Skip to main content
. 2019 Mar 14;5(1):18. doi: 10.1038/s41572-019-0069-0

Fig. 4. Epithelial cell regeneration in ARDS.

Fig. 4

Mice in which the alveolar type II (ATII) epithelial cells and all their progeny express green fluorescent protein (GFP) (SftpcCreERT2;mTmG mice) were treated with intratracheal lipopolysaccharide to induce lung injury. Mice were euthanized 27 days later and lung sections were stained for GFP (green), the alveolar type I (ATI) cell marker T1α (purple) and 4′,6-diamidino-2-phenylindole (DAPI; for nuclear staining (blue)). Some ATII cell-derived cells (GFP-staining cells in panels a (×40) and c (×40)) expressed ATI markers (T1α-staining cells in panels b (×40) and c), as shown by dual GFP-staining and T1α-staining cells (panel c) — indicating transdifferentiation during repair after lung injury. Arrowheads indicate nascent ATI cells that transdifferentiated from ATII cells during repair after injury (dual GFP-staining and T1α-staining cells). Arrows indicate ATI cells that withstood the initial injury (GFP-negative but T1a-staining cells). These experimental data support the notion that ATI cells are damaged during acute lung injury and are then replaced by ATII cells that transdifferentiate into ATI cells. Reprinted with permission of the American Thoracic Society. Copyright © 2019 American Thoracic Society. Jansing, N. L. et al. (2017) Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am. J. Respir. Cell Mol. Biol. 57, 519–526. The American Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society.