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Abstract

Traumatic brain injury (TBI) is a major health concern in children, as it can cause chronic cognitive and behavioral

deficits. The lack of objective involuntary metrics for the diagnosis of TBI makes prognosis more challenging, especially

in the pediatric context, in which children are often unable to articulate their symptoms. Resting state electroencepha-

lograms (EEG), which are inexpensive and non-invasive, and do not require subjects to perform cognitive tasks, have not

yet been used to create functional brain networks in relation to TBI in children or non-human animals; here we report the

first such study. We recorded resting state EEG in awake piglets before and after TBI, from which we generated EEG

functional networks from the alpha (8–12 Hz), beta (16.5–25 Hz), broad (1–35 Hz), delta (1–3.5 Hz), gamma (30–35 Hz),

sigma (13–16 Hz), and theta (4–7.5 Hz) frequency bands. We hypothesize that mild TBI will induce persistent frequency-

dependent changes in the 4-week-old piglet at acute and chronic time points. Hyperconnectivity was found in several

frequency band networks after TBI. This study serves as proof of concept that the study of EEG functional networks in

awake piglets may be useful for the development of diagnostic metrics for TBI in children.
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Introduction

Traumatic brain injury (TBI) is the leading cause of death

and disability in children in the United States.1,2 Children have

the highest incidence rates of emergency department visits asso-

ciated with TBI, often as a result of sports or recreation activities.2

Following pediatric TBI, typical symptoms include cognitive and

behavioral deficits that are dependent on injury severity, location

(diffuse or focal), and recovery duration. There is a great need for

improved multimodal clinical assessment of pediatric TBI, because

there are at present no standardized biomarkers for its diagnosis and

prognosis either in the clinic or on the sidelines of a sports field.3

Electroencephalography (EEG) is a useful tool for examining

the functional integrity of neuronal networks in health and disease.

It is relatively inexpensive and non-invasive, and can provide a

functional assay with high temporal resolution. In contrast to

functional neuroimaging methods, a reasonable signal-to-noise

ratio can be obtained even with minor subject movement, making it

a particularly attractive means of evaluation in pediatric popula-

tions. However, conventional EEG is limited in its diagnostic and

prognostic capability for pediatric TBI. Although there are EEG

changes following severe TBI,4 the standard clinical interpretation

of EEG signals is insensitive to mild TBI (mTBI): most EEGs are

within normal limits or show very subtle alterations.5,6 Also, ab-

normalities in EEG signal amplitude and latencies do not consis-

tently correlate with long-term symptoms.6 As a way of

overcoming these limitations, network analyses of EEG recordings

may provide a robust and objective platform for interpretation.

Functional networks are commonly utilized in the study of neuro-

psychiatric disorders such as stroke and schizophrenia,7–9 and may

similarly be helpful in determining the source of cognitive and

behavioral deficits seen in TBI patients, including non-

communicative children.

EEG recordings acquired while the subject is in a ‘‘resting state’’

are commonly analyzed using functional networks in order to study

neurological disorders in humans.10–14 ‘‘Resting state’’ typically

involves subjects sitting with eyes closed in a dark room while

awake and free from any overt stimuli. Resting state EEG data are

easier to collect and simpler for the subject than task-based pro-

cedures, which is appealing to the study of pediatric populations,

from whom cognitive tasks can be more difficult to elicit consis-

tently and reproducibly. At the time of this publication, there were a

few studies on developmental changes in resting state EEG func-

tional networks,10,11 but there are no reports on the effect of TBI on

the pediatric human population.

Recently, the use of pigs in neuroscience research has grown

because the pig brain is very similar to that of the human in anatomy

and growth. Piglets share a similar rate of myelination and cerebral
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hemodynamics and metabolism with human neonates.15,16 Ad-

ditionally, piglet brain development resembles the human post-

natal developmental sequence as measured by EEG.16,17 EEG

patterns in the piglet in the awake state and after cerebral insult

were similar to those observed in children.17–19 The use of the 4-

week-old piglet model permits investigation into the effects of TBI

on EEG functional networks during early childhood (1–3 years

old). We hypothesize that mTBI will induce acute and chronic,

frequency-specific changes in the resting state functional connec-

tivity of juvenile piglet brains.

In this study, we examined resting state EEG functional net-

works across several frequency bands in awake piglets before and

after mTBI. Our data show significant frequency-dependent chan-

ges in the characteristics of networks 1, 4, and 7 days after TBI,

which may be helpful for the assessment of whether TBI has oc-

curred in the pediatric population. The novel work presented here

addresses an important gap in the current EEG functional network

literature on the study of pediatric TBI. Our goal is to develop a

biomarker that indicates when mTBI has occurred.

Methods

Diffuse TBI in piglets

All experimental protocols were approved by the Institutional
Animal Care and Use Committee of the University of Pennsylva-
nia. Piglets were housed separately in cages and kept on a 12 h
light–dark cycle. We studied seven 4-week-old, female Yorkshire
piglets (neurodevelopmentally equivalent to a human toddler).20

The pathophysiology of TBI in piglets compares well with that of
human children21,22 because of the similarities in gyral pattern,
overall brain shape, and distribution of gray and white matter.23–25

Three piglets were randomly assigned to the injured group and four
were assigned to the sham group. Each piglet in the injured group
sustained a single, rapid, closed-head, non-impact rotation in the
sagittal plane with mean peak angular velocity of 131 rad/sec. The
well-characterized diffuse white matter injury was induced via a
HYGE� pneumatic actuator,26–28 and the angular velocity was
recorded using an angular rate sensor (ATA Engineering Inc.,
Model#: ars-06, Herndon, VA) and a data acquisition system im-
plemented in LabView (National Instruments, Austin, TX). Sham
piglets received all of the procedures except the injury, including
the anesthetic regimen. Anesthesia and analgesia were adminis-
tered only on the day of injury. Buprenorphine (0.02 mg/kg) was
delivered intramuscularly for analgesia prior to injury. Then, the
following protocol was performed: pre-medication with intramus-
cular injection of ketamine (20 mg/kg) and xylazine (2 mg/kg),
induction with 4% inhaled isoflurane in 1.0 fraction of inspired
oxygen via snout mask until lack of reflexive pinch response, and
maintenance at 1% inhaled isoflurane via endotracheal tube with
fraction of inspired oxygen to 0.21 on the day of injury (day 0).
Body temperature, blood pressure, oxygen saturation, heart rate,
respiratory rate, and end-tidal CO2 were continuously monitored.
A circulating water blanket was kept to maintain core body tem-
perature between 36 and 38�C. For each animal, EEG data was
acquired 1 day prior to injury and 1, 4, and 7 days post-injury.

EEG data acquisition

Before beginning EEG data acquisition, piglets were acclimated
to wearing a nylon sleeve in their cages for a minimum of two
30 min sessions over 2 days. Acquisition of resting-state EEG only
occurred in non-agitated, silent, awake piglets using the 32 channel
net (Electrical Geodesics, Inc. HydroCelTM Geodesic Sensor Net,
Electrical Geodesics, Inc. Net Amps 400 EEG amplifier). The net
was placed in potassium chloride electrolyte solution (11 g dry
potassium chloride, 1 L water and 5 mL baby shampoo) before it

was placed on the head. The International 10–20 EEG system29 was
utilized to ensure consistent positioning of the scalp electrodes
(in the net) for each animal across days. We also used the nasion
and inion as anatomical landmarks to ensure consistent sensor net
placement across all animals. In order to maintain contact between
electrode and scalp, we placed two thin nylon sleeves over the net.
Before acquisition, the impedances of all electrodes were verified
to be below 50 kO; placement of the electrodes took *7 min per
piglet. We then recorded 1.5 min of continuous resting state EEG
data from immobile piglets in a silent room without any movement
of nearby objects or investigators. EEG data were acquired at a rate
of 1 kHz and referenced to channel 33 (located at the midline in the
center of the head). Recordings were discarded and repeated if
background noise or head movement was observed in the same pig.

Alpha band filtering was performed on the EEG signal using the
Net Station Tools 4.6 software by applying a finite impulse re-
sponse bandpass filter at 8–12 Hz (passband gain: -0.01 dB, stop-
band gain: -40 dB, roll-off: 0.99 Hz). Frequency band limits for the
beta (16.5–25 Hz), broad (1–35 Hz), delta (1–3.5 Hz), gamma (30–
35 Hz), sigma (13–16 Hz), and theta (4–7.5 Hz) bands were chosen
based on the study by Modarres and colleagues.30 EEG recordings
are influenced by electrical and physiological artifacts, electrode
placement, skull defects, anesthesia drugs, and subject alert-
ness.31–33 Cellular devices were not permitted in the study room
during EEG recording and the 60 Hz (electrical noise) frequency
was eliminated using a notch filter. After frequency filtering, arti-
fact detection in and removal from EEG signals was performed
using a user-defined algorithm in MATLAB�.

Our artifact detection algorithm removed variations in EEG
voltage caused by bad channels (eye blinks and minor movements)
and replaced these short segments with the mean EEG voltage
without artifacts. We excluded the first and last second of each
recording to remove any artifacts arising at the start and end of the
data acquisition process. We then calculated the moving average
(with span 80 ms) of the EEG signal. Within sequential 500 ms
segments, the minimum (min) and maximum (max) moving aver-
age EEG values were computed. A segment of EEG signal was
deemed to contain an artifact if its max-min value exceeded the
threshold value of 20 lV, which was determined by manual in-
spection to robustly flag artifacts across all channels and animals.
Artifacts accounted for 20.5% of the EEG recordings. We calcu-
lated the number of artifacts for injured and sham piglets across
days and found that shams (20.4% – 0.79%) had mean/standard
error percent of EEG signal with artifact similar to those of the
injured piglets (20.6% – 0.93%). There was no difference in the
level of artifacts in the EEG for injured and sham piglets.

Average spectral power and mean
frequency analysis

We then calculated average spectral power and mean frequency
to illustrate changes in EEG features that were the result of injury.
Spectral power was calculated using the Fulop & Fitz method,34 in
MATLAB,35 after applying a Hanning window to the 1.5 min pre-
processed EEG signal from all 32 electrodes. The average power of
the post-processed (frequency-filtered and artifact removed) EEG
signals was taken over the 1–35 Hz range of interest. We also
calculated the mean frequency power-weighted average over the 1–
35Hz range for every frequency band. Mean frequency was cal-
culated as: +

i
fi � powernorm, i, where fi denotes the ith frequency

value in the 1–35Hz domain and Powernorm,i is the normalized
power (power at fi divided by the sum of power values across all
frequencies). One scalar value of average power and the mean
frequency were determined for each electrode at every frequency
band; every animal contributed 32 average power and mean fre-
quency measures. We used short-term fast Fourier transform
analysis over the 1.5 min epoch and pre-defined narrowband ranges
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to identify mean frequency and power changes via methods that are
consistent with previously published studies.36–40

Construction of EEG functional networks

Networks are collections of nodes and edges. The 32 electrodes
can be regarded as representing the nodes, and the synchrony be-
tween them can be regarded as representing the edges. The re-
sulting functional networks can provide insight into the interactions
among the various brain regions over which electrodes are placed.
Functional networks were constructed by calculating network
edges as the maximum absolute cross-correlation of the amplitudes
of the EEG signals between all pairs of electrodes (Fig. 1). One
edge between two nodes represents the similarity between EEG
signals from both nodes. Every 1.5-min-long EEG recording was
segmented into short (1000 ms) segments, and one network was
built for each segment, yielding *88 undirected, weighted EEG
functional networks per animal per study day (Fig. 1). This analysis
approach used is similar to that used by Chu and colleagues.36 All
of the networks calculated were fully connected; that is, had 496
edges among 32 nodes and were not thresholded for analysis in
order to include the information from all edges. The broadband
networks for all post-injury days were compared to the pre-injury
day for sham and injury groups by constructing 32 · 32 matrices.
Networks were calculated for the alpha (8–12 Hz), beta (16.5–

25 Hz), broad (1–35 Hz), delta (1–3.5 Hz), gamma (30–35 Hz),
sigma (13–16 Hz), and theta (4–7.5 Hz) bands.

EEG functional network metrics

Network metrics were then calculated in order to quantify the
integration (global communication and cooperation among brain
regions) and segregation (formation of local and functionally spe-
cialized modules among brain regions) properties as well as the
influence of key nodes and edges on the network. The four metrics
calculated were: nodal strength, clustering coefficient, global effi-
ciency, and modularity. Nodal strength was calculated as the sum of
edges that each electrode has to all other electrodes. Clustering
coefficient was calculated as the geometric mean of edges that
formed triangles around each node. Nodal strength and clustering
coefficient are node-based metrics, meaning that there is a single
value of nodal strength and clustering coefficient for each elec-
trode; median values of nodal strength and clustering coefficient
from all 32 electrodes were taken to yield a single, representative
measure of nodal strength and clustering coefficient for each EEG
network. The median values provide a network-wide measure of
connectivity; that is, not specific to node location. Global efficiency
was calculated as the average inverse of the shortest path length
between all possible pairs of nodes in the network, where a path is
the sequence of distinct edges taken to traverse nodes throughout

FIG. 1. Diagram showing (A) resting-state electroencephalogram (EEG) acquisition from sham and injured piglets and (B) network
construction from all pairwise cross-correlations, which form (C) an adjacency matrix that indicates the strength of inter-electrode
connections across the brain that may also be represented as (D) a weighted EEG functional network.
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the network. Modularity is the degree to which a network’s nodes
and edges may be separated or combined. Modularity was calcu-
lated using the MATLAB Brain Connectivity Toolbox37 with the
Louvain–greedy algorithm, with the modularity resolution pa-
rameter set as 1 (the classic value).

Analysis of core EEG functional network topology

Changes in the weighted EEG functional network metrics may
be the result of changes in the strength of edges, the number of
connections, or both. In order to determine the source of changes in
networks, we examined whether network topology or the ar-
rangement of the core edges changes after injury. The method used
was based on that performed by Chu and colleagues.36 Each
weighted, cross-correlation network (captured from 1000 ms of
EEG data) was converted to a binary network by statistical
thresholding of its edges. One sided empirical p values were de-
termined for each edge in the weighted network by counting the
number of edges that were greater than the edge considered and
dividing the count by the total number of edges in the network.41

Edges with significant p values ( p < 0.05) formed a binary network
representation of the strongest neural connections throughout the
network over the 1000 ms epoch. In a single animal, all binary
networks were summed across time to obtain a weighted, consensus
network over the 88 sec duration of resting state EEG recording.
We extracted the most persistent edges present over the total EEG
recording duration by finding edges in the consensus network with
weights above the 95th percentile. The strongest 5% of edges were
calculated for all animals and frequency bands.

Statistical analysis

We utilized a non-parametric Dunnett’s test42 to compare all
metrics from post-injury (POST 1, 4, and 7) days with those from
the pre-injury (PRE) day, with a significance level of 0.05. The
logarithm was taken of all network metrics (except modularity)
before statistical tests were performed. Statistical tests were applied
to all spectral power and network metrics for all frequency bands.
All statistical analyses were performed in R 3.4.143 using the
nparcomp package.44 For all boxplots, the box plot height is defined
by the 25th and 75th percentiles (1st and 3rd quartiles). The upper
whisker is the largest observation £ the 75th percentile +1.5 · IQR
(where IQR is the interquartile range, or distance between the first
and third quartiles). The lower whisker extends to smallest obser-
vation ‡ the 25th percentile - 1.5 · IQR. Data beyond the end of the
whiskers are called ‘‘outlying’’ points and are plotted individually.

Results

Effect of TBI on spectral power

We classified the EEG signals into human EEG frequency bands,

specifically the alpha (8–12 Hz), beta (16.5–25 Hz), broad (1–

35 Hz), delta (1–3.5 Hz), gamma (30–35 Hz), sigma (13–16 Hz),

and theta (4–7.5 Hz) bands. Across frequencies, there were large

and significant alterations in the average spectral power in the in-

jured group compared with the sham group (Fig. 2, summarized

in Table 1). Generally, there was little change in the spectral power in

the sham group. We focused our attention on those bands and time

points with no change in sham, and significant changes after TBI. In

the alpha frequency band (8–12 Hz), we observed no significant

changes ( p > 0.05) in average spectral power in the sham group on

any POST day compared with PRE (Fig. 2A). In the injured group,

there was a significant increase ( p < 0.0001) in alpha power on

POST 1 day and reductions on POST 4 and 7 days ( p < 0.0001)

compared with pre-injury levels. There was no change ( p > 0.05) in

average beta (Fig. 2B) power in the sham group on any day relative

to PRE anesthesia; however, beta power increased significantly

( p < 0.0001) POST 1 d compared with its PRE value, and returned

to its PRE value by POST 4 day. Reductions ( p < 0.01) in broad-

band and delta (Fig. 2C and D) average power values were observed

in the sham group on POST 1 day relative to PRE. In the injured

group, there were reductions in broadband ( p < 0.01) and delta

power ( p < 0.05) POST 1, 4, and 7 days relative to PRE. Although

no significant changes ( p > 0.4) in power were seen in the theta

band (Fig. 2E), for sham, reduction ( p < 0.03) in power was seen in

the injured group on POST 1, 4, and 7 days compared with PRE. In

the sham group, a decrease ( p < 0.01) in gamma power (Fig. 2F)

was noted on POST 1 day ( p = 0.0004), whereas an increase was

observed in the injured group on POST 1 day ( p < 0.047), in ad-

dition to decreases on POST 4 and 7 days. Average power in the

sigma band (Fig. 2G) decreased ( p < 0.01) on POST 7 days in the

sham group compared with PRE, whereas injury caused an increase

( p < 0.0001) in sigma power on POST 1 day. In summary, whereas

there were both increases and decreases in spectral power 1 day

after TBI, we observed consistent and persistent decreases in

broadband, delta, theta, and gamma spectral power measures on 4

and 7 days post-injury that were not observed in the sham group.

Effect of TBI on mean frequency

Small, but significant injury and time-dependent changes in the

mean frequency across all frequency bands were observed (Fig. 3,

summarized in Table 2). Elevation of the mean alpha frequency

( p < 0.006) was seen on all days after sham treatment, whereas no

change ( p > 0.05) was seen on POST 1 day and decreases

( p = 0.0036) were noted in the injured group on POST 4 and 7 days

(Fig. 3A). The mean frequency in the beta band (Fig. 3B) was

elevated ( p < 0.0001) on POST 1, 4, and 7 days compared with PRE

in the sham group in contrast to the reductions ( p < 0.0001) on all

POST days in the injury group. There were increases ( p < 0.05) in

the broadband mean frequency (Fig. 3C) in sham and injured

groups on POST 4 and 7 days relative to PRE; the injured group had

significant increases ( p < 0.05) on POST 1 day whereas there was

no change for sham ( p > 0.05). For the delta and theta bands

(Fig. 3D and G), no significant changes ( p > 0.2) were observed in

the sham or injured groups. In the gamma band (Fig. 3E), mean

frequency increased ( p < 0.02) on POST 1 and 7 days and had no

change ( p > 0.05) on POST 4 day in the sham group; injury caused

uniform decreases ( p < 0.0001). In the sigma frequency (Fig. 3F),

mean frequency in the sham group was reduced ( p = 0.004) on

POST 4 days, whereas it increased ( p < 0.0001) on POST 1 and 4

days in the injured group. There was no change ( p > 0.05) in sigma

mean frequency on POST 7 day for the sham and injury groups. In

general, the injury effect magnitude was larger for spectral power

than for mean frequency.

Hyperconnectivity in broadband networks
during recovery

Global resting state functional connectivity in the broadband

network in shams was diminished compared with PRE on POST 1,

4, and 7 days (Fig. 4). The majority of the sham group connections

were classified as hypoconnected relative to PRE or had POST-

PRE edge weight differences £ -5 (shown in white). Over the

POST days, the sham group had a relatively modest decrease in the

number of hypoconnected edges, with 992, 916, and 912 edges on

POST 1, 4, and 7 days, respectively. In contrast, the number of

hyperconnected edges relative to PRE (POST-PRE edge weight

difference ‡5 and shown in dark blue) for sham increased from 0

FREQUENCY-DEPENDENT CHANGES IN RESTING STATE EEG 2561



POST 1 day to 54 and 56 on POST 4 and 7 days, respectively. The

injured group had a dramatic transient decrease in the number of

hypoconnected edges, with 288, 26, and 2 POST 1, 4, and 7 days

respectively. After injury, diffuse hyperconnectivity increased

markedly over POST time, with 368, 860, and 964 edges POST 1, 4,

and 7 days, respectively. Injury induced a large increase in the

number of hyperconnected edges on all POST days, which was

more than 10 times the number of hyperconnected edges observed

in the sham group. The injured group had substantially fewer hy-

poconnected edges than sham on all POST days. We performed a

non-parametric two sample Wilcox test to compare sham and in-

jured connections at each time point. Sham was significantly dif-

ferent from injured connections at each study day ( p £ 0.0001). The

differences observed between both groups at PRE are the result of

intra-animal variability in this small sample. When subtracting

each animal’s PRE baseline from the POST measurements, statis-

tically significant differences emerge between injured and sham

groups.

FIG. 2. Box plots of average spectral power (on logarithmic scale) in sham and injured groups on days -1, 1, 4, and 7 across seven
frequency bands. A non-parametric Dunnett’s test was performed for statistical comparison of post-injury days with pre-injury. Black,
horizontal bars indicate significant comparisons ( p < 0.05).

Table 1. Percent Change in Average Power Compared with Pre-Levels Were Analyzed at All Frequency Bands,

and Averaged across Animals

Sham Injured

Average power Frequency 1 day 4 days 7 days 1 day 4 days 7 days

Alpha (8 1–2 Hz) 0.00% 0.00% 0.00% 106.78% 0.00% 248.24%
Beta (16.5–25 Hz) 0.00% 0.00% 0.00% 236.69% 0.00% 0.00%
Broad (1–35 Hz) 226.39% 0.00% 0.00% 215.83% 233.19% 227.59%
Delta (1–3.5 Hz) 0.68% 0.00% 0.00% 211.69% 232.76% 238.25%
Gamma (30–35 Hz) 23.55% 0.00% 0.00% 104.39% 258.58% 233.32%
Sigma (13–16 Hz) 0.00% 0.00% 250.61% 712.77% 0.00% 0.00%
Theta (4–7.5 Hz) 0.00% 0.00% 0.00% 225.59% 239.13% 240.12%

Percent change in each metric indicates significant ( p < 0.05) non-parametric Dunnett’s test, where positive changes are shown in italic and negative
changes are shown in boldface. Changes that did not reach significance are indicated by 0.00% in regular type.
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Effect of TBI on network properties from all analyzed
frequency bands

Nodal strength. First, nodal strength quantifies the number

and strength of connection that each electrode has to all other

electrodes, where a higher nodal strength represents increased

synchrony of EEG signals with other electrodes. Shams had re-

duced ( p < 0.0001) nodal strength values for alpha networks on

POST 1, 4, and 7 days compared with PRE (Table 3, Fig. S1.1). The

injured group nodal strength was not significantly different

( p > 0.11) on any POST days relative to PRE in the alpha band

networks. On all POST days, shams had smaller ( p < 0.0001) beta

band nodal strength values, whereas the injured group presented

elevated ( p < 0.0001) beta nodal strength values on POST 1 and 7

days compared with PRE; no change ( p > 0.05) was observed

POST 4 day. In broadband networks, sham showed a decrease

( p < 0.0005) in nodal strength on POST 1 day, and no change on

POST 4 ( p = 0.82) and 7 days ( p = 0.82) (Fig. 5A). Broadband

network nodal strength from injured animals did not change

( p = 0.1) on POST 1 day, but showed an increase ( p < 0.0005)

FIG. 3. Boxplots of mean frequency in sham and injured groups on days -1, 1, 4, and 7 across frequency bands, (A) alpha, (B) beta,
(C) broad, (D) delta, (E) gamma, (F) sigma, and (G) theta. A non-parametric Dunnett’s test was performed for statistical comparison of
post-injury days with pre-injury. Black horizontal bars indicate significant comparisons ( p < 0.05).

Table 2. Percent Change in Mean Frequency Compared with Pre-Injury Levels Were Analyzed at All Frequency

Bands, and Averaged across Animals

Sham Injured

Mean frequency Frequency 1 day 4 days 7 days 1 day 4 days 7 days

Alpha (8–12 Hz) 2.57% 1.66% 1.26% 0.00% 23.66% 23.95%
Beta (16.5–25 Hz) 2.49% 2.61% 3.50% 22.88% 22.51% 21.25%
Broad (1–35 Hz) 0.00% 11.45% 11.07 15.50 18.97% 32.40%
Delta (1–3.5 Hz) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Gamma (30–35 Hz) 2.19% 0.00% 0.21% 2.70% 21.50% 21.61%
Sigma (13–16 Hz) 0.00% 21.01% 0.00% 1.82% 1.25% 0.00%
Theta (4–7.5 Hz) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Percent change in each metric indicates significant ( p < 0.05) non-parametric Dunnett’s test, where positive changes are shown in italic and negative
changes are shown in boldface. Changes that did not reach significance are indicated by 0.00% in regular type.
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on POST 4 and 7 days when compared with PRE. Sham delta band

network nodal strength values decreased ( p < 0.0001) on POST 1 d

relative to PRE and had no changeon POST 4 and 7 days; in con-

trast, the nodal strength values from the injury group were not

different ( p > 0.05) from PRE on POST 1 day but were elevated

( p < 0.0001) on POST 4 and 7 days. There were significant changes

in gamma network nodal strength for sham and injured on all POST

days; the injured group showed uniform increases ( p < 0.0001) in

nodal strength relative to PRE, whereas sham nodal strength de-

creased ( p < 0.0001) on POST 1, 4, and 7 days. Sigma nodal

strength was reduced on all POST days in the sham group, whereas

it increased ( p < 0.05) in the injured group on POST 1 day and had

no change on POST 4 and 7 days. In the shams, theta nodal strength

decreased on POST 1, 4, and 7 days and the injured group showed a

reduction on POST 1 days ( p < 0.0001), with no change ( p > 0.3)

on POST 4 and 7 days. Overall, there were widespread 6–30%

reductions in nodal strength in sham networks across all frequency

bands relative to PRE, whereas there were 7–20% elevations in

nodal strength after injury.

Clustering coefficient. Second, clustering coefficient repre-

sents local clustering within a network that is measured as the

average ‘‘intensity’’ of triangles around a node. When the average

intensity of triangles around a node is low, the local connections are

FIG. 4. Broadband network matrices for sham and injured groups showing median differences in edge weight after anesthesia or
injury for all piglets. Each matrix shows the difference in connections among 32 electrodes across the piglet brain. The median
difference in edge weights was calculated as post-injury–pre-injury across all animals.

Table 3. Percent Change in Mean Values of Nodal Strength Compared to Pre-Levels across

All Analyzed Frequency Bands

Sham Injured

Nodal strength Frequency 1 day 4 days 7 days 1 day 4 days 7 days

Alpha (8–12 Hz) 230.89% 28.46% 26.87% 00.00% 0.00% 0.00%
Beta (16.5–25 Hz) 28.96% 26.85% 26.61% 14.34% 0.00% 3.59%
Broad (1–35 Hz) 221.67% 0.00% 0.00% 0.00% 7.44% 8.81%
Delta (1–3.5 Hz) 223.94% 0.00% 0.00% 00.00% 7.85% 8.82%
Gamma (30–35 Hz) 231.26% 29.22% 27.50% 11.90% 8.87% 12.94%
Sigma (13–16 Hz) 213.07% 210.31% 212.39% 21.55% 0.00% 0.00%
Theta (4–7.5 Hz) 231.72% 27.35% 26.03% 215.27% 0.00% 0.00%

Percent change in each metric indicates significant ( p < 0.05) non-parametric Dunnett’s test, where positive changes are shown in italic and negative
changes are shown in boldface. Changes that did not reach significance are indicated by 0.00% in regular type. Base 10 logarithm was applied to nodal
strength before analysis.
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weak. In shams, broadband network clustering coefficient (Fig. 5B)

decreased ( p < 0.0005) on POST 1 day relative to PRE and then

returned to PRE values by POST 4 and 7 days ( p = 0.77); in the

injured group, clustering coefficient did not change ( p > 0.05) on

POST 1 day, but it increased ( p < 0.0005) on POST 4 and 7 days

compared with PRE. Clustering coefficient presented the same

pattern of changes as nodal strength across all frequency networks

and days with much larger changes, where 15–80% reductions were

widely observed in the sham group and 16–75% elevations were

observed in the injured group (Table 4, Fig. S1.2).

Global efficiency. Third, global efficiency quantifies the

functional integration in the brain, which is the ability to rapidly

combine specialized information from distributed brain regions.

We observed an increase ( p < 0.0005) in global efficiency from

alpha band networks on POST 1 day for both injury and sham

groups (Table 5, Fig. S1.3). Global efficiency in shams returned to

PRE values by day 4 ( p = 0.35 and p = 0.51 on POST 4 and 7 days,

respectively), but remained significantly elevated ( p < 0.0005) in

the injury group on POST 4 and 7 days. Global efficiency in beta

band networks for the shams significantly increased ( p < 0.0005)

FIG. 5. Comparison of broadband resting state network metrics, (A) nodal strength, (B) clustering coefficient, (C) global efficiency,
and (D) modularity, by injury group and day. Each open circle represents a single 1 sec, network and each color indicates an animal. The
shorter black horizontal bars are mean values over all animals, and the longer black horizontal lines at the top of panels represent
significant comparisons of post-injury values relative to pre-injury values using a non-parametric Dunnett’s test (p < 0.05).
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on POST 1, 4, and 7 days compared with PRE, but did not change

in the injured group on any POST day (POST 1 day, p = 0.055;

POST 4 days, p = 0.055; POST 7 days, p = 0.59). Sham animals

increased in broadband network global efficiency on POST 1 and

7 days ( p < 0.0001) compared with PRE, but had no change

( p = 0.61) on POST 4 day (Fig. 5C). In contrast, injured networks

had reduced global efficiency values ( p < 0.0001) at POST 4 and 7

days. Significant elevations ( p < 0.0005) in delta band global ef-

ficiency were observed in sham on all POST days relative to PRE,

whereas the injured group had reduced ( p < 0.0001) global effi-

ciency on POST 4 and 7 days, with the exception of POST 1 day

when an increase ( p = 0.045) was seen. Sham presented increases

( p < 0.02) in global efficiency in gamma band networks on POST

1 and 4 days, but no change ( p = 0.36) on POST 7 day. In the

injured group, global efficiency increased ( p = 0.004) on POST 1

day, then decreased ( p = 0.0002) on POST 4 day before returning

to PRE values on POST 7 day ( p > 0.05). Sigma band networks in

the sham group had elevated ( p < 0.001) global efficiency at

POST 1, 4, and 7 days and the injured group had an increase on

POST 1 day relative to PRE. Both the injured and sham groups

had elevated ( p < 0.0005) theta network global efficiency values

on POST 1 day compared with PRE; however, only the injured

group yielded significant increases in global efficiency on POST 4

and 7 days ( p < 0.0005). Out of all frequency bands, sham pre-

sented 6–2103% increases ( p < 0.05), whereas only the injured

group exhibited 71–225% reductions ( p < 0.05) in global effi-

ciency in the broad, delta, and gamma bands on POST 4 and 7

days relative to PRE.

Modularity. Fourth, modularity measures the degree to which

the network organizes its connections into segregated clusters of

nodes and edges. For alpha networks, we observed an increase

( p < 0.0001) and then a decrease ( p < 0.05) in modularity on

POST 1 and 7 days, respectively in the sham group (Table 6,

Fig. S1.4). After injury, modularity decreased ( p < 0.04) on POST 1

and 4 days relative to PRE; no changes ( p = 0.18) were observed

on POST 7 days. Beta network modularity significantly increased

( p < 0.01) on POST 1, 4, and 7 days, whereas for the injured group,

modularity decreased ( p = 0.002) on POST 7 day relative to PRE.

There was an increase ( p < 0.0001) in broadband network modu-

larity for sham POST 1 day, whereas modularity decreased for the

injured group on POST 1 ( p = 0.01), 4 ( p < 0.0001), and 7 days

( p = 0.003) relative to PRE (Fig. 5D). Delta network modularity

increased ( p < 0.0001) on POST 1 day for sham, but decreased

( p < 0.0002) on POST 4 and 7 days, whereas modularity in the

injured group decreased ( p < 0.0001) on all POST days. Gamma

network modularity increased ( p < 0.01) on POST 1 and 4 days for

the shams, whereas in the injured group, modularity decreased

( p < 0.0001) on POST 4 days after injury. Modularity in the sigma

networks increased ( p = 0.04) on POST 7 day for the shams and

decreased ( p = 0.0001) in the injured group on POST 1 day. In the

sham group, increases ( p < 0.05) were observed in the theta net-

work modularity on POST 1 and 4 days, followed by a reduction

( p = 0.05) on POST 7 days. Injury resulted in a reduction

( p < 0.0001) in theta network modularity on POST 4 day compared

with PRE. In summary, significant elevations (by 30–564%) were

observed on POST 1 day in the sham group across all frequency

Table 4. Percent Change in Mean Values of Clustering Coefficient Compared with Pre-Levels across

All Analyzed Frequency Bands

Sham Injured

Clustering coefficient Frequency 1 day 4 days 7 days 1 day 4 days 7 days

Alpha (8–12 Hz) 263.78% 217.35% 214.12% 00.00% 0.00% 0.00%
Beta (16.5–25 Hz) 233.82% 224.15% 223.44% 75.06% 0.00% 20.28%
Broad (1–35 Hz) 237.85% 0.00% 0.00% 0.00% 16.21% 19.37%
Delta (1–3.5 Hz) 242.57% 0.00% 0.00% 0.00% 17.54% 20.09%
Gamma (30–35 Hz) 278.90% 223.02% 218.64% 69.85% 53.92% 78.55%
Sigma (13–16 Hz) 274.52% 254.90% 265.94% 320.63% 0.00% 0.00%
Theta (4–7.5 Hz) 258.94% 213.57% 211.11% 238.47% 0.00% 0.00%

Percent change in each metric indicates significant ( p < 0.05) non-parametric Dunnett’s test, where positive changes are shown in italic and negative
changes are shown in boldface. Changes that did not reach significance are indicated by 0.00% in regular type. Base 10 logarithm was applied to
clustering coefficient before analysis.

Table 5. Percent Change in Mean Values of Global Efficiency Compared with Pre-Levels

across All Analyzed Frequency Bands

Sham Injured

Global efficiency Frequency 1 day 4 days 7 days 1 day 4 days 7 days

Alpha (8–12 Hz) 103.47% 0.00% 0.00% 231.55% 13.13% 50.75%
Beta (16.5–25 Hz) 171.47% 8.62% 6.76% 0.00% 0.00% 0.00%
Broad (1–35 Hz) 73.05% 0.00% 10.80% 0.00% 271.75% 279.16%
Delta (1–3.5 Hz) 92.90% 5.84% 11.70% 1.71% 286.40% 2122.12%
Gamma (30–35 Hz) 137.86% 9.48% 0.00% 199.47% 2225.76% 0.00%
Sigma (13–16 Hz) 2103.46% 346.17% 460.88% 51.08% 0.00% 0.00%
Theta (4–7.5 Hz) 89.70% 0.00% 0.00% 153.20% 10.66% 30.00%

Percent change in each metric indicates significant ( p < 0.05) non-parametric Dunnett’s test, where positive changes are shown in italic and negative
changes are shown in boldface. Changes that did not reach significance are indicated by 0.00% in regular type. Base 10 logarithm was applied to global
efficiency before analysis.
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bands, whereas decreases (by 29–87%) or no changes in modularity

were seen in the injured group on POST 1, 4, and 7 days.

We used standard deviation (SD) for each network metric, fre-

quency band, and day to quantify session (day-to-day) variability

across animals, because SD provides a reliable measure of the

spread of the distribution of each animal’s metric. A two way

analysis of variance (ANOVA) with repeated measures (to account

for multiple measures from the same animal) was performed on the

SD values by day and frequency band separately for the sham

( p = 0.5) and injured groups. Nodal strength variability was not

affected by day in the sham or injured ( p = 0.291) groups. For

clustering coefficient, variability was not significantly affected

by day in the sham ( p = 0.513) or injured group ( p = 0.297). There

was no effect of days on global efficiency SD in the sham

( p = 0.091) or injured ( p = 0.31) group. For modularity, there was

no effect of days on variability for the sham ( p = 0.145) or injured

( p = 0.534) group. The variability of all metrics was significantly

affected ( p < 0.01) by frequency band in both the sham and in-

jured groups. Day-to-day variability across animals did not sig-

nificantly affect any network metric; however, it was affected by

frequency band.

In the injured group, alpha band nodal strength and clustering

coefficient did not significantly change on 1, 4, or 7 days post-injury

relative to PRE, whereas in the sham group nodal strength de-

creased on all days. Alpha band global efficiency increased on

POST 1 day in the sham and injured groups, but presented no

significant change at POST 4 and 7 days in the sham. whereas

increases were found in the injured group relative to PRE. An

increase in alpha modularity was seen on 1 day post-anesthesia,

then no change and a decrease at POST 4 and 7 days, respectively,

in the sham group. Modularity decreased on POST 1 and 4 days, but

returned to pre-injury levels by POST 7 day for the injured group.

For the beta frequency band, nodal strength and clustering co-

efficient were reduced on all post-anesthesia days relative to PRE in

the sham group, but increased on POST 1 and 7 days in the injured

group; no change was observed on POST 4 day. Global efficiency

in the beta band increased in the sham group and did not change in

the injured group for all post-injury days. Beta modularity in-

creased on POST 1, 4, and 7 days in the sham group relative to PRE;

however, in the injured group, modularity did not vary from pre-

injury levels on POST 1 and 4 days and then decreased on POST 7

day.

Broad and delta band nodal strength and clustering coefficient

decreased on POST 1 day in the sham group and then returned to

pre-anesthesia levels. In contrast, the injured group had pre-injury

levels of nodal strength and clustering coefficient on POST 1 day

and then increased 4 and 7 days post-injury. Broad and delta global

efficiency had increases on all post-anesthesia days in the sham

group, whereas in the injured group it increased on POST 1 day

then decreased on POST 4 and 7 days. Broad and delta band

modularity increased on POST 1 day in the sham group and then

decreased or did not change on POST 4 and 7 days, whereas the

modularity decreased on all post-injury days in the injured group.

Gamma nodal strength and clustering coefficient decreased on

all post-anesthesia days in the sham group and then increased on all

post-injury days in the injured group. Gamma global efficiency

increased on POST 1 and 4 days and then returned to PRE levels on

POST 7 day in the sham group, whereas global efficiency increased

on POST 1 day and then decreased on POST 4 day before returning

to pre-injury levels on POST 7 day in the injured group. In the sham

group, gamma modularity increased on POST 1 and 4 days before

returning to PRE levels, whereas in the injured group, modularity

did not vary from PRE levels on POST 1 and 7 days but did de-

crease on day 4 post-injury.

Nodal strength and clustering coefficient in the sigma band de-

creased on all post-anesthesia days for the sham group and in-

creased on POST 1 day then returning to PRE levels in the injured

group. Sigma global efficiency increased on all POST days in the

sham group, but only increased 1 day post-injury before returning

to pre-injury levels on POST 4 and 7 days. Sigma modularity stayed

at PRE levels on POST 1 and 4 days and then increased at POST

7 day in the sham group, whereas modularity decreased on POST

1 day and then returned to PRE levels on 4 and 7 days post-injury in

the injured group.

In the sham group, theta nodal strength and clustering coefficient

decreased on 1, 4 and 7 days post-anesthesia, whereas in the injured

group it decreased on 1 day post-injury then returned to PRE levels

on POST 4 and 7 days. Theta global efficiency increased on POST

1 day and then returned to PRE levels on POST 4 and 7 days in the

sham group; global efficiency in the injured group increased on 1,4,

and 7 days post-injury relative to PRE. Modularity in the theta band

increased on 1 and 4 days post-anesthesia then decreased on POST

7 day in the sham group, whereas modularity did not vary from PRE

levels on POST 1 and 7 days and decreased on POST 4 day in the

injured group.

On post-injury day 1, nodal strength and clustering coefficient

did not change from pre-injury levels in the alpha, broad, and delta

bands; increased in the beta, gamma, and sigma bands; and de-

creased in the theta band. Global efficiency increased in the alpha,

delta, gamma, sigma, and theta bands and did not change from PRE

Table 6. Percent Change in Mean Values of Modularity Compared with Pre-Levels

across All Analyzed Frequency Bands

Sham Injured

Modularity Frequency 1 day 4 days 7 days 1 day 4 days 7 days

Alpha (8–12 Hz) 172.83% 0.00% 254.42% 229.58% 237.35% 0.00%
Beta (16.5–25 Hz) 30.91% 53.95% 34.04% 0.00% 0.00% 241.49%
Broad (1–35 Hz) 175.13% 0.00% 0.00% 247.10% 273.14% 251.91%
Delta (1–3.5 Hz) 90.34% 286.41% 85.17% 237.41% 287.53% 262.62%
Gamma (30–35 Hz) 120.87% 14.83% 0.00% 0.00% 233.77% 0.00%
Sigma (13–16 Hz) 0.00% 0.00% 32.20% 245.68% 0.00% 0.00%
Theta (4–7.5 Hz) 564.74% 27.29% 256.17% 0.00% 236.84% 0.00%

Percent change in each metric indicates significant ( p < 0.05) non-parametric Dunnett’s test, where positive changes are shown in italic and negative
changes are shown in boldface. Changes that did not reach significance are indicated by 0.00% in regular type.
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levels in the beta and broad bands on post-injury day 1. Modularity

in the inured group decreased in the alpha, broad, delta, and sigma

bands and did not change in the beta, gamma, and theta bands.

Nodal strength and clustering coefficient in the injured group

increased in the broad, delta, and gamma bands at 4 days post-

injury, whereas they did not significantly vary from PRE levels in

the alpha, beta, sigma, and theta bands. Global efficiency increased

in the alpha and theta bands; decreased in the broad, delta, and

gamma bands; and did not change from PRE levels in the beta and

sigma bands at 4 days post-injury. At 4 days post-injury, modularity

decreased in the alpha, broad, delta, gamma and theta bands, and

did not change in the beta and sigma bands.

At 7 days post-injury, nodal strength and clustering coefficient

increased in the beta, broad, delta, and gamma bands, whereas they

did not change from PRE levels in the alpha, sigma, and theta

bands. Increases in global efficiency were found in the alpha and

theta bands, decreases were found in the broad and delta bands, and

no changes were found in the beta, gamma, and sigma bands at 7

days post-injury. Modularity decreased in the beta, broad, and delta

bands and did not change in the alpha, gamma, sigma, and theta

bands.

Core network topology across frequency bands

For every animal, the core network topology or arrangement of

edges was calculated as the 95th percentile of the sum of all sta-

tistically significant 1 sec binary networks over the entire duration

of the EEG recording. The core edges represent the strongest

connections throughout the brain in a given frequency band before

and after TBI. Visual inspection of each piglet’s topology across all

analyzed frequencies (Fig. S 2.1–2.7) showed that the arrangement

of edges between the sham and injured groups did not differ. There

was remarkably consistent alpha band network topology (averaged

over all pigs) before and after injury (Fig. 6). The number of edges

present in the core topology was also consistent among animals and

on different days. The alpha band core topology had several edges

in the left and frontal regions of the brain. We observed similar

conservation of core network topology before and after TBI in the

beta band, but with distinct signature configurations (Fig. 7) of core

edges that were symmetrical around the midline. The averaged

broadband core topology was similar in the sham and injured

groups, with edges that were slightly more focused in the right

hemisphere and across the frontal, temporal, and parietal nodes

(Fig. 8). Averaged delta core edges were similar in the sham and

injured groups and focused in the right, occipital region (Fig. 9).

Averaged gamma core networks had the majority of edges in the

right hemisphere (Fig. 10) in both the sham and injured groups.

Averaged sigma core networks were similar in the sham and injured

groups with symmetrical distribution around midline and in all

regions (Fig. 11). Theta edges were focused in the left hemisphere

(Fig. 12) for both the sham and injured groups. The total number

and arrangement of core edges were dependent on the frequency

band of interest, but did not change with injury or study day.

Discussion

‘‘Resting state’’ typically involves subjects sitting with eyes

closed in a dark room while awake and free from any overt stimuli.

Resting state EEG data acquisition is easier to collect and simpler

for the subject than task-based procedures, which is appealing to

FIG. 6. Averaged (across all piglets) core alpha band networks with the most consistent edges (95th percentile of frequency over the
sum of 88 1 sec networks) from sham and injured groups.
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the study of pediatric populations, for whom cognitive tasks can be

more difficult or frustrating in unpredictable ways. However,

identification of abnormalities in EEG recordings after mTBI can

be subtle compared with controls, and may be subject to bias by the

interpreter. Although there are several resting state functional MRI

(fMRI) studies in adults that report both increases and decreases in

functional connectivity after TBI,45–50 hyperconnectivity was re-

ported by the only resting state fMRI study on a pediatric TBI

cohort.51 Virji-Babul and colleagues reported increased local

connectivity, but no change in global connectivity of resting state

EEG networks in adolescent athletes with a sports-related con-

cussion.52 There is a small number of resting state EEG studies of

TBI in adults;53 however, there are no reports on pediatric EEG

functional networks following TBI. This report fills the gap in the

TBI resting state EEG literature by studying the effect of diffuse

TBI in piglets. We hypothesized that TBI would induce acute and

chronic changes in the properties of resting state EEG functional

networks that were also dependent on the frequency band of interest.

TBI changes spectral power and mean frequency
for different frequency bands

We observed lower spectral power and reduction in frequency in

the alpha and beta bands in our piglets 4 and 7 days following

injury, and this change was absent in shams. The suppression of

alpha spectral power may imply balance dysfunction.54 Reductions

in alpha and beta amplitudes have been associated with diminished

cognitive function.55 Mild, diffuse reduction in the alpha band

mean frequency is a common EEG abnormality that is observed in

TBI patients.6,56–59 Tebano and colleagues reported reductions of

fast beta (20–35 Hz) mean frequency 3–10 days following mTBI

compared with normal controls.58 Their fast beta range corresponds

to a portion of the beta (16.5–25) and gamma (30–35 Hz) bands

used in this report. In our study, a significant change in mean theta

frequency was not observed, which aligns with previously pub-

lished studies that report inconsistent changes in the theta band in

TBI patients.56,58 We saw no significant changes in the delta mean

frequencies post-injury in our piglets, in contrast to the in-

creases60–63 and decreases64 that have been observed in TBI pa-

tients during post-injury hours to weeks. In our study, we observed

decreases in delta and theta average spectral power. Increased theta

and delta power may be associated with postural instability.65

When the brain engages in certain functions, such as directing

attention or processing sensory stimuli, select oscillations are

dominant.66 Theta and gamma activity are prominent in locomo-

tion. Theta oscillations are linked to memory functions in the

hippocampus. Delta oscillations appear to be implicated in many

cognitive processes such as autonomic functions, high emotional

FIG. 7. Averaged (across all piglets) core beta band networks with the most consistent edges (95th percentile of frequency over the
sum of 88 1 sec networks) from sham and injured groups.
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involvement and behavioral inhibition.67 Slow oscillations may

involve many neurons in large brain areas, whereas the brief time

intervals of fast oscillations facilitate local integration because of

limits of axon conduction delays. If an axon’s myelin sheath is

damaged, this may lead to increased axonal conduction delays and

subsequent increased power in slow oscillation ranges. There is

much less research on delta and beta range rhythms in infants and

young children.37 Alpha rhythm emerges at approximately 3

months of age and is sensitive to visual input: it increases in am-

plitude when the eyes are closed.37 Alpha is implicated in visual

attention and processing. Theta oscillations are often observed

during the transition from wakefulness to sleep in adults. An in-

crease in theta power has been associated with processing of

emotional information and memory-related tasks. In infants, an

increase in theta power has been linked to executive control of

attention. Studies of the gamma rhythm in infants and adults report

its relation to active memory retrieval, where familiar stimuli evoke

a greater gamma band response than do unfamiliar stimuli.37

Oscillatory activity contributes to higher order information

processing; for example, hippocampal theta (3–12 Hz) oscillations

are concurrent with spatial learning deficits.68,69 Hippocampal in-

terneurons are vulnerable to cell death and altered function after

TBI, which may contribute to the changes observed in the theta

band. Following injury in rodents, there is a decrease in alpha, beta,

delta, and theta power.70–73 Slower oscillatory rhythms can reset

and bias computation in multiple cortical regions.66 Changes in

EEG are observed in the alpha, beta, delta, theta, and gamma bands

and are not state dependent because alterations are noted when a

patient is at rest,52,74 actively moving,54 or asleep.75,76 The changes

in average power and mean frequency from the alpha and beta

bands induced by TBI in our piglets were generally consistent with

findings reported in TBI patients, providing the basis for applying

network analysis to our EEG data. Several studies that report hy-

perconnectivity following brain trauma speculate on its mecha-

nisms. Nakamura and colleagues77 suggest that the increase in

neural connections signifies an increase in the utilization of auxil-

iary resources, which later subsides and results in a more efficient

neural network. Stevens and colleagues78 report that the enhanced

connectivity may be the result of compensatory processes in the

form of enhanced task-specific processing such as visual or limbic

activity. They also cited the work of Sharp and colleagues50 that

interpreted hyperconnectivity as the result of the brain’s reduced

capacity to maintain neural activation profiles. Namely, diffuse

neuronal impairment may cause compensatory alterations to the

responsiveness of the entire network to more efficiently mediate

behavior. Friston and colleagues79 reported that enhanced brain

activity across distant brain regions may indicate that these regions

communicate via excitatory pathways. The EEG frequency bands

represent different oscillatory phenomena that may be the result of

intrinsic neuronal characteristics, corticocortical connections, an-

d/or thalamocortical connections. TBI may cause changes to se-

lective neuronal populations and excitatory, cortical connections

FIG. 8. Averaged (across all piglets) core broadband networks with the most consistent edges (95th percentile of frequency over the
sum of 88 1 sec networks) from sham and injured groups.
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that result in the simultaneous increase in functional hy-

perconnectivity and a decrease in the power of the lower EEG

frequencies. Future studies should explore the relationship between

functional connections across the young brain and the pathophys-

iological basis for oscillations in the EEG frequency bands after

TBI.

TBI affects resting state EEG network metrics in all
analyzed frequency bands

The resting state network represents the synchrony of back-

ground EEG activity across the brain. We observed changes in

nodal strength, clustering coefficient, global efficiency, and mod-

ularity within the same animal on a single day as a result of the

rapidly changing dynamics of neural activity on the time scale of

seconds; this was comparable to previously published studies.36,38

Specifics are described subsequently. Additionally, we also ob-

served changes in network metrics between sham and injured

subjects; changes there were dependent on the frequency band of

interest. Whereas alterations in average power and mean frequency

were frequency band dependent, only changes in global efficiency

were influenced by frequency band. There were significant changes

in several resting state network metrics in the traumatic brain in-

jured (sagittal rapid head rotation) group that were not observed in

the shams. After TBI, there were reductions in modularity as well as

elevations in nodal strength and clustering coefficient across all

analyzed frequencies.

Nodal strength and clustering coefficient both increased in the

beta, broad, delta, gamma, and sigma bands as they both capture the

heightened global and local connectivity throughout the brain. In

contrast, we found that after TBI, alpha network connectivity did

not change relative to pre-injury and that the theta network con-

nectivity decreased at 1 day post-injury. Several studies report

hyperconnectivity in resting state networks like that observed in the

beta, broad, delta, gamma, and sigma bands. Resting state fMRI

connectivity was elevated in children with mild to moderate TBI.51

Several resting state studies in adults report hyperconnectivity after

TBI using fMRI45,80,81 and EEG networks.53,82 Sharp and col-

leagues reported overall increased default mode network connec-

tivity in moderate/severe TBI patients with cognitive impairment 6

months after injury.50 Porter and colleagues53 reported hy-

perconnectivity in the right inferior frontal gyrus, and hypo-

connectivity in the left inferior frontal gyrus in the chronic TBI

group relative to controls, calculated from resting state EEG re-

cordings. An increase in local clustering was observed in adult rats

at 7 days following mild and moderate controlled cortical impact

(CCI) injuries relative to pre-injury,83 which was similar to the

current study findings of increases in nodal strength and clustering

coefficient at 7 days in the beta, broad, delta, and gamma bands.

Hyperconnectivity in EEG and fMRI resting state networks is

FIG. 9. Averaged (across all piglets) core delta band networks with the most consistent edges (95th percentile of frequency over the
sum of 88 1 sec networks) from sham and injured groups.
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evident after injury in children, adults and rats for various TBI

severities and recovery durations. In summary, our studies are in

agreement with the resting state literature, in which hy-

perconnectivity is observed following TBI.

Despite the prevalence of reports of hyperconnectivity in resting

state functional networks after trauma, it is important to note that

some studies report hypoconnectivity following TBI.48,49,78,84

Stevens and colleagues78 reported region-dependent changes in

resting state (fMRI blood-oxygen-level dependent [BOLD]) func-

tional connectivity in an mTBI cohort relative to age-matched

controls. Palacios and colleagues48 reported region-dependent al-

terations in resting state functional connectivity at 6 months after

injury in a large and clinically well-defined mTBI sample. Our

study found hypoconnectivity only in the theta band at 1 day post-

injury; however, without a more chronic time point (e.g., 1 month

post-injury) it is challenging to compare across studies. Mishra and

colleagues84 reported lower resting fMRI correlation coefficients

between the ipsilateral parietal cortex and ipsilateral hippocampus

in adult rats 4 months following TBI compared with shams.84

Mishra’s findings disagreed with our findings of hyperconnectivity

after injury in the beta, broad, delta, gamma, and sigma bands;

however, differences may be attributed to the scanning being per-

formed while the rat was under anesthesia, which may affect brain

activity. We speculate that the brain region or the source of neural

activity and its dominant frequency influences the extent of syn-

chrony across cortical neuronal clusters. Virji-Babul and col-

leagues found that concussion in adolescent athletes did not alter

resting state EEG global network efficiency, modularity, or clus-

tering coefficient,52 whereas our study found significant changes in

all metrics and frequency bands. We found variable frequency-

specific changes in global efficiency after injury. In alpha, beta,

sigma, and theta networks, global efficiency either increased or did

not change post-injury, generally in contrast to increases observed

in shams on the same day. For the broad, delta, and gamma bands,

reductions in global efficiency were observed for injured animals.

In a study of sedated adult rats, post-CCI fMRI network global

efficiency increased compared with pre-injury,83 Harris’s findings

agreed with our findings in the alpha, delta, gamma, sigma, and

theta bands at 1 day post-injury. The lack of anesthesia during EEG

acquisition in our study may explain the opposite polarities of

change in global efficiency in the broad, delta, and gamma bands at

4 and 7 days post-injury. The reduction in global efficiency may

indicate loss of neural computational ability, perhaps as a result of

decreases in efficient communication throughout the network. The

contrasting direction of change between injured and sham groups

makes global efficiency a candidate metric for identifying injured

networks and for measuring recovery from TBI.

Following injury, we report that modularity across all analyzed

frequency bands decreased or did not change, which was generally

distinct from changes observed in same-day shams. After injury,

there was a lower degree of segregation of the brain into smaller

functional units. Similarly, a resting-state fMRI BOLD contrast

imaging study in adult rats found a significant decrease in modu-

larity 7 days after CCI injury.83 Han and colleagues reported an

FIG. 10. Averaged (across all piglets) core gamma band networks with the most consistent edges (95th percentile of frequency over
the sum of 88 1 sec networks) from sham and injured groups.
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increase in modularity of resting state functional connectivity in an

adult TBI cohort at 90 days post-blast compared with healthy

controls. However, no change was observed 6–12 months after the

initial scan.85 We speculate that a damaged brain network is less

modular because more connections form between previously de-

fined functional modules. The reduction in functional segregation

across the network implies a breakdown of information encapsu-

lation among specialized brain systems, which may be associated

with functional and cognitive deficits.86

Synchrony among EEG signals from different frequency bands

implies specialized neural communication, plasticity, formation of

functional ensembles, and consolidation of long-term memories.

Temporal synchronization may also be important in information

binding and computing in the brain. Hyperconnectivity may depend

on demand and resource availability. We found increased syn-

chrony in the beta, broad, delta, gamma, and sigma frequency bands

after TBI, which may be related to dysfunctional cortical activity.

Several studies demonstrate that TBI alters physiological oscilla-

tory rhythms.68,69,87 Increased connectivity was observed follow-

ing TBI.81 Luo and colleagues found abnormality in the delta

(1–4 Hz) frequency band of resting state magnetoencephalography

(MEG) signals in military veterans ‡6 months after mTBI com-

pared with healthy controls.88 Douw and colleagues reported that

better cognitive performance correlated with increased local con-

nectivity of MEG functional networks in the theta band and higher

clustering coefficient in the delta and theta bands.89 The hy-

perconnectivity of EEG functional networks could play a crucial

role in the monitoring of cognitive function before and after TBI-

induced change in oscillations, which can impact behavioral

function.

EEG recordings may be influenced by anesthesia drugs31–33 such

as isoflurane, which has a varied effect on cerebral metabolic rate

and cerebral blood flow (CBF) in adults90–94 and children.95 Iso-

flurane improved functional outcome and attenuated Cornu Am-

monis (CA)1 damage compared with fentanyl treatment post-TBI.

Isoflurane may be neuroprotective by augmenting CBF, improving

motor function, and reducing excitotoxicity after TBI.96,97 Iso-

flurane has been reported to induce neurodegeneration via in-

creased numbers of apoptotic cells 4 and 48 h after CCI in adult

rats.98 Isoflurane was shown to affect motor function in rats 1–5

days after exposure compared with the pre-injury time point.97

Anesthesia was administered to all piglets studied shortly before

injury and to shams, and may have considerable (acute and chronic)

impact on the resting-state EEG network metrics and axonal injury

following TBI. Baseline cerebral perfusion pressure was lower

after isoflurane was administered compared with total IV anes-

thesia in immature (4 week) uninjured pigs, which may suggest

reduced autoregulation.99,100 Isoflurane was also shown to increase

cerebral blood volume and CBF in uninjured rats compared with

propofol or pentobarbital.92 Kochs and colleagues demonstrated

that 1% isoflurane led to a shift toward slower EEG frequencies in

uninjured dogs within 90 min.93 The cerebrovascular and cerebral

FIG. 11. Averaged (across all piglets) core sigma band networks with the most consistent edges (95th percentile of frequency over the
sum of 88 1 sec networks) from sham and injured groups.
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metabolic effect of anesthesia may explain the difference observed

between the pre and post-TBI resting state EEG network metrics in

the sham group.

Our TBI model in 4-week-old piglets has been shown to produce

consistent behavioral outcomes for the head velocity ranges and

head rotation directions used in this article.101–104 Sagittal rotations

in 4-week-old piglets led to increased behavioral deficits, axonal

injury, and CBF deficits in comparison with axial rotations.26,103,104

Behavioral deficits may be present at 7 days following coronal in 4-

week-old piglets.102–104 A previously published study reported the

timeline of recovery of 4-week-old piglets after sagittal rapid head

rotation where histopathology was obtained at 3–8 h, 1 day, 3–4

days, and 5–6 days post-injury.101 Weeks and colleagues showed

that cerebral axonal injury volume was low at 3–8 h (0.57%) then

peaked at 1 day (1.15%) before decreasing at 3–4 days (0.69%) and

5–6 days (0.56%) post-injury.101 This previous study demonstrated

partial recovery of the 4-week-old piglet from diffuse axonal injury

within 6 days of a sagittal injury, which justifies our choice of study

time points of 1, 4, and 7 days after injury and discussion of be-

havioral outcomes. Human TBI studies are highly variable in their

inclusion criteria, injury severity and type, and recovery duration,

all of which have been shown to affect the presentation of cognitive

symptoms and pathological outcomes. This heterogeneity across

human EEG studies critically limits interpretation and comparison

of results. Animal TBI research circumvents several of the afore-

mentioned concerns by allowing control over injury severity and

type and recovery duration. The mass-scaled equivalent angular

velocity from 130 rad/sec in the 4-week-old piglet was 58 rad/sec

and 38 rad/sec for the human infant and adult respectively. Rowson

and colleagues105 report a 50% risk of concussion as 28.3 rad/s

using impact data from American football games.

Our mass-scaled velocity exceeded Rowson’s concussion

threshold. Sullivan and colleagues reported the range of sagittal

head rotational angular velocity as 44–49 rad/sec from parietal and

occipital head impacts during low height falls in infants,103 which

were smaller than the current study’s mass-scaled equivalent,

58 rad/sec. The currently reported angular velocities prescribed to

the 4-week-old piglets led to EEG changes and axonal injury that

may be associated with a moderate to high risk of concussion in

adult humans based on previously reported concussion thresholds.

For young adults, a range of 892–1169 rad/sec2 was reported for

head angular acceleration during soccer heading impacts in both

sexes.97 Average angular acceleration (36,932 rad/sec2) from 4-

week-old piglets mass-scaled to an adult human brain mass yielded

a value of 3188 rad/sec2, which was much higher than the reported

accelerations for heading a soccer ball. Significant changes to the

EEG network were expected following TBI via rapid head rotation

at prescribed levels.

Core network topology is influenced by frequency
but not TBI

It is reported that each frequency band has a distinct network

topological signature,66 with engagement of a select combination

FIG. 12. Averaged (across all piglets) core theta band networks with most the consistent edges (95th percentile of frequency over the
sum of 88 1 sec networks) from sham and injured groups.

2574 ATLAN AND MARGULIES



of electrodes placed over the left, right, frontal, parietal, temporal,

or occipital brain regions. Stability of EEG functional networks was

found in healthy humans for different frequency bands and across

awake and sleeping states within a subject.36 Although the spatial

resolution of EEG is poor, we assume that each oscillation’s

characteristic network arrangement is reflective of the regional

specificity of the neuronal sources. The core network topology

analysis examines the influence of topology on the diffuse hy-

perconnectivity observed after TBI. Hyperconnectivity may occur

as the result of an increase in the number of total edges, increase in

edge weights, or both. We found that the presence and arrangement

of the top 5% strongest edges was consistent among animals for

each frequency band of interest in both groups. The core topology

was dependent on the frequency, but did not change with injury or

study day. This implies that the hyperconnectivity observed post-

injury was not caused by the addition of core edges, but by in-

creases in synchrony or the strengthening of core edges. The lack of

addition of core edges after injury could be related to the limited

axonal regenerative ability of the brain. In order to minimize total

energy spent in response to TBI, previously existing cognitive and

structural architecture may be utilized, as opposed to creating new

connections. Hyperexcitability was found in the CA1 in 2–3-

month-old Yorkshire pigs 7 days after a single coronal rapid head

rotation.99 The authors proposed that decreased axonal function

leads to reduced input from afferent regions, which yields hyper-

excitability in the post-synaptic neurons.

Limitations

We calculated fully connected networks because the analysis of

both strong and weak connections may be critical to distinguishing

between injured and uninjured networks. More complex ways of

calculating synchronization networks could have been applied,

such as phase lag index or mutual information, instead of cross-

correlation. We chose correlation because of its ease of calculation

for application to our pilot study and common usage throughout the

TBI network literature. Comparing information from TBI studies in

humans and piglets is difficult because of the inconsistency of data

acquisition and analytical methods utilized, such as the variability

in the definition of resting state used across studies. In this report,

we acquired EEG from awake, immobile piglets in a quiet room

free of any overt stimuli or tasks. Comparison with other resting

state studies depends on the definition of ‘‘resting state,’’ which in

humans is believed to constitute a mental passive state. In animal

models, like human studies, we cannot be certain that we capture

such a passive state, only a mental state free of overt stimuli. In

human studies, subjects may be instructed to focus on a cursor,38,88

otherwise to keep their eyes closed 48 whereas in animal studies

anesthesia is often administered.82,83 It is relevant to note that we

did not train our piglets to close their eyes; therefore, comparisons

with human resting state studies may be imperfect. Attention and

presentation of stimuli can significantly affect the features of the

EEG, but it is less clear how much these factors modulate EEG

network connectivity. A second limitation of this study is that

measured changes from TBI were caused only by a single, rapid

non-impact injury; future studies should include and compare both

focal and diffuse forms of TBI, and repeated injuries. Another

limitation of this study is that pre-injury status would not be

available in pediatric patients as it is in our study using piglets.

However, the comparison of a single pediatric EEG to a distribution

of uninjured EEGs may address cases in which pre-injury status in

pediatric patients is unavailable. In our study, the comparison of

pre- and post-injury status within the same animal limits the in-

fluence of inter-animal variability. We propose that future studies

repeat this study with a larger sample size that identifies groupwise

differences between shams/naives and injured piglets and deter-

mines whether the presence of TBI is possible with a single EEG

alone. Future development of this biomarker may include its use for

prognosis.

Conclusion

Changes in resting state functional network connectivity may be

applicable to the precise identification of diffuse TBI (compared

with controls) in children when task-related networks are difficult

to obtain. Decrease in spectral power and modularity, increases in

nodal strength, clustering coefficient, and global efficiency may

suggest that mTBI leads to neural network damage in both cortical

and white matter tract regions. Altered functional connections may

be a consequence of axonal disconnection and may also be related

to brain function deficits. This study serves as proof of concept that

EEG networks in piglets may be helpful for the development of

biomarkers that indicate when mTBI has occurred. Future studies

will better clarify the relationship among resting state EEG, be-

havioral outcomes, and axonal injury volume in the same animals.
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