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While it has long been recognized and documented in epidemiologic studies that early life
stress (ELS) can predispose individuals to higher all-cause mortality at potentially alarming
rates (Dube, Felitti, Dong, Giles, & Anda, 2003; Felitti et al., 1998; Marmot et al., 1991),
and that early life protective factors, including social/relational factors, can prevent or
reverse the consequences of ELS (Farrell, Simpson, Carlson, Englund, & Sung, 2016), our
ability to identify and systematically test possible mechanisms is necessarily compromised
in human studies by ethical and practical constraints. A successful animal model of a
complex human phenomenon provides an elegance that is rooted in its specificity and built
with rigorous attention to mechanism. In addition to insights provided by natural
experiments and deliberate intervention in human work, scientific advances have benefited
from at least three important preclinical models that have provided specific manipulations of
early postnatal life experiences (differences in licking and grooming; maternal separation/
deprivation; caregiver maltreatment) followed by careful study of their behavioral, physical,
cognitive, physiologic, neural and epigenetic consequences. Because the behavioral (anxiety,
depression), physical (growth), cognitive (deficits in memory), physiologic (stress-system),
and neural (prefrontal cortex, hippocampal, amygdala volume) changes seen in preclinical
models mirror those often seen in children and adults who have experienced ELS, much
attention has been given to considering whether the core mechanisms identified in
preclinical models can explain (and potentially be used to reverse) negative outcomes in
humans. In particular, the promise of epigenetic mechanisms (most prominently DNA
methylation) as perhaps the critical and reversible process that embeds experience within the
body and brain to influence physical and mental health, and which may even be
transmittable across generations, has been an increasing target for empirical and theoretical
work. This promise, so beautifully articulated by early pioneers in this work (Champagne,
2010; Zhang & Meaney, 2010), has drawn human researchers to collect or use banked tissue
samples for characterization of DNA methylation.
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This important step forward opens the possibility for meaningful cross-species dialog;
specifically, where does human data match or contradict the preclinical models, how might
preclinical models be further manipulated to probe these differences, and how might human
studies better measure meaningful analogs to the preclinical work? In the interest of
advancing this goal, we provide a classification structure to identify aspects of preclinical
and human studies that should correspond for best comparison (based on available data) and
highlight places where this match could be increased. This is critical because we cannot
fully appreciate similarities or differences across species (and their implications for theory
and intervention) without careful alignment and adjustment to methods in preclinical and
human studies as more data become available. In fact, it has been the case that key papers
(e.g. McGowan et al., 2009) have investigated epigenetic markers identified in one
preclinical model (e.g. NR3C1 in hippocampus; licking and grooming model) when in fact
the human sample (human suicide victims with and without child abuse histories) better
matches a different preclinical model (caregiver maltreatment) which would have suggested
another epigenetic target (e.g. BDNF in PFC). Of course, this has sometimes happened due
to timing (the licking and grooming model was available first); however, this should not
preclude future work from taking these similarities and differences into account. Further, the
opportunities afforded by the development of the maternal separation/deprivation model
(Daniels et al., 2009; Murgatroyd et al., 2009) and the caregiver maltreatment model (Roth
et al., 2009, Blaze et al., 2013) have not been fully realized. Serendipitously, some studies
have revealed parallels across models that are dissimilar, which brings to light the key
question of how specific these processes in fact are, and whether that specificity holds across
species.

To further this conversation and spur research that takes advantage of these opportunities, we
organize the existing literature by providing a classification structure for the match between
characteristics of the human studies and the three most prominent preclinical models of early
postnatal stress. Specifically we evaluate the match between 63 human studies and each of
three identified animal models of early life stress (licking/grooming, separation,
maltreatment) on six key variables (timing of ELS, timing of epigenetic sampling, type of
ELS, the degree to which sex of participants was addressed, tissue source for the epigenetic
sample(s), and target DNA methylation loci examined). Our intention with this classification
scheme is to systematically identify where there is translational relevance and some next
steps for this line of research to increase translation and replicability to accelerate scientific
advance.

Model selection.

We began with the licking and grooming model (e.g. Weaver et al., 2004; Champagne et al.,
2006), arguably the most prominent model examining how early experience may change
developmental trajectories as mediated via DNA methylation. Because many human studies
that cite the licking and grooming model focus on adversity (vs. positive caregiving
following mild challenge), we next included two prominent models of early life adversity,
the maternal separation/deprivation model (Daniels et al., 2009; Murgatroyd et al., 2009) and
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the caregiver maltreatment model (Roth et al., 2009, Blaze et al., 2013). Our intention was to
allow a thorough evaluation of translational relevance by allowing a contrast with three
animal models that differ in the type of ELS. Please see Table 1 for details on each model,
particularly with respect to the match variables evaluated in the classification scheme.

Avrticle selection process.

A systematic search was performed to verify the selected rodent preclinical models of early
postnatal stress and to identify the body of existing human studies. We selected the three key
rodent models as those most consistently studied with respect to postnatal caregiving
influences on epigenetics, and varying in their degree of severity. For each, the seminal
article (or articles) describing the epigenetic results was used as a root. To allow further
classification of the specifics of the model, prior or subsequent seminal work was also
referenced. See Table 1 for abstracted core components of each model based on this
approach. Notably, each model includes offspring outcomes, and sometimes, for female
animals, there is effort to understand subsequent mothering (and its epigenetic mechanisms).
We also note that related work in non-human primates has been documented. Although
beyond the scope of this review these models offer further tests of cross-species
differentiation and replication of core mechanisms and can provide important insight
(Kundakovic & Champagne, 2015). Finally, in all three animal models of ELS, DNA
methylation was consistently examined, though other complementary epigenetic processes
have been studied as impacted by ELS (histone modification, Xie et al., 2013; chromatin
remodeling, Weaver et al., 2017). Therefore, we focused our systematic review on DNA
methylation specifically.

Next, the following advanced search queries were run in the U.S. National Library of
Medicine “medline” database:

1. methylation AND (DNA OR epigenetic) AND (“early life” OR “maternal
behavior”) NOT autism NOT schizophrenia NOT ethanol NOT alcohol NOT
cancer NOT metastable NOT diabetes NOT lead NOT nutrition NOT asthma
NOT allergy NOT allergic NOT pollution NOT pollutants [no date restrictions,
through July 2, 2018]. This resulted in 340 hits.

2. methylation AND (DNA OR epigenetic) AND (“early life” OR “maternal”)
AND human NOT infection NOT substance NOT autism NOT schizophrenia
NOT ethanol NOT alcohol NOT cancer NOT metastable NOT diabetes NOT lead
NOT nutrition NOT asthma NOT allergy NOT allergic NOT pollution NOT
pollutants [no date restrictions, through July 2, 2018] This resulted in 1198 hits.

3. Articles citing Champagne et al., 2006, Daniels et al., 2009, Murgatroyd et al.,
2009, Roth et al., 2009 [no date restrictions, through July 2, 2018]. This resulted
in 176, 27, 293, and 310 citing articles, respectively.

4. Articles citing Weaver et al., since the last systematic review (Tureki & Meaney,
2016 included through July 2014). This resulted in 440 hits (August 1, 2014
through July 2, 2018), as well as 26 of the 27 human articles selected by Turecki
& Meaney, 2016 (one was subsequently retracted).
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Entries from these searches were examined, and empirical articles with human data that
examined epigenetic markers of some type of postnatal caregiver-related ELS or caregiving
were retained (a total of 63 articles). This included studies of infants or children whose
mothers had been previously stressed or had suffered from mental illness (during or before
pregnancy and in the infants’ early postnatal life), and those examining data from adults with
ELS exposures involving caregivers (prior maltreatment, caregiver mental illness, and
socioeconomic position). Samples of mothers with limited information on childhood
adversity and no methylation data from children were excluded, and one study of child
methylation as the result of stress exposure during grandmaternal gestation was also
excluded because of limited information on subsequent adversity in the mother or child’s
life. One study that constrained epigenome-wide association study (EWAS) results to those
CpGs associated with an adult outcome (BMI) was also excluded. Similarly, studies that
sampled only placental tissue or cord blood were excluded as the focus of this paper was on
postnatal epigenetic differences as related to ELS experiences (though this would be a
fruitful area for future work to examine parallels with preclinical models of prenatal stress).

Selection of match variables.

Both human and animal models suggest that in addition to the type of ELS, the targeted
epigenetic location/process and the species under study, investigators should consider the
age/developmental stage both at the time of the early stress and at the time of epigenetic
sampling, the sex of the individual, and the origin of the epigenetic sample (e.g. brain,
blood, buccal, saliva). The rationale for including each of these, including a description of
cross-species translation limitations, is provided in the following paragraphs.

Type of ELS.—Early stress in humans can come in many forms which may not always be
independent. For example, neglect is common in children exposed to abuse (Cicchetti &
Handley, 2017), and high levels of parental stress can reduce the quality of parenting
behaviors in both rodents and humans (Doherty, Blaze, Keller & Roth, 2017, Wray, 2015).
The selected preclinical models include differences in parental care (levels of licking and
grooming, sometimes augmented by brief handling stress), maternal separation (separations
of hours and up to a day of dams and pups shortly after birth, which is species atypical for
length of time a dam is out of the nest), and maltreatment (neglectful and abusive parenting
following maternal resource restriction and novelty stress). These models have each
suggested a targeted epigenetic locus that may be responsible for long term offspring
outcomes. The licking and grooming model (LG) heavily implicates the glucocorticoid
receptor gene NR3C1, the maternal separation model (SEP) reports epigenetic differences in
the gene responsible for synthesis of the hormone vasopressin, AVP, and the maltreatment
model (MALTX) implicates the gene coding for synthesis of the protein brain-derived
neurotropic factor, BDNF.

Timing of ELS.—The appropriate timing for comparable human epigenetic programming
to that seen in animal models is unknown. In many cases, ELS paradigms used in rodents
apply the ELS within the first and certainly by the end of the second postnatal week. This
may correspond to roughly 6 months of stress experience in the human infant, though
developmental age/stage comparisons across species are difficult (Sengupta, 2013). In the
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rat, weaning can happen around postnatal day 21, while human infants are often weaned
between 9-12 months, although there is considerable variability (Canadian Pediatric Society,
2004). Both rodents and humans reach sexual maturity before social maturity. Human
studies suggest that methylation differences continue to be settling through at least 5 years of
age, and of course both human and animal work has demonstrated the dynamic nature of the
epigenome over the course of development and its exquisite sensitivity to experiences
outside of sensitive periods of development (Bale, 2014, Gitik et al., 2018, Kanherkar,
Bhatia-Dey, & Csoka, 2014).

Age/Developmental Stage for Epigenetic Sampling.—In many cases, this variable
has been systematically examined in the key animal models, with animals being sacrificed
and sampled immediately post ELS, and at many developmental time points into adulthood.
Human studies vary in the timing of the epigenetic sampling from as early as right at birth
(or even prenatally) all the way through senescence. Without longitudinal work,
understanding when differences should be expected and importantly when change is most
likely will be elusive.

Sex.—In all three preclinical models, sex differences have been documented and can be
quite important. In fact, sexually-dimorphic phenotypes in rats result in part from
methylation differences that naturally occur (McCarthy & Nugent, 2015, Nugent, et al.,
2015, Kolodkin, & Auger, (2011) and follow differences in preferential maternal licking and
grooming and anogenital stimulation of male offspring (Kosten & Nielsen, 2014). A little
discussed fact is that many rodent studies utilize litters that were culled to include only male
animals. It would be interesting to address potential sex differences in ordinary parenting
behaviors following ELS. Resultant hypotheses could be tested for relevance in human
work.

Tissue Type & Location.—This cross-species limitation of tissue source is probably the
best recognized, as in most cases, animal models use brain tissue and in most cases, human
studies use peripheral samples. However, it is certainly possible to routinely assess
peripheral epigenetics in animal models and sometimes possible to use stored blood or
buccal samples for human populations that later have post-mortem brain tissue available.
Human samples also commonly use blood drawn under different or unspecified conditions,
and from different components (e.g. venous, cord blood, placenta). Creating careful
correlations across tissue type would go a long way toward advancing crosstalk, and in the
few studies that have done this work, both reasonable correlations (Smith et al., 2015) and
discrepancies (Armstrong, Lesseur, Conradt, Lester & Marsit, 2014) have so far been
documented.

Determination of degree of correspondence.

Information on each of the possible 6 match variables was extracted (see Table 2) and a
percent match to each animal model was estimated. In particular, for each preclinical model,
the study was given a summed score from 0-6 as to whether they matched on each of the
following: (1) timing of ELS (1=neonatal and less than 6 postnatal months; .5=includes less
than 2 years; O=prenatal and over age 2 or across all of childhood), and (2) the offspring age
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at time of epigenetic sampling (1=matched if postnatal year up to age 30 years, .5 if
postnatal year 31-50; 0=over age 50 because rodent models typically extend to postnatal day
(PND) 90 or occasionally PND 180, but have not assess aged rats). Specific to each animal
model we also coded degree of match to (3) ELS type (1=positive maternal care for LG
model, maternal separation for SEP model, and abuse/neglect for MALTX model; .5 for
partial match (e.g. maternal depression was coded as a partial match for both the LG and the
SEP models given research on the association between maternal depression and both
parenting and child outcomes) and 0 for no match); (4) offspring sex (1=matched on sex
tested by the model{male for LG}, or both sexes included and paper explicitly tested for sex
differences; O=not matched); (5) tissue source examined in each model (brain, buccal, saliva,
blood) and source for brain tissue (hippocampal vs. PFC) of the epigenetic sample analyzed
(1=source and location match e.g. hippocampus for the LG and SEP models, and both
hippocampus and PFC for the MALTX maodel; .5 for only hippocampus in the MALTX
model; 0=not matched, (0 was coded for all sample types except brain tissue because all
three animal models focus on brain tissue); and, (6) whether they assessed the model-
appropriate target epigenetic location directly or discussed its analysis from an epigenome-
wide (EWAS) scan (NR3C1 for LG, AVP for SEP, and BDNF for MALTX; 1=matched or
EWAS, 0=not matched).

Of the 2,784 articles that were identified from the search strategies described above (this
number includes duplicates that were surfaced by more than one strategy), 212 were
evaluated in close detail and 63 met final criteria and are included in Table 2. We include
here only empirical work, however it is interesting to note that most of the 2,784 records
were commentaries and review papers, an indication of the great interest in this topic across
many disciplines (biology, psychology, psychiatry, neuroscience, medicine, education etc.).
The body of human work is also quite impressive, especially given the difficulty inherent in
this type of study. As can be seen in Figure 1a, human studies have been consistently
published since 2012, with shifting tissue type preferences (particularly increasing use of
saliva samples). Targeted loci approaches continue to be common, but EWAS approaches are
increasingly utilized (see Figure 1b). However, it is clear that more human work is needed,
particularly more work that builds from the preclinical work and that evaluates the wealth of
available specific and testable hypotheses with longitudinal or intervention studies.

We organize the results according to tissue type studied. Because the animal work all uses
brain tissue, in all cases excepting the five postmortem brain papers there is a mismatch
between the human and animal work. Although use of human brain tissue is clearly
restricted (and presents its own limitations), because epigenetic signals are critically
involved in cell-type specificity we elect to organize our review to highlight that
immediately upon departing from a match in tissue type a degree of translational specificity
is lost and should temper interpretation. Within each section (divided by tissue type), we
then summarize the degree of match on other key variables (type and timing of ELS,
epigenetic target). Our intention is to illuminate places where the match between human and
animal work could be increased to further theoretical understanding and practical
implications. Table 3 provides detail on the classification determination made for each of the
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63 studies for each model and variable assessed, which could have ranged from 0%
(matched on 0/6 variables) to 100% (matched on 6/6 variables).

Postmortem brain tissue.

Five papers met the search criteria and used post-mortem human brain tissue (top row of
Tables 2 and 3, Labonte et al., 2012a 2012b, McGowan, et al., 2009, Nemoda et al., 2015,
Suderman et al., 2012). Upon classification, it appears there may be substantial overlap in
the subjects used in all five papers, which all use hippocampal brain tissue from the Quebec
Suicide Brain Bank from Caucasian males of French Canadian decent and rely on
postmortem proxy interviews to establish early histories of abuse, neglect or maternal
depression. However, sample sizes range from 12-25 suicide completers with early life
adversity, suggesting the samples are at most only partially overlapping in exact tissue
samples. Although there are other studies evaluating epigenetic markers within human brain
tissue (Puglia, Lillard, Morris, & Connelley, 2015, Wockner et al., 2014), none of those that
emerged from our search also include measures of ELS. Overall, these five studies of the
Quebec Suicide Brain Bank fit 1.5-4 of the six evaluated study match criteria, resulting in a
25-67% match rating. Therefore, even when the studies were matched on tissue type, they
were not matched on most other criteria (due in part to limitations inherent in postmortem
studies), limiting translational specificity. We note, however, that by examining DNA
methylation locations specific to studies of maltreatment (or by using EWAS) specificity
could be increased.

Buccal cells.

Nine papers met the search criteria and used buccal cells (second section of Tables 2 and 3).
Three of these examined samples with ELS occurring from months to years in duration and
with broad measures of adversity (duration in institutional care, Adverse Childhood
Experiences (ACE score)) three evaluated the effects of maternal depression or parental
stress early in life (2) or in infancy/preschool (1), two similar samples evaluated risk status
in preterm infants recruited from a neonatal intensive care unit in Rhode Island, and the final
evaluated infant tactile stimulation at 5 postnatal weeks. Because animal models examine
targeted exposures to ELS, studies with broad ELS exposure windows and downstream
DNA methylation assessments up to many years later lack translational specificity. Two
studies used a EWAS approach, one with the 27K beadchip and one with the 450K
beadchip; five examined NR3C1 and four of these also looked at other candidate loci (2
including BDNF), one looked at SLC6A4 and FKBP5, and one looked at MT-ND6. Thus,
studies ranged in their specificity regarding epigenetic target loci. Overall, these studies fit
1.5-5 of the six evaluated study match criteria, resulting in a 25-83% match rating. The
highest rating was achieved only for the two studies that examined postnatal positive
maternal caregiving behaviors and otherwise matched the LG model versus using the LG
model to understand models of early adversity. More work examining positive caregiving is
badly needed to fully examine the cross-species replication of the LG model, and when
separation or maltreatment is the human ELS, inclusion of AVP and BDNF (and ideally via
EWAS) would increase translational specificity.
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Saliva samples.

Ten papers met the search criteria and used saliva (third section of tables 2 and 3). Nine
examined samples with ELS occurring from months to years in duration (four of which were
from the same project, although sample sizes vary across papers), and one evaluated prenatal
and perinatal stress. Seven studies examined NR3C1 explicitly; one of these also looked at
the MAOA gene and one also used an EWAS approach. One study used an EWAS approach,
with the 450K beadchip. One study focused exclusively on OXT-related genes, and the final
study on the serotonin transporter gene (HTR2A). Similarly to studies with buccal cells,
EWAS improves the opportunity for translational match across models, as does time-limited
ELS exposure and epigenetic measurement closely following ELS. Overall, these studies fit
1.5-4 of the six evaluated study match criteria, resulting in 25-67% match rating.

Blood samples.

The majority of human studies (39) used blood (bottom row of tables 2 and 3), typically
whole blood, though there is an increasing focus on accounting for cell type which is not
common in the early work. Of these, in 21 the ELS included childhood maltreatment (abuse,
neglect, or “trauma”, which included both family upheaval and abuse). In six papers, the
primary ELS was exposure to low socioeconomic status, sometimes measured as maternal
education, parental occupation, and in one case as neighborhood disadvantage, and SES was
included in an additional three papers also examining maltreatment. In four studies, parental/
maternal care differences was the ELS/experience measured. In three studies the ELS was
maternal separation or orphanage care, for two it included prenatal stress exposure, and one
each intrauterine growth restriction, prenatal genocide exposure, parental PTSD, and
maternal intimate partner violence exposure. Some type of EWAS was common (n=13,
33%) with number of loci increasing as more sophisticated beadchips became available.
However, none published to date use the currently recommended 850K beadchip. Sixteen
(41%) also specifically discuss NR3C1. Of the remaining ten, four targeted serotonin genes,
two BDNF (one of these also included OXT), one OXT, and the remaining three less
common targets in ELS research. Overall, these studies fit .5-4 of the six evaluated study
match criteria, resulting in 8-67% match rating. This lower match is largely driven by the
fact that so many studies examined severe adversity and focused on NR3CL1.

Across tissue types, match between human studies and each preclinical model was less than
50% on average, (LG=46%, SEP=38%, MALTX=44%), with a range of 8% to 83% (see
Figure 2 for an illustration of these results). Rarely does the match exceed 50% (22%, 14%
and 10% of the time, for each preclinical model respectively), and in only two cases did the
match exceed 75%. See Table 3 for the fit across models.

Discussion

Several interesting results emerged from this systematic classification. Our review
highlighted the degree to which human studies have missed opportunities for translational
relevance, with an overreliance on the licking/grooming model even in recent work
examining maltreatment (Tyrka et al., 2015) or separation (Kantake et al., 2014). This
overreliance is further overly dependent on the original Weaver et al., 2004 study which only
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examined methylation of NR3C1 (and subsequent histone acetylation and NGFI-A binding)
versus taking into account later data suggesting that widespread methylation across
chromosome 18 may be a consequence of differences in maternal licking and grooming in
the first week of life (McGowan, et al., 2011). In most cases when a candidate locus was
used and there was a model mismatch it occurred when NR3C1 methylation status was
assessed in participants with maltreatment history. However, the opposite mismatch also
occurred, for example BDNF assessed in participants as a function of positive parenting,
(Unternaehrer, et al., 2016). Immediate steps using existing EWAS data could increase
specificity by testing for AVP and/or BDNF as appropriate for the ELS experienced, as well
as allowing emergence of novel loci.

Systematic attention to timing of ELS has been grossly underspecified in most human
studies, despite clear evidence that timing matters in both preclinical models (where in fact
ELS must sometimes occur in the first postnatal week to impact epigenetic signatures) and
human studies (where consequence of ELS extend at least to stress experienced in the first
several postnatal years). Relatedly, the timing of the epigenetic sample is very important,
and an understanding of when and how methylation patterns change across species is badly
needed. There is some evidence, for example, that in rodents at PND1, no individual
differences in methylation can be detected (Weaver et al., 2004), while in humans a number
of studies have documented individual epigenetic differences in cord blood (Oberlander et
al., 2008). Twin studies also reveal rapid changes in early life (Martino et al., 2013). This is
a particularly important area for future work, as the promise of prevention lies in knowing
when methylation differences occur so as to intervene in a timely fashion. Simple cross-
species age-equivalents are clearly inappropriate given these data (stress experienced for
seven days early in the life of a rat for example, would be generously extended to the
equivalent of 6 or 9 postnatal human months). Both animal and human studies could
contribute to this question by including multiple sampling time points of both ELS and DNA
methylation, and in animal work by examining DNA methylation changes association with
experimental variation of the timing and duration of ELS.

The human literature is predominantly cross-sectional. Longitudinal studies are a common
tool in human developmental studies and could be exploited here to identify when
differences emerge and when (and how) they are or can be ameliorated. Indeed, only one
paper in this review measured change in DNA methylation (Parent et al., 2017; saliva
sample), and the results are opposite to the interpretation usually made from similar single
time point data (decreasing and lower time 2 methylation for the maltreated children vs.
non-maltreated children at NR3C1 exons 1p and 1g). The human studies also nearly entirely
lack attempts at intervention, pharmacologically, as is done in animal models, but also
behaviorally — despite the literally hundreds of commentaries and reviews that include
reference to this possibility (e.g. Heim & Binder, 2012; Szyf & Bick, 2013, Tureki &
Meaney, 2016).

Epigenome-wide association studies are underrepresented in both animal and human work,
despite a long history with many of these same genes suggesting that a candidate approach is
perhaps inefficient or ineffective for predicting complex behaviors or disease. If both animal
and human work systematically included EWAS approaches (and considered making this
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information publicly available) progress could be accelerated. Indeed, again referring back
to the literature on candidate genes, repositories with very large samples may be needed to
detect small but possibly important differences, suggesting that systematic efforts to collect
data (even in free-standing projects) that could be deposited collectively may be an
important step to consider now.

Differences in tissue type could also be more readily understood if multiple tissue types
were collected in human and animal work. Indeed, if animal models were to systematically
evaluate the correlation between brain and blood DNA methylation across the epigenome,
(particularly with attention to blood cell type), match ratings would go up for over half of
the published work and our ability to determine cross-species replication would be quickly
improved. Although more difficult, replication analyses across tissues within human studies
have also been published (for a blood-brain example, see Houtepen, 2016).

Relatedly, genotypes of human participants under study are far too infrequently considered.
This is problematic in two ways — some genotypes are more susceptible to developmental
stress and may be more readily promoted or silenced via epigenetic processes. Most work
also focuses on DNA methylation (see Mitchell, Schneper & Notterman, 2016 for an
exceptionally clear description of the biology of methylation), and our search criteria
restricted our review to evaluation of the DNA methylation literature. Other important
epigenetic processes are likely at play (see for example, recent work on the epigenetics of
telomeres, Blaze, Asok & Roth, 2015), and efforts to align the human and preclinical work
on these processes is also needed.

Sex differences are also largely ignored despite the fact that all three preclinical models have
robust sex differences. Increased specification and systematic expansion in breadth is critical
to realize the promise of this new mechanism for improving human health and well-being.
Existing human data sets could systematically examine sex differences to readily contribute
to this question. Because of power, repositories may be needed to fully appreciate individual
differences, including sex. Human work would also benefit from greater attention to
diversity with regard to race and ethnicity, perhaps even considering modeling of ancestral
genetic differences (e.g. Parent, et al., 2017).

Within animal models of ELS, comparison across species may also be fruitful. While there
is some evidence for similarity across species, especially among rodents, and on occasion
remarkably across species as divergent as fish (McGhee & Bell, 2014), sometimes patterns
are confusingly divergent within a species (Long-Evans vs. Sprague-Dawley rats; Jawabhar,
Murgatroyd, Harrison & Baune, 2015) or more similar between rodents and humans (e.g.
Dolle Molle et al., 2012) but not with other primates (Kinnally, et al., 2011). Careful
attention to species when making comparisons would aid in specificity and help to work
toward an understanding of underlying differences.

Finally, although beyond the scope of this review, similar important parallels could be drawn
with preclinical models of prenatal epigenetic changes following stress and the large human
literature on epigenetics in placental, cord blood and maternal blood at birth. For example,
the highly cited paper by Oberlander and colleagues on NR3C1 methylation in cord blood of
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newborns who experienced exposure to maternal prenatal depression (Oberlander et al.,
2008) could be evaluated for its match to preclinical models of prenatal stress and epigenetic
modification vs. to postnatal epigenetic models We did not include such work, in part
because data comparing tissues from the same infants suggests methylation patterns in
placenta, cord blood, and saliva may be weakly or negatively correlated (Armstrong et al.,
2014; Ollikainen et al., 2010). A review of studies of placental and cord blood would,
however, be particularly helpful for untangling age parallels between human and rodent
newborns with regard to timing of prenatal and postnatal stress and methylation changes.

In conclusion, immediate steps with existing data sets could increase match specificity by
examining the putative loci from samples with EWAS data. New or existing blood samples
from well-studied animal models could be evaluated to clearly establish correlations
between blood cell type methylation and brain region methylation in prominent genes.
Animal models could also utilize EWAS technology much more frequently as is now
common in human work. With regard to new study design, greater specificity in timing of
both ELS exposure and epigenetic sampling, and including more than one epigenetic sample
(across tissues and within tissues across time) would be of great benefit. Indeed, the great
interest in DNA methylation as patterning that is influenced by experience and then
relatively stable across time could and should be systematically evaluated across time, tissue,
and loci. This systematic review suggests that we are underutilizing the power of three well-
established ELS animal models due to insufficient matching between methods in the models
and in human work. As is central to the tradition of ISDP, we encourage these steps,
especially in this subfield which has been the focus of the work of so many ISDP members
across decades.
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Figure 2.
Model fit between human studies of ELS and epigenetics with three animal models. Note.

For each empirical paper, a bar indicates the match with each of three animal models as
described in Table 3.
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