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Abstract

Recent developments in high-resolution mass spectrometry (HRMS) technology enabled 

ultrasensitive detection of proteins, peptides, and metabolites in limited amounts of samples, even 

single cells. However, extraction of trace-abundance signals from complex datasets (m/z value, 

separation time, signal abundance) that result from ultrasensitive studies requires improved data 

processing algorithms. To bridge this gap, we here developed “Trace,” a software framework that 

incorporates machine learning (ML) to automate feature selection and optimization for the 

extraction of trace-level signals from HRMS data. The method was validated using primary (raw) 

and manually curated datasets from single-cell metabolomic studies of the South African clawed 

frog (Xenopus laevis) embryo using capillary electrophoresis electrospray ionization HRMS. We 

demonstrated that Trace combines sensitivity, accuracy, robustness with high data processing 

throughput to recognize signals, including those previously identified as metabolites in single-cell 

capillary electrophoresis HRMS measurements that we conducted over several months. These 

performance metrics combined with a compatibility with MS data in open-source (mzML) format 

make Trace an attractive software resource to facilitate data analysis for studies employing 

ultrasensitive high-resolution MS.
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INTRODUCTION

Recent advances in high-resolution mass spectrometry (HRMS) extended this powerful 

technology to the detection of important biomolecules in limited amounts of samples, even 

single cells (reviewed in references 1–10). However, broader adoption of ultrasensitive 

HRMS is hampered by a limited number of software tools capable of extracting trace-level 

signals from complex datasets. Trace amounts of materials from tissue biopsies, small 

populations of cells, or single cells yield signals with lower signal-to-noise ratios (SNRs) 

than expected from classical cell-pooling studies. Exacerbating challenges in sensitivity, 

most successful software packages assume chromatographic peak shapes, potentially leaving 

transient peaks undetected from trace-level analyses by emerging separation technologies 

such as fast nano-flow liquid chromatography (nanoLC), capillary electrophoresis (CE), and 

ion mobility separation. Although semi-manual data analysis alleviates some of these 

challenges,11 manual inspection of hundreds of gigabytes of data is labor-intensive, has low 

throughput, and is practically unscalable to system-wide studies generating hundreds of files 

for analysis. For ultrasensitive HRMS to gain broader throughput and adaptation in 

bioanalysis, including in single-cell studies, software packages are needed with a capability 

to recognize trace-level signals from complex HRMS datasets.

Many successful software packages designed for HRMS laid the groundwork to detect peaks 

and perform metabolomics data analysis. Representative successful toolboxes for LC- and 

gas chromatography (GC) MS datasets include but are not limited to XCMS,12,13 Metabox,
14 and MetaboAnalyst.15 Noise reduction with traditional signal processing techniques is 

usually the first step of data processing in the m/z or chromatographic dimension. Typically, 

molecular features are surveyed based on m/z-selected chromatograms (also known as 

extracted ion chromatograms, EICs) by moving average windows,16 median filters,17 or a 

wavelet transform.18 The resulting molecular features are credentialed using various 

algorithms. For example, VIPER,19 OpenMS,20 MZmine,21 vectorized peak detection,17 and 

XCMS22 examine the m/z or time dimension to find chromatographic peaks with 

satisfactory shape (e.g., Gaussian) and signal-to-noise ratio (SNR). Other software tools, 

such as LCMS-2D23 and MapQuand,24 simultaneously survey the m/z and time spaces for 

peak detection. However, to enhance robustness, thresholding by SNR often needs to be 

augmented with additional peak finding features, such as evaluation of Gaussian similarity, 

peak width, and shape (e.g., noisy or zigzag).
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Signal detection for trace-sensitive HRMS calls for advances in data analysis. Although 

computationally cost-efficient, binning along the m/z dimension risks the recognition of 

trace-level signals by potentially splitting them or merging them with other signals, 

including those due to chemical background or electronic noise. EICs successfully recover 

abundant signals by taking into consideration the time of separation (t) for a given m/z value. 

However, limiting data analysis to signals with predefined m/z and separation time 

(molecular features) constitutes an essentially rule-based framework, which although aids 

the selection of targeted signals, still inefficiently discriminates signals with relatively low 

SNR. For example, we observed that six typically used features (zigzag, Gaussian similarity, 

SNR, significance, TPAR, and sharpness)25 form broad and overlapping distributions for 

both true and false signals. These engineered features thus fail to discriminate true signals 

from false ones for border-case SNRs. Recently, semi-automated approaches of targeted data 

analysis successfully recognized trace-sensitive metabolite signals during single-cell HRMS,
11,26–28 albeit at the expense of low data analysis throughput, high manual labor, and 

requirement for significant expertise in computation. To enhance trace-level studies using 

HRMS, software tools capable of automated and high-fidelity inspection are needed.

Here we developed Trace, a software framework that uses deep machine learning (ML) 

techniques for signal detection for HRMS (Fig. 1). We first treated the naturally three-

dimensional information from HRMS—these are the m/z, time of separation (t), and signal 

abundance (peak area or peak height)—as two-dimensional images (m/z, t). Next, we 

applied deep convolution neural networks for pattern recognition. After training the model 

on a reference dataset, we validated our neural network model for accuracy. Comparison 

with popular data processing strategies (XCMS and MetaboAnalyst) suggests that the neural 

network model presented here achieves consistent prediction of high accuracy and low false 

positive rates, which we demonstrated using data from single-cell metabolomic analysis of 

identified Xenopus laevis embryonic cells. Trace was found to be sufficiently robust, 

reproducible, and sensitive to facilitate large-scale trace-sensitive studies by HRMS.

EXPERIMENTAL SECTION

Study Design.

This study was designed to develop and validate Trace and to test its utility for high-

throughput metabolomics. To approximate high biological variability and varying 

experimental conditions, which often result from large-scale metabolomic studies, we 

pooled CE-ESI-HRMS data that were recorded on N = 5 different D11 cells in this study or 

acquired during our earlier experiments. Each cell was measured from a different embryo 

from a different set of parents and analyzed in technical replicates. A unique identifier 

assigned to each resulting file is described in Supplementary Information Table 1 (Table S1). 

For example, “D11 cellE1T1” corresponds to the first technical replicate analysis of the D11 

cell that was sampled from the first embryo in this study. For a bias-free evaluation of 

software performance, the identity of each file was blinded during development and testing 

of Trace; this information was only revealed after data analysis to aid results interpretation.
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Single-cell HRMS of Identified Embryonic Cells.

Experimental details are provided in the SI document. All protocols related to the humane 

care and treatment of Xenopus laevis were approved by the Institutional Animal Care and 

Use Committee (IACUC) of the University of Maryland, College Park (IACUC # R-

DEC-17-57) or the George Washington University (IACUC # A311). D11 cells were 

identified in 16-cell X. laevis embryos, whence 10 nL were aspirated in situ using a pulled 

capillary following our recent protocol.27 Metabolites were extracted from the aspirate and 

analyzed using a laboratory-built CE-ESI platform that was coupled to a quadrupole time-of-

flight mass spectrometer (Impact HD, Bruker Daltonics, Billerica, MA). This platform and 

its operation were described in detail elsewhere.26,27

Data Analysis.

Raw MS data were processed following our established protocols.26,27 Trace software codes 

were developed in Python (version 2.7) and are provided with a User Manual in the SI 

document.

Safety Considerations.

Chemicals and biological samples were handled following standard safety procedures. CE 

capillaries and ES emitters, which pose a potential needle-stick hazard, were handled with 

gloves and safety goggles. To prevent users from exposure to high voltage, which presents 

electrical shock hazard, all connective parts of the CE-ESI setup were earth-grounded or 

isolated in a Plexiglass enclosure equipped with a safety interlock-enabled door.

RESULTS AND DISCUSSION

Trace: Software Design and Implementation.

Trace was designed to integrate several interconnected modules with each carrying out a 

specific task (Fig. 1). Optionally, the “signal screening” module may initially be utilized to 

speed up downstream data processing. Extracted ion chromatograms (EICs) were obtained 

by projecting the intensity profile I (m/z, t) of centroid data from the (m/z, t) space to time 

by binning m/z into a series of discrete values with a specific bin size, thus reducing 

dimensionality and data size. For example, with a mass accuracy of <5 ppm and a typical 

signal width of 0.010 Da in our FIRMS dataset, a bin width of ± 0.005 m/z unit was chosen 

for this study. For each centroid (m/z)0, the maximal ion signal intensity within a range 

((m/z)0 − Δw, (m/z)0 + Δw) was assigned as the intensity of (m/z)0. A continuous wavelet 

transform (CWT) approach (reviewed in reference 18) was adopted to rapidly screen peaks 

along each monitored m/z channel (EICs). For each EIC, the CWT was applied using the 

Python package “SciPy.signal.” A complete list of user-controlled parameters, including 

cutoff values that require optimization in a given study, is provided in the SI (see “Trace 

User Manual”). Last, by screening the EICs corresponding to each discrete m/z value with 

increasingly more relaxed cutoffs, we obtained larger datasets of potential signals that we 

expected to reflect most of the true signals. The center location ((m/z)0, t0) of each potential 

signal was recorded for further analysis.
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The “signal imaging” module was designed to probe the local spectral environment for each 

signal. We used the gridded profile data, viz. I(m/z, t), to extract signal intensity around each 

detected signal centered at ((m/z)0, t0). The imaging window was set at 12 bins (0.002 Da 

for each) in the m/z dimension and 60 bins (30 s /60 = 0.5 s for each) in the temporal 

dimension. The generated 12 × 60 pixel2 images, which are referred to as “signal images” in 

this study, essentially enquire the chemical space around each molecular feature. To outline 

the contour of an actual signal and the minimal rectangle encompassing it, these signal 

images were segmented using the OpenCV package as follows: for each image, pixel values 

were normalized to the range of 0–255, and a threshold of 130 was set for identifying the 

image contour. Abounding box was defined as the minimal rectangle that contains the 

contour associated with the image center and has a size larger than 1/60 of the image size. 

The bounding box was resized to 40 × 20 pixel2 with interpolation. Therefore, each image 

contains only one bounding box as a result of this step. Finally, if an image contained no 

bounding box, it was labeled as a false signal and eliminated from future processing. Trace 

also provides users with the option to adjust the size of these settings as needed for a 

particular study.

The “machine learning” (ML) module was tasked to categorize signal images as true or false 

signals. To automate signal assessment, we employed deep learning (DL) models, which 

efficiently leverage an example dataset or past experience to solve/predict an outcome,29 

namely true vs. false in this work. Encouraged by successful image recognition using 

ML/DL across wide applications, such as medical image analysis30, pathology31, 

astrophysics32, biology33, and FIRMS34, we adopted a convolutional neural network (CNN) 

for signal shape evaluation. CNN represents a class of deep neural networks that require no 

prior feature engineering. Instead, CNN learns a set of weight-sharing filters to represent 

features at different scales. This scheme of ab initio feature selection presents a major 

advantage of CNN.35 The well-known LeNet5 CNN has achieved a remarkable precision in 

handwritten digit recognition for MNIST dataset.36

We utilized a similar network architecture as LeNet5 and implemented it with Google’s DL 

framework TensorFlow37. The input to our network was the signal image of size 60×12 

pixel2 (or 40×20 pixel2 if the bounding box detection is included). The first hidden layer of 

the network was composed of 32 convolutional kernels of size 4 × 4 pixel2 followed by a 2 × 

2 pixel2 max pooling process. These convolutional kernels served as filters to extract local 

features of images, while the max pooling process further abstracts the local features. The 

convolutions were zero padded with stride of 1 so that the output has the same size as the 

input. The second layer was similar to the first layer, except it featured 64 instead of 32 

convolutional kernels. The third layer contained 256 densely connected neurons. To reduce 

possible overfitting, dropout with a rate of 0.5 was applied before the output layer for the 

training process. For the testing process and subsequent prediction, the dropout rate was set 

to 0 (dropout turned off). Rectified Linear Unit (ReLU) was used as the activation function. 

The readout layer was a softmax regression that outputs the probability of being a true signal 

for a given image. This probability was designated as the prediction confidence score. For 

comparison, a simple neural network (SNN) containing only one hidden layer of 64 neurons 

was also tested below, which yielded only slightly inferior results.
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A large dataset is necessary to train most basic machine learning and more advanced deep 

learning (DL) models, and our study is no exception. The ML model was developed based 

on manually curated data that we obtained on single dorsal-animal (D11) cells fromX. laevis 
embryos using single-cell CE-ESI-HRMS. The CE-ESI-HRMS files that resulted from the 

analysis of the identified cells are described in Table S1 and are provided open-access (see 

Metabolomics Workbench). To perform supervised learning of our models, we manually 

curated a total of 4,546 potential signal images from 3 different samples: 1,464 features were 

marked as true metabolic signals [value “1” assigned for (m/z, t) values yielding a peak in 

the corresponding MS data] and 3,082 features were labeled as false metabolic signals 

[value “0” assigned for (m/z, t) values yielding no peak in the corresponding MS data]. 

Select examples are shown in Supplementary Figure 1 (Fig. S1). The complete set of data 

that were used for training are tabulated in Table S2. These data provided a rich baseline to 

train the neural network model for the analysis of other single cells in this study.

The neural network was trained by adjusting the weights using back propagation and 

gradient descent algorithms. We used the cross entropy as our loss function for minimization 

to adjust the weights. The loss function can be expressed as: 

L(w) = − 1
N n 1

N [yn logyn (1 yn) log(1 yn)] where yn and yn′  stands for the actual 

and predicted probability for the nth image to be a true signal, respectively. N is the number 

of training images at each step. In our case, the batch size for each training step was set to 

64. The training optimizer that we used is ADAM in TensorFlow37 with a learning rate of 1 

× 10−4 Other parameters were set as default in TensorFlow. The model was trained until the 

final training accuracy converged with little fluctuation. From our hype-parameter tuning 

experimentation, 5,000 or so training steps were found to be sufficient, and the process took 

~5 min on a PC equipped with a NVIDIA K20 Graphics Processing Unit (GPU) in our 

laboratory. After the neutral network machine was trained to high accuracy (>99%), the 

bounding box of the signal images to be evaluated were fed to the machine probability score 

assignment (Fig. 1). This probability was used as the prediction confidence score: the higher 

the probability is, the more likely the correspondence is to a true signal (e.g., a valid 

metabolite in our study).

Evaluation of Model Performance.

The performance of our CNN was benchmarked against successful ML models, specifically 

decision tree, random forest, and SNN. The training dataset was randomly split to assign 

80% of the samples for training the model and the remaining 20% for performance testing. 

SNN and CNN was 10-times cross-validated by randomly splitting the training dataset each 

time. Test accuracy was quantified using mean and standard deviation as follows (see Fig. 

S2): 78.1 ± 0.3% for decision tree, 86.6 ± 0.1% for random forest, 90.5 ± 0.4% for SNN, 

and 91.9 ± 0.4% for CNN. The receiver operating characteristic (ROC) curve is shown in 

Figure S3 with the area-under-curve (AUC) of 0.97. These results suggest that our trained 

CNN model achieved adequate accuracy and stability to perform metabolic analysis of other 

samples.

The trained CNN model was tested for a randomly chosen file. The file “D11 cellE2T2” was 

manually curated following our established protocols26,27 to extract molecular features as a 
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reference. Trace was employed to search signals with “soft,” “normal,” and “strict” settings, 

which respectively correspond to increasingly conservative conditions for peak finding. The 

signal images and the bounding boxes were constructed for each potential signal, which 

were then evaluated by the neural network already trained to produce the final list of 

predicted signals. The results are presented in Figure 2A. The number of predicted signals 

converged despite increasingly more relaxed criteria used for initial signal screening. The 

initial screening produced 1096, 2780, and 7898 potential signal images, respectively (Fig. 

2A, see “Initial Signal”), of which 649, 1321, and 2734 had features that were detected by 

bounding boxes, respectively (Figure 2A, see “Signal with BB”). The final evaluation by the 

model resulted in 324, 462, and 492 true signals, respectively (Figure 2A, see “Final 

Signal”). Table S3 tabulates the signals that were found from these experiments. Compared 

to the normal condition, the soft criterion only produced 30 additional true signals by the 

neural network model even though more than 5,000 additional potential signals were 

examined. Therefore, the list of true signals was exhausted under the soft condition. 

Detection of ~500 signals agrees with results from our manual curation of the data, 

supporting the accuracy of molecular feature finding by Trace.

The consistency of the model was evaluated by cross-validation. We independently trained 

and tested the network 10 different times, each time using randomly chosen signal images 

from the initial training set (4,546 images). As shown in Figure 2B, the predicted number of 

true signals was comparable between the individual models. Combined, these results show 

that the model was robust. Furthermore, the consistency and robustness of the model was 

also validated by the histogram of prediction confidence score of the true signals by the 

neural network, as shown in Figure 2C. The higher the prediction confidence score of a 

signal is, the more likely it was classified as a true signal. Figure 2C also revealed little 

change in the histograms as the initial screening criteria were relaxed (e.g., compare with 

“soft” conditions): Most of the newly predicted signals exhibited relatively low scores and 

were likely around the border between true and false signal. This means that the model 

effectively identified signals of good quality, namely those with high confidence scores. The 

neural network model thus achieved the desired consistency and sensitivity to actively 

remove the need for fine-tuning initial screening parameters. By simply choosing lax enough 

parameters, the true signals were not missed from the set of images to be examined by the 

model.

These performance metrics were compared with software packages that are widely used for 

the analysis of nanoLC-HRMS type data. As an example, the single-cell CE-ESI-MS file 

that we recorded for the D11 cellE2T2 was analyzed using XCMS22, the CWT-based18 

python function scipy.signal.find_peaks_cwt, and Trace. Results of this comparison are 

presented in Figure 3A. The XCMS online server (version 3.7.1) using the default 

parameters recognized 2,805 molecular features, whereas cipy.signal.find_peaks_cwt using 

an EIC bin width of 0.010 Da returned thousands of signals: the number of molecular 

features were 7,898 for soft, 2,780 for normal, and 1,096 for strict setting. A limited number 

of features were recognized by both XCMS and CWT (see overlap for ~960 signals), 

suggesting that the rest of signals were too variable or false. Indeed, follow-up manual 

inspection of EICs found most of the signals returned by XCMS or CWT as false positives. 

In comparison, Trace uncovered ~500 molecular features, most of which were also found by 
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XCMS and CWT. Semi-manual curation revealed a similar number of molecular features to 

those found by Trace. It is worth noting that Trace also returned signals that were not 

detected by XCMS or CWT (with normal criteria). Follow-up manual curation revealed 

these extra features as true signals with relatively low SNR or ion count intensity. Therefore, 

the neural network approach by Trace was able to extract true signals with low false-positive 

rates from trace-level CE-ESI-HRMS studies.

We asked whether Trace used any simple feature(s) for distinguishing true from false 

signals. The following 6 features of signal quality25 were calculated for the signal images of 

known false and known true signals (by manual validation): Zigzag evaluates the 

smoothness of the EIC; Gaussian Similarity describes how similar the target shape is to a 

standard Gaussian curve; SNR describes the abundance of a signal with respect to the 

surrounding background noise; significance evaluates the ratio of peak intensity and peak 

baseline; triangle peak area similarity ratio (TPAR) describes the similarity of the observed 

peak shape to a triangle; and sharpness evaluates the dynamics of the signal how fast the 

signal peak emerges and vanishes. The distribution of these 6 features are shown for true and 

false signals in Figure 3B. The Gaussian Similarity and SNR presented with a slightly 

separated distribution with enhanced values for true signals. Similarly, the distribution of 

both Zigzag and Sharpness for true signal group formed peaks at small values. Nevertheless, 

the feature distributions were broad with considerable overlaps between true and false 

signals. Thus, some of these measures are helpful but not discriminative enough for accurate 

signal prediction. This finding highlights the necessity of using more advanced ML and DL 

approaches for signal categorization (true vs. false), such as those implemented in Trace.

Case Study: Trace for Single-cell Metabolomics.

We tested the performance of Trace on single-cell CE-ESI-MS data that we obtained on 

identified dorsal-animal (D11) cells in the 16-cell X. laevis embryo. Briefly, a pulled 

microcapillary was used to aspirate an ~10 nL portion of the D11 cell from N = 5 different 

embryos, each from a different set of parents. The metabolites from each aspirate were 

extracted in 4 μL of aqueous mixture of 40% acetonitrile and 40% methanol, and an ~10 nL 

portion of each single-cell extract was individually analyzed in one-to-three technical 

replicates by CE-ESI-HRMS following our established protocols27. Each resulting file were 

assigned a unique identifier (Table S1), although this information was only revealed to 

facilitate the interpretation of results.

By design, this study accounted for significant technical and biological variability to allow 

us to test Trace for large-scale metabolomics projects. Our dataset contained several sources 

of variability, including the following: differences in sample processing due to multiple users 

(2 users here); shifts in CE separation time due to the use of different CE capillaries and 

separation conditions over multiple experiments (4 capillaries and ~2 separation conditions 

used here); varying detection sensitivity resulting from different ionization efficiencies due 

to differences in custom-built CE-ESI ion sources (4 different CE-ESI interfaces built here); 

and differences in m/z detection sensitivity due to user-defined MS tuning parameters (2 

independent tunings performed here). Therefore, these conditions provided an excellent 
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opportunity to establish the performance of Trace for studies spanning variable 

experimental, instrumental, and biological conditions.

Reproducibility and robustness were determined for the DL model. Figure 4 presents the 

signal images that Trace generated for representative metabolites that were identified in N = 

5 different D11 cells (see Methods). A consequence of our study design was variable 

reproducibility in separation times (refer to Study Design in Methods). Experiments that 

were performed under similar conditions yielded <3% error in migration time (e.g., same-

day analysis of E3T1 and E3T3, see Table S1)), which is indicative of the optimal 

reproducibility of our CE platform.26,27 Non-linear time time-alignment using our 

established approach11,26 can further reduce variance to −0.1% error, facilitating metabolite 

identification and quantification. In stark contrast, migration times between D11 cellE2T2 

us. D11 cellE5T, analyzed 3 months apart, varied by up to ~30–40% for argininosuccinate 

(Fig. 4A), S-adenosylmethionine (Fig. 4B), hypoxanthine (Fig. 4C), and creatine (Fig. 4D). 

Despite these inherent variances in separation and detection, the signal images displayed a 

remarkable similarity for the different metabolites. For example, the signal images appeared 

reproducibly circular for creatine, circular with a broader spread for argininosuccinate, oval 

with horizontal spreading for S-adenosinemethionine, and vertically oval for hypoxanthine. 

In theory, these image consistencies that Trace recovered across the different samples, even 

under suboptimal experimental conditions, may be utilized to perform feature selection by 

machine learning and deep learning models across different samples. It does not escape our 

attention that a signal-image driven classification of metabolite signals raises an opportunity 

to complement classical metabolomics with a potentially metabolite-dependent piece of 

information: the shape of the image signal.

The reproducibility of finding molecular features was determined between the biological 

replicates. The CE-ESI-HRMS data were processed for a subset of identified metabolites 

(Table S4) following our semi-manual method (see protocols in reference 11, 26) and the 

neural network model that was trained earlier (Table S2). Migration times were aligned 

based on 5 confidently identified metabolites following a third-order correction function (see 

protocols in references 11, 26). The average separation time of the compounds was chosen as 

reference for calculating separation time deviations. The corrected time was calculated by 

adjusting the original separation time with the corresponding correction function from a 

third-order fitting, as is standard in our single-cell CE-MS protocols.11 These data, tabulated 

in Table S5, allowed us to quantify the reproducibility of data analysis.

Common features were compared. Figure 5A plots the relative error (standard deviation) of 

corrected separation times for 36 metabolites that we identified from the D11 cell labeled 

“D11 cellE2T2.” A less than 1% (relative standard deviation) in corrected migration time 

revealed robust feature finding by Trace, even under high technical and biological variability 

that resulted from our experimental design. Out of the possible 216 signals (36 signals for 

each of the 6 samples), 9 were not experimentally detected by CE-ESI-MS in select cells, 

likely due to biological variation. Another set of 13 signals out of the experimentally 

detected 207 signals were not detected by Trace in some specific cells: 5 were removed by 

the initial CWT scanning and the remaining 8 were not recognized as true signals by the ML 

model. The corresponding false negative rate was 6.28% (13/207) for Trace and 3.96% 
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(8/202) for ML. These rates are comparable with the test error (~8%), indicating that these 

misclassifications largely fall within the expected performance of our current model. Future 

revisions of the software may enhance the fidelity of signal finding, e.g., by collecting more 

comprehensive training sets and employing deeper neural network architectures. For most 

metabolites, close alignment between the corrected migration times with robust and accurate 

signal classification validates that the neural network model, once trained on a reference 

sample, can efficiently and accurately detect true signals in trace-sensitive MS datasets.

The reproducibility of signal quantification was also tested. In metabolomics, under-the-

curve peak areas or peak heights are often used as a proxy for metabolite concentration. We 

and others leveraged this information from single-cell CE-ESI-MS to compare the metabolic 

state of identified single cells in A. californica28,38,39, rat ganglia11,40, and X laevis 
embryos26,27. To validate quantification by Trace, peak areas and peak heights that were 

calculated by Trace (see Table S5) were compared to peak areas that we manually integrated 

for 100 manually curated molecular features. Figure 5B presents the results for data from a 

current study on a D11 cell from X. laevis as well as a previous study26. Linear regression 

coefficients (R2) were > 0.9 for peak areas over a 3-log-order dynamic range, revealing 

excellent correlations between data obtained by manual curation and Trace in spite of the 

long duration of the study. In addition, peak areas from Trace correlated with peak heights 

from Trace (R2 = 0.93), suggesting that peak heights from the software can also be used for 

quantification, particularly for peaks with limited SNRs. Intriguingly, the model that was 

trained in the current study successfully recognized molecular features from data collected 4 

years ago, thus demonstrating robust, quantitative data processing by Trace to aid trace-

sensitive MS.

CONCLUSIONS

Trace complements currently available metabolomic software packages with robust 

performance to extract signals from trace-sensitive metabolomics studies. Once trained on a 

curated dataset, our neural network model consistently predicts molecular features with high 

accuracy and low false positive rates. Automated data processing provides a significant gain 

in data analysis throughput compared to semi-manual inspection of MS data. This case study 

also demonstrated Trace to deliver sufficient robustness to analyze large-scale metabolomics 

data from trace-sensitive studies, including those spanning substantial duration (e.g., 4 years 

tested here). These performance metrics are encouraging to meet increasing data processing 

demands that result from trace-sensitive HRMS, including single-cell investigations that are 

rapidly gaining throughput.

Trace also presents developmental opportunities for future studies. An open-access code 

facilitates future updates for add-on features. For example, separation times may be 

automatically aligned between samples based on known (identified) molecular features 

(reference standards), thus aiding identifications, such as isobaric (identical m/z) or closely 

separating/overlapping species (e.g., leucine and isoleucine). Accurate alignment of m/z vs. 

time domains between metadata can help identify molecular features using reference 

standards. Overlapping signals that challenge CWT-based initial screening in the time 

dimension may be distinguished by evaluating the entire 2D image via a grid search. The 
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software modules may also be integrated into other successful platforms to expand data 

analysis capabilities. Trace can be efficiently used to process data from large-scale studies 

with exciting developmental potentials to support studies using trace-sensitive HRMS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of signal detection highlighting major data processing modules in Trace. (Top 
panel) Optionally, the “signal screening module” is executed to construct a series of 

extracted ion chromatograms (EICs) for inspection by a continuous wavelet transform 

(CWT), thus generating a “guide list” of signal candidates (m/z and separation time values) 

for follow-up data analysis. (Bottom panel) A trained convolution neural network validates 

each potential signal (true or false) by generating the corresponding “signal image”, which is 

then rescaled to a bounding box to be fed to a convolution network tabulating predicted true 

signals. The results are a list of molecular features (m/z and separation time) and their 

corresponding signal abundance (peak height or area).
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Figure 2. 
Performance evaluation of Trace. (A) The numbers of predicted true signals gradually 

converged for initial screening of three increasingly more relaxed criteria (strict, normal, and 

soft). (B) Ten-fold cross-validation of the neural network model for the three initial 

screenings showed a consistent total number of true signals, reflecting the robustness of the 

model. (C) Histogram of prediction confidence scores. The high end of confidence score 

distribution hardly changed from normal to soft condition, suggesting that the model 

effectively identified most of true signals.
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Figure 3. 
Benchmarking of molecular feature detection. (A) Overlap of reported molecular features 

from the cell “D11 cellE2T2” by XCMS (default settings), CWT (normal criteria), and 

Trace. (B) Distribution of quality measures for true and false signals in Trace, revealing the 

use of advanced deep machine learning to categorize signals.
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Figure 4. 
Signal images of representative identified metabolites among N = 4 different D11 cells, each 

from a different embryo from a different set of parents: (A) argininosuccinate (ASA); (B) S-

adenosylmethionine (SAM); (C) hypoxanthine (HPX); and (D) creatine (CR). For each 

metabolite, the accurate m/z is provided with the corresponding signal image labeling the 

time of separation as was detected (not aligned data). The current machine learning model 

did not detect HPX in the cell D11 cellE3T2. The high similarity of signal images across the 

different samples confirms robust and sensitive operation by Trace, suggesting a utility for 

large-scale trace-sensitive studies.
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Figure 5. 
A case study of Trace for single-cell CE-ESI-MS of metabolites in single X. laevis cells. (A) 
Evaluation of molecular feature recognition in the temporal domain (migration times). Trace 

detected signals between N = 5 different D11 cells with <1% separation time error (data 

from only one experiment shown). (B) Assessment of quantitative reproducibility. Peak 

areas from manual data integration correlated with those returned by Trace for data from this 
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study (black data points) and two independent measurements on the same cell type from 

2014 (grey data points). Linear regression coefficients (R2) are shown.
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