavg) observed after the administration of imipenem-
relebactam at 500 mg/250 mg every 6 hours (q6h) alone and in combination with the
Cssavg of 25 mg/kg of body weight/day amikacin and 360 mg/day colistin in humans.
Imipenem-relebactam alone resulted in 24-h bacterial densities of �2.93 � 0.38,
�1.67 � 0.29, �0.38 � 0.96, and �0.15 � 0.65 log10 CFU/ml at imipenem-relebactam
MICs of 1/4, 2/4, 4/4, and 8/4 �g/ml, respectively. No synergy was demonstrated
against the single imipenem-susceptible isolate. Against the imipenem-nonsusceptible
isolates (n � 9), imipenem-relebactam combined with amikacin resulted in synergy
(�2.61 � 1.50 log10 CFU/ml) against all amikacin-susceptible isolates and in two of
three amikacin-intermediate (i.e., MIC, 32 �g/ml) isolates (�2.06 � 0.19 log10 CFU/
ml). Synergy with amikacin was not observed when the amikacin MIC was �32 �g/
ml. Imipenem-relebactam combined with colistin demonstrated synergy in eight out
of the nine imipenem-resistant isolates (�3.17 � 1.00 log10 CFU/ml). Against these
10 P. aeruginosa isolates, imipenem-relebactam combined with either amikacin or
colistin resulted in synergistic activity against the majority of strains. Further studies
evaluating combination therapy with imipenem-relebactam are warranted.
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Pseudomonas aeruginosa is an important human bacterial pathogen able to cause
serious infections in the lung, bloodstream, wounds, urinary tract, and peritoneal

cavity, among other organ systems (1–3). The treatment of infection due to P. aerugi-
nosa is complicated by this organism’s ability to harbor several resistance mechanisms,
including �-lactamase expression, efflux pump upregulation, and outer membrane
porin loss, which can render several antimicrobials ineffective (4, 5). Antimicrobial
resistance has led to limited treatment options for P. aeruginosa infections, resulting in
increased patient morbidity and mortality (1, 6).

Historically, carbapenem antibiotics (i.e., meropenem and imipenem) have been
reserved for the treatment of multidrug-resistant (MDR) P. aeruginosa infections
since they often retained activity in the face of resistance to other antipseudomonal
�-lactams. The isolation of carbapenem-resistant P. aeruginosa, however, has now
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become conventional at many hospitals in North America. Recent surveillance studies
report P. aeruginosa carbapenem nonsusceptibility rates of 20% to 25% and up to 35%
in the intensive care unit setting (7–9); furthermore, carbapenem nonsusceptibility
generally mirrors the prevalence of MDR isolates. As a result, new treatments for
carbapenem-resistant and MDR P. aeruginosa are needed (10). Imipenem-relebactam
is a carbapenem–�-lactamase inhibitor combination currently in clinical development
for the treatment of hospital-acquired bacterial pneumonia (HABP), ventilator-
associated bacterial pneumonia (VABP), complicated intra-abdominal infection (cIAI),
and complicated urinary tract infection (cUTI) caused by MDR pathogens (ClinicalTrials.gov
identifiers NCT02452047 and NCT02493764) (11). The addition of relebactam to
imipenem-cilastatin restored its activity in 78% of imipenem-nonsusceptible P. aerugi-
nosa strains (8).

Current Infectious Diseases Society of America (IDSA) guidelines recommend em-
pirical combination therapy with two antipseudomonal agents from different classes to
treat HABP/VABP due to P. aeruginosa bacteria in high-risk patients (3). Dual antipseu-
domonal therapy is also recommended for HABP/VABP patients with risk factors for
MDR Gram-negative pathogens, patients in units where more than 10% of Gram-
negative isolates are resistant to an agent being considered for monotherapy, and
patients in an intensive care unit where local antimicrobial susceptibility rates are not
available (3). Combination antimicrobial therapy is an attractive treatment strategy
often considered for the most serious P. aeruginosa infections, as it has the potential to
broaden empirical coverage, take advantage of potential synergy between the two
antibiotics, and prevent the emergence of resistance to one or both of the active agents
(12). Despite evidence of synergy exhibited by various antimicrobial combinations in
vitro, combination therapy has not been strongly associated with improved clinical
outcomes, except in the most severe cases of infection (3, 12–14). As imipenem-
relebactam is a potent, yet novel, antibiotic, we sought to assess the potential for
synergistic interactions with two other antibiotic classes typically reserved for serious
MDR P. aeruginosa cases, amikacin and colistin (3).

Methods for assessing antimicrobial in vitro interactions include disk diffusion tests,
checkerboard titrations, time-kill assays, and in vitro pharmacodynamic modeling. The
optimal methodology, concentration, and interpretation criteria vary widely within
these tests; however, time-kill assays remain a simple and effective testing strategy
to assess the rate and extent of bacterial kill with antimicrobial agents (15–17).
Utilizing time-kill assays, we assessed the synergistic effect of clinical concentra-
tions of imipenem-relebactam in combination with amikacin and colistin against MDR
P. aeruginosa, including carbapenem-nonsusceptible isolates.

RESULTS
P. aeruginosa susceptibility. The susceptibilities of the 10 selected isolates to

imipenem-relebactam, amikacin, colistin, and comparator antibiotics are presented in
Table 1. Nine out of the 10 isolates met the definition for MDR and were also
nonsusceptible to imipenem and meropenem. Imipenem-relebactam MICs ranged from
1/4 to 8/4 �g/ml. All 10 isolates were susceptible to colistin (�2 �g/ml), and amikacin
MICs ranged from 4 to 128 �g/ml.

Time-kill analyses. Time-kill curves for imipenem-relebactam, amikacin, and colistin
alone and in combination are shown in Fig. 1 and 2. The mean bacterial density of
the starting inoculum was 6.55 � 0.28 log10 CFU/ml across all isolates examined.
Drug-free control experiments resulted in CFU increases of 1.69 � 0.37 log10

CFU/ml after 24 h. Imipenem-relebactam alone resulted in 24-h CFU changes of
�2.93 � 0.38, �1.67 � 0.29, �0.38 � 0.96, and �0.15 � 0.65 log10 CFU/ml for iso-
lates with imipenem-relebactam MICs of 1/4, 2/4, 4/4, and 8/4 �g/ml, respectively. At
24 h, amikacin alone resulted in CFU reduction in isolates with an amikacin MIC of
�8 �g/ml (�1.52 � 0.72 log10 CFU/ml, n � 3), while regrowth was observed in remain-
ing isolates with an amikacin MIC of �16 �g/ml (�1.39 � 0.53 log10 CFU/ml), relative
to the 0-h controls. Colistin alone produced rapid killing over the first 3 to 6 h in all 10

Asempa et al. Antimicrobial Agents and Chemotherapy

September 2019 Volume 63 Issue 9 e00997-19 aac.asm.org 2

https://aac.asm.org


isolates, followed by growth at 24 h to a mean bacterial density (6.54 � 0.77 log10

CFU/ml) on par with the 0-h starting inoculum.
Table 2 shows the antimicrobial interactions (i.e., synergy, additivity, indifference,

and antagonism) observed with imipenem-relebactam in combination with amikacin or
colistin against all evaluated isolates. The combination of imipenem-relebactam and
amikacin was rapidly bactericidal against all isolates at 6 h. By 24 h, additivity or synergy
was observed in 7 isolates. The subgroup of isolates that did not demonstrate synergy
were highly resistant to amikacin (MIC, �64 �g/ml; n � 3) or susceptible to imipenem

TABLE 1 MICs of imipenem-relebactam, amikacin, colistin, and comparator agents against
10 P. aeruginosa isolates

Isolatea

MIC (�g/ml) forb:

AMK ATM CAZ CIP CST FEP IPM I/R MEM TZP TOB

CAIRD M9-44 4 8 2 0.25 0.5 2 1 1/4 0.5 4 1
CAIRD M8-29 8 32 32 �16 1 16 4 1/4 8 64 1
CDC0508c 8 8 16 �16 1 16 16 2/4 8 64 1
CAIRD M3-1 128 16 4 �16 0.5 16 16 2/4 8 256 �64
CAIRD M6-6 16 16 32 �16 1 16 16 4/4 64 16 128
CAIRD M23-3 32 8 64 �16 1 32 32 4/4 16 256 128
CAIRD M1-13 64 �64 �64 �16 1 �64 32 4/4 32 64 �64
CAIRD M3-34 128 16 8 �16 1 16 16 4/4 16 256 �64
CDC0526d 32 �64 �64 4 0.5 64 16 8/4 32 32 �64
CAIRD M1-4 32 64 8 �16 0.5 64 32 8/4 �64 128 2
aUnless noted otherwise, all isolates are clinical respiratory or blood P. aeruginosa isolates collected from the
U.S. hospital surveillance study (46).

bAMK, amikacin; ATM, aztreonam; CAZ, ceftazidime; CIP, ciprofloxacin; CST, colistin; FEP, cefepime; IPM,
imipenem; I/R, imipenem-relebactam; MEM, meropenem; TZP, piperacillin-tazobactam; TOB, tobramycin.

cObtained from the FDA-CDC Antimicrobial Resistance Isolate Bank (Atlanta, GA). Isolate CDC0508 has
chromosomally encoded blaPDC-35 and blaPER-1 �-lactamases.

dObtained from the FDA-CDC Antimicrobial Resistance Isolate Bank. Isolate CDC0526 has a chromosomally
encoded blaPDC-19 �-lactamase.

FIG 1 Time-kill experiments displaying the activity of imipenem-relebactam alone and in combination with amikacin or colistin against
P. aeruginosa isolates with imipenem-relebactam MICs of 1/4 �g/ml and 2/4 �g/ml. I/R, imipenem-relebactam; AMK, amikacin; CST,
colistin; *, synergy with I/R plus AMK; �, synergy with I/R plus CST.
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(MIC, �2 �g/ml; n � 1). Of note, the combination of imipenem-relebactam and amika-
cin was additive or synergistic in the 3 isolates with intermediate susceptibility to
amikacin (MIC, 32 �g/ml) evaluated in this study.

The combination of imipenem-relebactam and colistin was rapidly bactericidal
against all isolates at 6 h and met the definition of synergy at 24 h in 8 of the 10 isolates.
The 2 isolates that showed bacterial indifference with this combination had the lowest
imipenem-relebactam MICs (i.e., 1/4 �g/ml); thus, the addition of colistin did not result
in further CFU reduction beyond that with imipenem-relebactam alone.

DISCUSSION

Multidrug resistance in P. aeruginosa is a growing public health problem and is
challenging to treat. Combination therapy is routinely used in clinical practice to
broaden the antimicrobial spectrum and decrease the risk of initial inappropriate
therapy, although its potential for antimicrobial synergy and delaying or preventing
antimicrobial resistance remain appealing theoretical indications (12). In this study,
imipenem-relebactam-based combination therapy resulted in bactericidal and syner-

FIG 2 Time-kill experiments displaying the activity of imipenem-relebactam alone and in combination with amikacin or colistin against
P. aeruginosa isolates with imipenem-relebactam MICs of 4/4 �g/ml and 8/4 �g/ml. I/R, imipenem-relebactam; AMK, amikacin; CST,
colistin; *, synergy with I/R plus AMK; �, synergy with I/R plus CST.
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gistic effects against the majority of the imipenem-nonsusceptible P. aeruginosa iso-
lates evaluated.

Relebactam is an investigational non-�-lactam–�-lactamase inhibitor in clinical devel-
opment. Paired with imipenem, relebactam has potent in vitro activity against class A
�-lactamases, including KPC-type carbapenemases, and class C �-lactamases (11, 18). In a
recent intensive care unit (ICU)-based surveillance study with 538 P. aeruginosa isolates,
the respective susceptibility rates of meropenem, imipenem, and imipenem-relebactam
were 72.7%, 67.1%, and 91.5% (9). The carbapenem-nonsusceptible and MDR P. aerugi-
nosa isolates utilized in this study are representative of isolates that may be encoun-
tered in a critically ill population and where antimicrobial agents such as imipenem-
relebactam would be considered for treatment.

Time-kill assays are a reliable in vitro test for the assessment of antimicrobial
synergy. Compared with the Etest and checkerboard methodology, time-kill assays
examine the magnitude of bacterial killing over time (17). Despite their wide use,
debate continues over the optimal antimicrobial concentration to be assessed in
time-kill assays; thus, investigators utilize a variety of approaches, including fractions of
the isolate’s MIC (16, 19). Consequently, the amikacin and colistin concentrations
utilized in this study were based on average steady-state concentrations (Cssavg)
achieved in critically ill patients when administered at clinically relevant doses, while
imipenem-relebactam, due to its investigational status, was employed at clinically
achievable steady-state concentrations based on healthy volunteer data. In contrast to
using an MIC fraction, peak, or trough concentration, the free Cssavg methodology
reflects the average clinical antimicrobial concentration available to interact with
bacteria over 24 h. It is worth noting that critically ill patients tend to have high intra-
and interpatient variability in drug pharmacokinetics; thus, antimicrobial steady-state,
peak, or trough concentrations obtained from the literature for utilization in in vitro
studies may vary. The MIC fraction methodology is also prone to similar challenges
given the �1 2-fold concentration variation associated with MIC determination (20).
Importantly, the colistin and amikacin average steady-state concentrations utilized in
this study are similar to reported concentrations from other critically ill cohorts (21, 22).

The magnitude of bacterial killing with imipenem-relebactam alone across the range
of imipenem-relebactam MICs was consistent with the imipenem-relebactam free
Cssavg tested in vitro. Bacterial reductions of �2 log and �1 log were observed at
imipenem-relebactam MICs of 1/4 �g/ml and 2/4 �g/ml, respectively, while bacterio-
static effects were observed at MICs of �4/4 �g/ml relative to the 0-h controls. Given
enhanced imipenem-relebactam activity against P. aeruginosa (8, 10, 18), we included
isolates with imipenem-relebactam MICs above the current imipenem breakpoint to
assess an MIC distribution that may encompass a potential imipenem-relebactam
MIC breakpoint. Notably, P. aeruginosa isolates with imipenem-relebactam MICs of
�4 �g/ml represent less than 6% of the MIC distribution (8).

Imipenem-relebactam-based combination therapy resulted in synergy against the

TABLE 2 Antimicrobial interactions observed with imipenem-relebactam in combination
with amikacin or colistin against 10 P. aeruginosa isolates at 24 h

Isolate

Interaction for combinationa:

I/R plus AMK I/R plus CST

CAIRD M9-44 Additivity Indifference
CAIRD M8-29 Synergy Indifference
CDC0508 Synergy Synergy
CAIRD M3-1 Indifference Synergy
CAIRD M6-6 Synergy Synergy
CAIRD M23-3 Synergy Synergy
CAIRD M1-13 Indifference Synergy
CAIRD M3-34 Indifference Synergy
CDC0526 Additivity Synergy
CAIRD M1-4 Synergy Synergy
aAMK, amikacin; CST, colistin; I/R, imipenem-relebactam.
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majority of the isolates evaluated in this study; however, the combination of
imipenem-relebactam and amikacin proved to be ineffective against amikacin-
resistant P. aeruginosa isolates. The underlying mechanism of �-lactam–aminogly-
coside synergy is thought to be mediated by both agents. The inhibition of bacterial
cell wall synthesis by �-lactams facilitates the entry of aminoglycosides into the
bacterial cell (12, 23), while the ionic binding of positively charged aminoglycoside
molecules to negatively charged bacterial cell surface components, including outer
membrane proteins, results in increased permeability of aminoglycosides and other
antimicrobial agents (24, 25). Irrespective of the imipenem-relebactam MIC, en-
hanced bacterial killing (i.e., synergy or additivity) with the combination of
imipenem-relebactam plus amikacin was diminished as the MIC of the aminoglycoside
increased beyond an amikacin MIC of �64 �g/ml.

Numerous in vitro studies have examined aminoglycosides in combination with
�-lactams against P. aeruginosa, albeit with a variety of drug concentrations (26–31). In
a time-kill study by Yadav et al. (31), imipenem combined with either tobramycin or
amikacin demonstrated synergy and suppression of resistance against 3 imipenem-
resistant P. aeruginosa isolates. Notably, the imipenem concentrations studied included
the highest clinically achievable steady-state plasma concentrations possible after the
administration of imipenem doses of 4 g/day (31). Though FDA approved, imipenem
doses of 4 g/day are not routinely utilized in clinical practice, given a trend toward an
increased risk of seizure with doses of �2 g/day (32, 33). The high imipenem concen-
tration utilized in the investigation by Yadav and colleagues (31) may explain the
synergistic killing observed among aminoglycoside-resistant P. aeruginosa strains, in
contrast to our observations.

Colistin alone, utilized at a steady-state concentration achieved in critically ill patients,
was initially bactericidal, but significant regrowth occurred at 24 h in 50% of the isolates,
despite in vitro colistin susceptibility. Regrowth of colistin-susceptible P. aeruginosa (i.e.,
colistin heteroresistance) is well described in the literature (34–37). To mitigate the potential
for heteroresistance with colistin monotherapy, combination therapy against P. aeruginosa
has been suggested as a possible means by which to increase antimicrobial activity and
mitigate resistance development (35, 37). Indeed, a meta-analysis of data (n � 136 P.
aeruginosa isolates) from published time-kill studies with either colistin or polymyxin in
combination with a carbapenem showed substantial synergy rates (50% [95% confidence
interval {CI}, 30% to 69%]) and evidence of resistance suppression in vitro (38). In this study,
combining the novel imipenem-relebactam with colistin resulted in synergy in 8 of 9
imipenem-resistant P. aeruginosa isolates evaluated.

In summary, we assessed average steady-state concentrations of imipenem-relebactam
in combination with amikacin and colistin against MDR and carbapenem-nonsusceptible P.
aeruginosa isolates using in vitro time-kill methodology. These data demonstrate the
bactericidal and synergistic antimicrobial effects of an imipenem-relebactam-based com-
bination therapy with no evidence of antagonism. These data support the role of
imipenem-relebactam as part of a promising therapeutic strategy for the treatment of
P. aeruginosa infections. Further in vitro studies and pharmacokinetic/pharmacody-
namic analyses of these combinations are warranted against challenging-to-treat P.
aeruginosa strains.

MATERIALS AND METHODS
Bacterial isolates. Ten clinical P. aeruginosa isolates were selected for this study. Two isolates were

obtained from the FDA-CDC Antimicrobial Resistance Isolate Bank (Atlanta, GA), and the remaining 8
isolates were from the Center for Anti-Infective Research and Development (CAIRD) isolate repository of
clinical strains collected during a recent U.S.-based surveillance study between July 2017 and June 2018.
Isolates were chosen to display a range of imipenem-relebactam MICs of 1/4, 2/4, 4/4, and 8/4 �g/ml. This
range of imipenem-relebactam MICs allowed an assessment of isolates at or within 2 dilutions of the
current Clinical and Laboratory Standards Institute (CLSI) breakpoint (2 �g/ml) for imipenem against
P. aeruginosa (39). Additionally, isolates were selected for a range of amikacin MICs from susceptible
to resistant. Ultimately, 9 imipenem-nonsusceptible isolates were included; in addition, 1 imipenem-
susceptible isolate was included to determine if synergy is observed regardless of imipenem suscepti-
bility. All isolates were maintained in skim milk (BD Biosciences, Sparks, MD) at �80°C. Each isolate was
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subcultured twice on Trypticase soy agar with 5% sheep blood (BD Biosciences) and grown for 18 to 20 h
at 37°C under 5% CO2 prior to use in the experiments.

Susceptibility testing. Susceptibilities to amikacin, colistin, imipenem, and imipenem-relebactam, as
well as commonly utilized antipseudomonal agents, were determined for all isolates using the broth
microdilution methodology, as outlined by the CLSI (39). Antibiotics were obtained as laboratory-grade
powders from their respective manufacturers. MIC testing for imipenem-relebactam used a fixed
relebactam concentration of 4 �g/ml in combination with doubling dilutions of imipenem. MIC values
were obtained in triplicate, and the modal MIC was reported. P. aeruginosa ATCC 27853 was used as a
quality control strain, as defined by the CLSI (39). In addition, to assess the appropriate concentration of
relebactam in microdilution trays, P. aeruginosa CDC0516, harboring a KPC-2 enzyme, was used as an
additional quality control (range, 0.5/4 to 2/4 �g/ml).

Simulated drug exposures. Time-kill studies were performed using the average steady-state concen-
tration (Cssavg) of imipenem and relebactam alone and in combination with the Cssavg of amikacin and
colistin. Imipenem and relebactam plasma clearance (in liters per hour) following the administration of
a single dose of imipenem-cilastatin (500 mg) with relebactam (500 mg) to healthy volunteers in a phase
1 study was used to calculate the free area under the concentration-time curve from 0 to 24 h (AUC0 –24)
of imipenem and relebactam achieved with the administration of 500/250 mg imipenem-relebactam
every 6 h (40). After applying a protein binding factor of 20% for imipenem and relebactam (41), the
simulated target imipenem and relebactam free Cssavg over a 24-h period were 5.9 �g/ml and 4.2 �g/ml,
respectively. Amikacin was simulated to achieve a free Cssavg of 14.5 �g/ml consistent with that achieved
with a 25-mg/kg/day dose in a 70-kg critically ill patient with severe sepsis (42). Colistin was simulated
as a continuous infusion to achieve the mean free Cssavg (0.73 �g/ml) for critically ill adult patients
receiving the currently recommended European Medicines Agency (EMA) dosing regimen of 360 mg
daily of colistin base activity (43).

Time-kill studies. Time-kill analyses were performed on each of the 10 P. aeruginosa isolates.
Mueller-Hinton broth (Becton, Dickinson and Company, Sparks, MD) was inoculated with the bacterial
suspension to a final suspension of approximately 106 CFU/ml. Duplicate time-kill experiments with
imipenem-relebactam alone, amikacin alone, colistin alone, and imipenem-relebactam in combination
with amikacin and colistin were conducted. Control experiments without any active agents were
conducted simultaneously with the time-kill studies. The final volume for each bacterium-drug concen-
tration was 10 ml, and the suspensions were incubated in a shaking water bath at 37°C. Samples were
taken from each experiment at 0, 3, 6, and 24 h, diluted, and incubated for 18 to 24 h on blood agar
plates to quantify the mean bacterial densities. The minimal accurately countable number of CFU per
milliliter was determined to be 5 � 10�1 CFU/ml. Bactericidal activity of single antibiotics or combina-
tions was defined as a �3-log10 reduction in CFU/ml of the initial inoculum after 24 h of incubation.
Synergy was defined as a �2-log10 decrease in CFU/ml between the antibiotic combination and its most
active constituent after 24 h. Additivity was defined as a 1- to �2-log10 decrease in CFU/ml between the
antibiotic combination and its most active constituent after 24 h, while indifference was defined by a
�1-log10 CFU/ml change between the antibiotic combination and its most active constituent. Antago-
nism (�2-log10 increase in CFU/ml at 24 h with the combination compared with that by the most active
drug alone) was also noted (44, 45).
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