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Abstract

Objective: To better define the rare adverse event (AE) of diabetes mellitus associated with immune checkpoint 
inhibitors (ICIs).
Design and methods: We report the case of a lung cancer patient with diabetic ketoacidosis (DKA) and autoimmune 
thyroiditis during pembrolizumab treatment. We provide a systematic review of all published cases (PubMed/Web  
of Science/Cochrane, through November 2018) of autoimmune diabetes mellitus related to blockade of the  
cytotoxic T-lymphocyte antigen 4 (CTLA-4)-, programmed cell death 1 (PD-1) receptor or its ligand (PD-L1) or 
combination (ICI) therapy.
Results: Our literature search identified 90 patient cases (our case excluded). Most patients were treated with anti-PD-1 
or anti-PD-L1 as monotherapy (79%) or in combination with CTLA-4 blockade (15%). On average, diabetes mellitus 
was diagnosed after 4.5 cycles; earlier for combination ICI at 2.7 cycles. Early-onset diabetes mellitus (after one or 
two cycles) was observed during all treatment regimens. Diabetic ketoacidosis was present in 71%, while elevated 
lipase levels were detected in 52% (13/25). Islet autoantibodies were positive in 53% of patients with a predominance 
of glutamic acid decarboxylase antibodies. Susceptible HLA genotypes were present in 65% (mostly DR4). Thyroid 
dysfunction was the most frequent other endocrine AE at 24% incidence in this patient population.
Conclusion: ICI-related diabetes mellitus is a rare but often life-threatening metabolic urgency of which health-care 
professionals and patients should be aware. Close monitoring of blood glucose and prompt endocrine investigation in 
case of hyperglycemia is advisable. Predisposing factors such as HLA genotype might explain why some individuals  
are at risk.

Introduction

Unleashing the power of the immune system with 
monoclonal antibodies targeting immune checkpoint 
receptors has been a major breakthrough causing a 
paradigm shift in the treatment of many types of 

cancer. The deficient anti-tumor immune response can 
be restored by blocking inhibitory immune receptors 
of which cytotoxic T-lymphocyte antigen 4 (CTLA-4), 
programmed cell death 1 receptor (PD-1) and its ligand 
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(PD-L1) have become part of our standard of care options 
in many indications (1). Immune checkpoint blockade 
is associated with a unique risk for immune-related AEs 
(irAE), affecting the endocrine organs in 4–30% of patients 
(2, 3). While hypophysitis and thyroid disorders are the 
most frequent endocrine irAE, autoimmune diabetes 
mellitus is a rare (1%) but potentially life-threatening irAE 
deserving further notice (4). It appears more frequently 
with PD-1 or PD-L1 blockade (or combination therapy) 
than with anti-CTLA-4 (ipilimumab) therapy (5, 6), 
highlighting the importance of the PD-1/PD-L pathway 
in maintaining self-tolerance against pancreatic islets. 
Similarities with ‘classic’ type 1 diabetes mellitus (T1D) 
include the presence of islet antibodies and susceptible 
HLA genotypes (4, 6). The clinical significance of 
diabetes mellitus associated with checkpoint blockade 
is estimated to increase as these novel anticancer agents 
are both initiated to a greater extent and at an earlier 
disease stage (7). We describe a patient with rapid-onset 
diabetes mellitus and ketoacidosis associated with the ICI 
pembrolizumab (anti-PD-1). We subsequently performed 
a systematic review and present an overview of similar 
cases of diabetes mellitus related to CTLA-4, PD-1, 
PD-L1 or a combination of CTLA-4 and PD-1 checkpoint 
inhibitors. We discuss the clinical presentation, potential 
mechanisms and suggestions for optimal management.

Case report

Our patient is a 61-year-old male with a recent 
diagnosis of metastatic non-small-cell lung carcinoma 
(NSCLC). Eight weeks after initiating treatment with 
pembrolizumab, he presented at the emergency 
department with a 5-day history of nausea, vomiting, 
diarrhea and generalized weakness. He had no personal 
or family history of endocrine or autoimmune disease. 
Physical examination revealed impaired consciousness, 
dry mouth, marbled skin and cold extremities. He was 
hypotensive (105/45 mmHg) and tachycardic (108/min). 
Blood analysis showed a marked hyperglycemia (1194 mg/
dL = 66.3 mmol/L), pseudohyponatremia (117 mmol/L – 
corrected 143 mmol/L) (8) and acute renal insufficiency 
(CrCl 28 mL/min/1.73 m2). The positive reaction for 
urinary ketones and a blood gas analysis showing severe 
metabolic acidosis with respiratory compensation, 
established the diagnosis of diabetic ketoacidosis. The 
patient was hospitalized at our intensive care unit for 
monitoring, rehydration and intravenous insulin therapy. 
He recovered and was switched to a subcutaneous  

basal-prandial insulin regimen. An autoimmune etiology 
was probable, given the context and the presence of positive 
glutamic acid decarboxylase autoantibodies (GADAs) 
with low C-peptide levels (Table  1). The serum lipase 
level was also elevated at diagnosis (>3 times the upper 
reference limit). Abdominal computed tomography did 
not show signs of pancreatitis. The HLA class II genotype 
of our case was assessed by allele-specific oligonucleotide 
hybridization, as previously described (9). HLA genotype 
analysis identified homozygosity for the haplotype 
DRB1*04-DQA1*03:01-DQB1*03:02 (DR4-DQ8). 
Subclinical hyperthyroidism was simultaneously detected 
(TSH 0.058 mIU/L, fT4 18.7 pmol/L) which evolved 
into manifest hypothyroidism (TSH 18.92 mIU/L, fT4 
5.7 pmol/L) over the next weeks requiring levothyroxine 
substitution therapy. Ultrasonography of the thyroid 
did not demonstrate hypervascularity, and thyroid 
autoantibodies (TPOAb, TSI) were negative. This clinical 
pattern was suggestive of checkpoint blockade-induced 
thyroiditis (10, 11, 12, 13). We subsequently performed 
a systematic review to identify similar cases of diabetes 
mellitus associated with ICI.

Methods

Several databases (PubMed/Web of Science/Cochrane) 
were searched through November 2018, for case reports 
on the subject of diabetes mellitus and checkpoint 
inhibitors, by two reviewers independently (J M K d F and 
A V K). The investigators screened the title and abstract 
for manuscript selection. Language was restricted to 
English. Congress reports were excluded. Supplementary 
Table 1 (see section on supplementary data given at the 
end of this article) provides an overview of our search 
terms. Additionally, the authors reviewed the reference 
lists of the included articles (4, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 
65, 66, 67, 68) and identified five additional cases (69, 
70, 71, 72). The following data were extracted from each 
manuscript: author, year of publication, age, gender 
and ethnicity of the patient, cancer type, checkpoint 
inhibitor therapy, number of cycles of therapy, prior 
immunotherapy, relevant past medical history (PMH), 
presence of diabetic ketoacidosis, glycemia, glycated 
hemoglobin, C-peptide, islet autoantibodies, lipase, 
other irAE and HLA genotype. The number of treatment 
cycles was preferred rather than the time to onset 
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in weeks, as this information was not consistently 
available (immune checkpoint therapy is usually given 
every 3 weeks). We categorized the HLA haplotype into 
three classes: ‘susceptible’, ‘neutral’ or ‘protective’ for 
autoimmune diabetes. Specifically, haplotypes were 
categorized as susceptible in the presence of (1) HLA 

A2, DR3, DR4 or (2) the presence of DR9 in a Japanese 
population or (3) when the authors of the original paper 
had categorized it susceptible. They were protective in 
case of DQ6, DR11 or DR16-DQ5. Written informed 
consent for genetic analysis and publication was 
obtained from our patient.

Results

Our search identified a total of 145 articles of which 62 were 
eligible. Figure 1 shows a flow chart of the study selection. 
We identified a total of 90 cases, aside from our patient, 
with a male predominance (55/91, 60%) and a mean age 
of 61 years (range 22–84). The ethnicity was Asian in 15%. 
The main tumor types were melanoma (48/91, 53%) and 
NSCLC (14/91, 15%). Relevant PMH, namely diabetes 
mellitus, thyroid disease or risk thereof, was noted in 
22% (20/91). One in four cases (22/91, 24%) had received 
prior immunotherapy, with IL-2 (2/91), interferon 
(7/91), ipilimumab (16/91) and/or nivolumab (3/91). 
The different treatment regimens included monotherapy 
with anti-CTLA-4 (3/91, 3%), anti-PD-1 (65/91, 71%), 
anti-PD-L1 (7/91, 8%) or a combination of anti-CTLA-4 
with anti-PD-1 (14/91, 15%). One patient received PD-L1 
with 4-1BB (CD137) blockade and one other patient 
received either CTLA-4 or PD-1 blockade therapy. Thus, 
the treatment regimen mostly observed in this cohort 
was anti-PD-1 monotherapy; blockade of the PD-1/PD-L 
pathway was involved in 96% (87/91). Only three cases of 
diabetes development were observed during anti-CTLA-4 
monotherapy. Importantly, all of these were pre-treated 
with nivolumab (2/3) and/or interferon (2/3). On average, 
patients were diagnosed with diabetes after 4.5 treatment 
cycles (range: 1–17), while this appeared to be earlier for 
the combination of anti-CTLA-4 and PD-1 therapy (2.7 
cycles, range: 1–5). Cases of early-onset diabetes (after 
only one or two cycles) were observed in all treatment 
regimens. The presentation of diabetes mellitus related 
to checkpoint blockers often follows a severe course. 
Seventy-one percent of patients (64/91) presented with 
diabetic ketoacidosis (DKA), with a median presenting 
glycemia of 565 mg/dL (range: 209–1211) and glycated 
hemoglobin of 7.6% (average: 7.7%; range: 5.4–11.4). Low 
C-peptide levels were present at diagnosis in 84% (58/69) 
of cases. The onset appeared earlier for patients presenting 
with DKA, with 4 versus 5.9 cycles. Elevated lipase levels 
were detected in 52% (13/25) of analyzed patients. At 
least one of the islet autoantibodies was positive in 53% 
(47/88), while two or more autoantibodies were detected 

Table 1 Laboratory data on admission.

Value Ref.

Blood
 Glucose, mg/dL 1194 70–100
 Urea, mg/dL 96 19–43
 Creatinine, mg/dL 2.4 0.66–1.25
 eGFR (MDRD; mL/min/1.73 m2) 28 >60
 Na, mmol/L 117 137–145
 K, mmol/L 5.6 3.4–5.0
 Cl, mmol/L 86 98–107
 HCO3, mmol/L 6 22–30
 Anion Gap, mmol/L 31 10–18
 Ca, mmol/L 1.86 2.10–2.50
 P, mmol/L 0.77 0.81–1.45
 Mg, mmol/L 0.95 0.66–0.95
 Alb, g/L 31 35–50
 CRP, mg/L 100.3 <5
 LDH, U/L 408 313–618
 AST, U/L 16 17–59
 ALT, U/L 29 21–72
 ALP, U/L 113 38–126
 GGT, U/L 36 <73
 Bili, mg/dL 0.43 0.2–1.3
 Lipase, U/L 970 23–300
 Platelet, ×103/mm3 305 158–450
 Hb, g/dL 14.3 13.0–16.5
 WBC, ×103/mm3 21.9 3.6–9.6
 Neutrophils, % 86.0 41.0–74.0
 (Absolute), ×103/mm3 18.834 1.4–6.7
Urine
 Protein Negative
 Glucose, g/L ++++

44.3
 Creatinine, mg/dL 25
 Na, mmol/L 10
 Osm, mosmol/kg H2O 418
Arterial blood gas
 pH 6.944 7.35–7.45
 PaCO2, mmHg 18.5 36–44
 PaO2, mmHg 86.5 65–80
 HCO3, mmol/L 4.0 22–26
 Base excess, mmol/L −26.2 −2, +2
 Lactate, mmol/L 1.6 0.7–2.1
Thyroid (before the start of immunotherapy)
 TSH, mIU/L 1.11 0.27–4.2
 fT4, pmol/L 12.4 11.0–24.0
Diabetes
 ICA Negative
 Insulin Ab, % binding 0.5 <0.6
 GADA, WHO U/mL >171 <23
 IA2A, WHO U/mL <0.1 <1.4
 C-peptide, nmol/L 0.02 0.29–0.99
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in 15% (13/88). The autoantibody analysis was positive in 
51% of patients for GADA, 18% for insulinoma-associated 
antigen-2 (IA-2), 13% for islet-cell antibodies (ICA), 26% 
for anti-insulin and 4% for zinc transporter 8 (ZnT8). 
Table 2 shows an overview of pancreatic autoantibodies. 
The mean time of onset was 3.1 cycles (range: 1–17) for 
GADA-positive and 5.9 cycles (range: 1–16) for GADA-
negative patients. The genetic HLA region was analyzed 
in 56% (51/91) of patients. Genotypes susceptible for 
T1D or fulminant diabetes were present in 61% (31/51), 
while a protective genotype was simultaneously present 
in an additional 4% (2/51). The DR4, DR3, DR9 and A2 
were the dominant HLA serotypes. Table  3 shows an 
overview of the HLA genotypes. Thyroid dysfunction 
related to checkpoint inhibition (thyroiditis, primary 
hypo- or hyper-thyroidism) developed in 24% (21/91) of 
patients. Of these 21 patients, two had a known history of 
hypothyroidism. A summary of the results can be found 
in Table 4.

Discussion

We present a comprehensive overview of diabetes mellitus 
development in patients treated with ICIs and describe a 
patient with simultaneous rapid onset of diabetes mellitus 
with ketoacidosis and thyroiditis associated with the 
checkpoint inhibitor pembrolizumab. We confirm that 
diabetes mellitus is an important, yet rare, side effect. 
Similar to our case, these patients often present with a 

fulminant onset of diabetes mellitus and the presence of 
ketoacidosis at the time of diagnosis (4, 6, 15). Its onset 
ranges from a few weeks, sometimes even after the first or 
second cycle of immunotherapy (4, 6), up to more than 
a year after the initiation of immunotherapy (6, 17). We 
observed the early pattern of diabetes onset with all classes 
of checkpoint inhibitors. The onset of β cell inflammation 
is often fulminant, suggested by the relatively low glycated 
hemoglobin levels, while C-peptide levels are usually low 
or undetectable at diagnosis. This irAE is predominantly 
found in patients exposed to blockade of the PD-1/PD-L 
pathway. We further observed that a quarter of all patients 
has received prior immunotherapy, and it is possible that 
this influenced the results, as it was previously observed 
that the combination of rapamycin and IL-2 transiently 
decreased C-peptide levels in T1D patients (73), and 
additionally T1D was also a reported side effect of 
interferon therapy (74). Islet autoantibodies were detected 
in half of patients, with GADA being the predominant 
antibody, although it should be noted that the other 
autoantibodies were not as systematically analyzed. This 
differs from ‘classic’ T1D where autoantibodies are present 
in 80–95% of patients (75, 76). It has previously been 
suggested that the presence of autoantibodies at the time 
of diagnosis is related to an earlier onset of ICI-induced 
diabetes (4, 6, 43, 58). Our review supports this hypothesis. 
It would be of academic value to prospectively investigate 
this phenomenon as well as the serologic status of  
non-diabetes patients in future studies. Additionally, there 

Figure 1
Flow chart of study selection.

Table 2 Pancreatic autoantibodies and ICI-induced diabetes.

All GAD ICA IA-2 Insulin ZnT8

Present 47 43 3 10 9 1
Absent 41 42 20 45 26 23
N/A 3 6 68 36 56 67
Frequency (%) 53 51 13 18 26 4

GAD, glutamic acid decarboxylase; IA-2, insulinoma-associated antigen-2; 
ICA, islet-cell antibodies; N/A, not available; ZnT8, zinc transporter 8.

Table 3 HLA genotype in patients with ICI-induced diabetes.

HLA genotype Serotype #

Susceptible 31/51 (61%) A2.1 5
Susceptible and protective 2/51 (4%) DR3 8
Neutral 10/51 (20%) DR4 23
Protective 8/51 (16%) DR9 5
N/A 40/91 DR4-DQ4 2

Other 15

ICI, immune checkpoint inhibitor; N/A, not available.
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was biochemical evidence of pancreatic inflammation 
with elevated lipase levels reported in about 50% of all 
cases. Several authors also described radiographic changes 

in the pancreatic volume during immunotherapy, notably 
pancreatic enlargement before diabetes onset, followed 
by a volume decrease (14, 46). These findings are often 
asymptomatic (6, 14) as was the case in our patient. It 
remains unclear to which extent the pancreatic exocrine 
gland is involved. It has been hypothesized that ‘classic’ 
T1D is in fact a combined endocrine–exocrine disease in 
which the loss of functional β cell mass is most clinically 
apparent (77) and non-specific elevations of amylase and 
lipase occur in 16–25% of cases with DKA (78). In the 
context of checkpoint blockade therapy, asymptomatic 
elevations of lipase and/or amylase have also been reported 
in the absence of new-onset diabetes (79, 80). Whether 
these patients are prone to develop diabetes in the future 
is an additional question to address in prospective studies.

The strength of our study is the broad and extensive 
investigation with the exploration of different search 
engines. Our study also has its limitations. The analysis 
included individual patient data, of whom not all 
parameters of interest were available. The incidence 
could not be calculated by the lack of the total number 
of treated patients. We do believe however that this AE is 
still underestimated as it is increasingly being reported, 
as shown by a recent pharmacovigilance study (81). The 
incidence of DKA was lower (50.2 vs 71%) in their analysis. 
Another research group described a large case series of 
27 patients with insulin-dependent diabetes induced by 
checkpoint inhibitors. Compared to our analysis, they 
also reported DKA less frequently (59 vs 71%) (6). This 
might be due to a publication bias in our study toward 
fulminant presentations, due to an underrepresentation 
of milder diabetes cases in the literature.

The role of immune checkpoints in the 
pathophysiology of diabetes mellitus has been 
investigated in mice and in humans. Non-obese diabetic 
(NOD) mice develop rapid-onset diabetes following 
the blockade of PD-1 or PD-L1 but not PD-L2 (82). This 
corresponds with the finding that pancreatic islets express 
PD-L1 at low levels in mice (dramatically upregulated in 
inflamed islets), while PD-L2 expression is not detected 
(82, 83). Definite conclusions remain difficult as PD-L1 
also binds to B7-1 (CD-80), itself a ligand for CD-28 
and CTLA-4 (84). Specific blockade of the PD-L1:B7-1 
interaction preferably induced diabetes in older (13 weeks 
old) as compared to younger (6–7 weeks old) NOD mice, 
while the blockade of both PD-L1: PD-1 and PD-L1:B7-1 
interactions rapidly induced diabetes in mice of both 
ages (85). This suggests a multi-faceted role for PD-L1 
in diabetogenesis. To the best of our knowledge, there is 
no evidence of CTLA-4 expression on pancreatic islets, 

Table 4 Summary of results.

Characteristic All cases (n = 91)

Age, years
 Median (range) 61 (22–84)
Gender
 Female/male 36 vs 55
Ethnicity
 Asian 14/91 (15%)
Tumor types
 Melanoma 48/91 (53%)
 NSCLC 14/91 (15%)
Past medical history* 20/91 (22%)
Prior immunotherapy 22/91 (24%)
 IL-2 2/91
 Interferon 7/91
 Ipilimumab 16/91
 Nivolumab 3/91
Immune checkpoint inhibitor
 Anti-CTLA-4 3/91 (3%)
 Anti-PD-1 65/91 (71%)
 Anti-PD-L1 7/91 (8%)
 Anti-CTLA-4 + anti-PD-1 14/91 (15%)
 Anti-PD-L1 + 4-1BB blockade 1/91
 CTLA-4 or PD-1 blockade 1/91
Time-to-diagnosis in cycles (range) 4.5 (1–17)
 Combination therapy 2.7 (1–5)
 With/without DKA 4 vs 5.9
 GADA pos./GADA neg. 3.1 vs 5.9
Diabetic ketoacidosis 64/91 (71%)
Glycemia, median (range) 565 mg/dL (209–1211)
Glycated hemoglobin, median (range) 7.6% (5.4–11.4)
Low-C-peptide at diagnosis 58/69 (84%)
Elevated lipase 13/25 (52%)
Positive pancreas autoantibodies
 At least one 47/88 (53%)
 Two or more 13/88 (15%)
Type of pancreas autoantibodies
 GADA 51%
 IA-2 18%
 ICA 13%
 Anti-insulin 26%
 ZnT8 4%
HLA analysis 51/91 (56%)
 Susceptible 31/51 (61%)
 Susceptible and protective 2/51 (4%)
 Neutral 10/51 (20%)
 Protective 8/51 (16%)
Thyroid dysfunction with ICI 21/91 (24%)
 Prior history of thyroid dysfunction 2/21

*Diabetes mellitus, thyroid disease or risk thereof.
4-1BB, CD137; CTLA-4, cytotoxic T lymphocyte antigen 4; DKA, diabetes 
ketoacidosis; GADA, glutamic acid decarboxylase; HLA, human leukocyte 
antigen; IA-2, insulinoma-associated antigen-2; ICA, islet-cell antibodies; 
ICI, immune checkpoint inhibitor; IL-2, Interleukin-2; NSCLC, non-small cell 
lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed 
death-ligand 1; ZnT8, zinc transporter 8.
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although the transgenic overexpression of anti-CTLA-4 
Fv on β cells could protect NOD mice from autoimmune 
diabetes (86). In humans, polymorphisms in the CTLA4 
and PD-1 gene confer increased susceptibility to a variety 
of autoimmune disorders, including T1D (87, 88, 89, 90, 
91, 92). The CTLA-4 and PD-1/PD-L pathways have been 
studied in T-cell subsets from patients with ‘classic’ T1D. 
Both decreased PD-1 gene expression in peripheral CD4+ 
T cells (93) as a low frequency of circulating PD-1+ CD4+ 
T cells were found in T1D patients (94). More recently, 
Granados et al. demonstrated further PD-1 dysregulation 
as activated peripheral T cells from children with new-
onset T1D failed to upregulate PD-1 upon T-cell receptor 
stimulation (95). Regulatory T cells (Tregs) express both 
CTLA-4 (96) and PD-1 (97), essential in their activation 
and suppressive role in peripheral immune tolerance 
(97, 98, 99) and a deficiency in the ability to upregulate 
PD-1 and efficiently use the PD-1/PD-L pathway has been 
observed in CD4+ CD25+ Tregs from T1D patients (100). 
Furthermore, human pancreatic β cells express PD-L1, 
which is induced by IFN-γ (and to a lesser extent IFN-α). 
This expression is upregulated in inflamed islets and is 
associated with CD8+ T-cell infiltration (101, 102). One 
could hypothesize that β cells respond in such a way to 
attempt to suppress autoreactive CD8+ T cells. Figure  2 
illustrates the pathophysiology of immune checkpoint 
inhibitor-associated diabetes mellitus.

Predisposing factors for ICI-induced diabetes should 
be better defined. ‘Classic’ T1D has a strong genetic 
component, with the HLA class II alleles accounting 
for up to 50% of the disease risk (103). Differences 
between populations and diabetic genotypes do 
exist, as the DR3-DQ2 and DR4-DQ8 haplotypes are 
a major risk factor for T1D (103), while the DR4-DQ4 
and DR9-DQ9 haplotypes are linked with fulminant 
diabetes in Asians (104). Our patient was homozygous 

for the DR4-DQ8 haplotype, an HLA pattern associated 
with a high risk for type 1 diabetes. In this review, 
the majority of patients had a HLA genotype with 
increased susceptibility for either T1D or fulminant 
diabetes (61%), which is striking when compared to a 
Caucasian reference population (susceptible genotypes: 
9.1%; rare, neutral or moderately protective/susceptible 
genotypes: 23.9%; protective genotypes: 67.1%) (105). 
There was also a predominance of HLA-DR4, similar to 
the cohort described by Stamatouli et al., although they 
reported a higher frequency (16/21, 76%) (6). We might 
consider checkpoint blockade-induced diabetes to be a 
distinct diabetes subtype, showing typical features of 
‘classic’ T1D and fulminant diabetes. The rapid-onset 
of diabetes with ketoacidosis, relatively low glycated 
hemoglobin levels and pancreatic inflammation are 
suggestive of fulminant diabetes, while the seemingly 
non-Asian ethnical predominance and the presence of 
autoantibodies (although less frequent) fit to the ‘classic’ 
T1D. Alternatively, checkpoint blockade-induced 
diabetes mellitus may merely be a heterogeneous 
collection of variants of autoimmune diabetes, 
exhibiting the increasingly acknowledged heterogeneity 
of T1D (106). Table 5 compares the characteristics of the 
different diabetes subtypes (78, 107, 108, 109, 110, 111, 
112, 113). Patients who received immune checkpoint 
therapy after pretreatment with other immunotherapy 
also appeared to be at increased risk. The combination 
of checkpoint blockade therapy carries an increased 
incidence of irAE as compared to monotherapy (114). 
In a meta-analysis by Barroso-Sousa et al., patients who 
received combination immunotherapy were more likely 
to develop thyroid dysfunction and hypophysitis (2). 
This may hold true as well for ICI-induced diabetes. 
Prior autoimmune disease, such as autoimmune thyroid 
disease (spontaneous or associated with immunotherapy)  

Figure 2
Pathophysiology of immune checkpoint 
inhibitor-associated diabetes mellitus.
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could be another potential risk factor for the development 
of diabetes mellitus related to ICI. The pre-existence 
of type 2 diabetes did not appear to be a particular 
risk factor in a French retrospective analysis (25). In 
this study, one patient with insulin-dependent type 2 
diabetes had worsening glycemic control, although it 
could not be excluded that pancreatic autoimmunity 
already existed (i.e. LADA) before the start of nivolumab 
therapy (26).

Health care professionals should be aware of this 
possible side effect as these novel anticancer agents are 
increasingly used (7). Clinical signs and symptoms of 
hyperglycemia should be checked and when present, 
should prompt blood glucose measurement. Routine 
monitoring of blood glucose before each administration 
of ICI therapy is currently advisable (5, 115, 116). This 
would theoretically allow for an early diagnosis of 
glucose abnormalities and of DKA in particular. Some 
have even suggested to provide a glucometer to patients 
with a history of autoimmune disease (4). The usefulness 
of glucose monitoring has been disputed however in a 
retrospective analysis of fasting glycaemia in anti-PD-1-
treated patients, suggesting that glucose monitoring does 
not allow to anticipate T1D in this patient population, 
perhaps due to its brisk onset (25). Upon the detection 
of new-onset diabetes or worsening glycaemia in patients 
with known type 2 diabetes mellitus, the glycated 
hemoglobin and pancreatic autoantibodies (especially 
GADA) should be analyzed to support the diagnosis 
of checkpoint blockade-related diabetes mellitus. 
Measurement of C-peptide is not strictly necessary for 
the diagnosis and treatment of this AE, especially given 
its fluctuation in time, although serially measured (or in 

the non-DKA phase, glucagon-stimulated) values could 
be of potential value in future decision-making regarding 
tapering or omitting insulin therapy in selected cases. 
The presence of pancreatic autoantibodies, detectable 
in ~50% of patients, is not an absolute requirement for 
the diagnosis and treatment of checkpoint inhibitor-
associated diabetes. The management is based mainly 
on clinical expertise with these novel drugs. Insulin 
is the default therapy for glucose control, together 
with supportive measures (i.e. hydration, correction 
of electrolytes) according to standard guidelines (5, 
117). There is currently no effective way of preventing 
or limiting the onset of this side effect. The attempt of 
immunomodulation with high-dose corticosteroids (i.e. 
standard treatment of irAE) was unsuccessful in reversing 
autoimmune diabetes following immunotherapy in 
a patient described by Aleksova et  al. (60). Although 
omitting checkpoint blockade has been found to prevent 
further β cell loss in a single patient (118), given the 
compelling indication of immunotherapy in advanced 
malignancies with few treatment options, this might not 
be practically possible. This should perhaps be considered 
in an adjuvant setting where the prognosis is better. 
Restarting treatment with ICI should be considered 
once adequate glucose control has been established 
(5, 117). Finally, we acknowledge the need for further 
prospective studies to reassess/reevaluate current policy 
and expand our knowledge of the pathophysiology of 
this unique entity of diabetes mellitus associated with 
checkpoint inhibitors. Further exploration of risk factors 
and biomarkers is required to better identify individuals 
at risk and ideally prevent the onset of this rare but often 
aggressive form of diabetes.

Table 5 Classification of diabetes mellitus.

Checkpoint blockade ‘Classic’ type 1 LADA Fulminant diabetes

Clinical features
 Age at onset (range) 61 years (22–84) Childhood or adolescence

Rarely adult
>30 years Adult

 Ethnicity Both Non-Asian Non-Asian Asian
 Symptoms at diagnosis Acute (rarely subclinical) Acute Subclinical Acute
 Ketoacidosis Yes (76%) Possible Rarely Yes
 Insulin required at diagnosis Yes Yes No Yes
Biochemical features (at diagnosis)
 C-peptide Low or undetectable (84%) Low or undetectable Low or normal Low or undetectable
 HbA1c (range) 7.5% (5.4–11.4) >6.35% 7.86 <8.7%
 Lipase Elevated (52%) Elevated (24%, DKA) ? Elevated (98%)
 Autoantibodies Positive (53%) Positive (>80%) Positive Negative
Pathophysiology
 HLA association Suspected High risk High/mild risk High risk

References: (78, 107, 108, 109, 110, 111, 112, 113).
CRP, C-reactive peptide; HbA1c, glycated hemoglobin; LADA, latent autoimmune diabetes of adults.
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Conclusion

Checkpoint blockade-induced diabetes mellitus is a 
rare but potentially lethal AE, as diabetic ketoacidosis 
is often the first presentation. Despite its rarity, health-
care professionals should be aware and patients need 
to be educated. This is crucial since a growing number 
of patients are treated with checkpoint blockade. Apart 
from raising awareness, periodic measurement of blood 
glucose is a practical screening option, for the time being. 
Predisposing factors, such as HLA genotype, may explain 
why some individuals are at greater risk. Our current 
knowledge of biomarkers, for the stratification of patients 
that need close follow-up, remains insufficient.
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