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Abstract

Caveolae are plasma membrane invaginations whose formation requires caveolin-1 (Cav1),

the adaptor protein polymerase I, and the transcript release factor (PTRF or CAVIN1).

Caveolae have an important role in cell functioning, signaling, and disease. In the absence

of CAVIN1/PTRF, Cav1 forms non-caveolar membrane domains called scaffolds. In this

work, we train machine learning models to automatically distinguish between caveolae and

scaffolds from single molecule localization microscopy (SMLM) data. We apply machine

learning algorithms to discriminate biological structures from SMLM data. Our work is the

first that is leveraging machine learning approaches (including deep learning models) to

automatically identifying biological structures from SMLM data. In particular, we develop

and compare three binary classification methods to identify whether or not a given 3D clus-

ter of Cav1 proteins is a caveolae. The first uses a random forest classifier applied to 28

hand-crafted/designed features, the second uses a convolutional neural net (CNN) applied

to a projection of the point clouds onto three planes, and the third uses a PointNet model, a

recent development that can directly take point clouds as its input. We validate our methods

on a dataset of super-resolution microscopy images of PC3 prostate cancer cells labeled

for Cav1. Specifically, we have images from two cell populations: 10 PC3 and 10 CAVIN1/

PTRF-transfected PC3 cells (PC3-PTRF cells) that form caveolae. We obtained a balanced

set of 1714 different cellular structures. Our results show that both the random forest on

hand-designed features and the deep learning approach achieve high accuracy in distin-

guishing the intrinsic features of the caveolae and non-caveolae biological structures. More

specifically, both random forest and deep CNN classifiers achieve classification accuracy

reaching 94% on our test set, while the PointNet model only reached 83% accuracy. We

also discuss the pros and cons of the different approaches.
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Introduction

Caveolae are tiny structures of 50–100 nm plasma membrane invaginations [1], membrane-

attached vesicles, that have roles in membrane trafficking and signaling [2]. Caveolin-1

(Cav1) is the coat protein for caveolae, however formation of invaginated caveolae also

requires the coat protein CAVIN1/PTRF. In the absence of CAVIN1/PTRF, Cav1 forms flat

scaffold domains that have distinct functions from caveolae [3]. Secretion and overexpres-

sion of Cav1 in prostate cancer promotes tumor growth and has significant role in cancer

metastasis [2]. Cav1 domains are below the diffraction limit of the light microscopy (i.e. 250

nm) which makes it hard to study them using conventional microscopic imaging modalities.

Recent advancements in microscopy technology have enabled light microscopes to break

Abbe’s diffraction limit. These techniques, known as super-resolution microscopy, can

reach resolutions of < 20 nm in localizing the target protein [4]. Single molecule localization

microscopy (SMLM) is a subset of techniques that work by manipulating the environment

such that in each captured instance, a frame, only a few molecules are stochastically activated

to emit light. Highly precise localizations can then be obtained from isolated point spread

functions (PSFs) of isolated fluorophores (blinks). A 2D super-resolution image can be

obtained by stacking up thousands of the collected frames. To achieve a 3D SMLM image, a

cylindrical lens is inserted so that the microscope captures a deformed Gaussian PSF for each

molecule. The XY coordinates of the molecule are measured as the center of the PSF, while Z

coordinate can be measured from the deformation of the PSF [4, 5]. Consequently, the nano-

scale 3D biological clusters with dimensions below the diffraction limit of optical light (i.e.

200–250 nm) can be studied and visualized using the final 3D point cloud collected from the

SMLM frames.

Stone et al. [6] have applied super-resolution imaging to study the mammalian plasma

membrane structure and organization. Sherman [7] reviewed how SMLM helped in studying

the organization of signalling complexes in intact T cells. He concluded that the cell mem-

brane employs dynamic and hierarchical patterns of interacting molecular species that have

a critical role in cell decision making. Baddeley [8] studied the super-resolved SMLM tech-

niques that are capable of examining biological structures in the cell membrane. He con-

cluded that SMLM imaging methods are attractive techniques for investigating the proteins

and receptors clustering. Khater et al. [9] and Baddeley [8] focused on the need for new

computational tools for quantitatively analyzing the SMLM data. Khater et al. [10] studied

the cellular structures in the membrane of the prostate cancer cells using super-resolution

microscopy of single molecules. They proposed graphlet and modularity based machine

learning method to identify Cav1 domains and their biosignatures from super-resolution

SMLM images [10, 11].

Deep learning is a type of machine learning technique that has attracted great attention in

the past several years [12], as it relieves the algorithm developer from having to design features

for a variety of prediction problems and is capable of achieving state of the art results in many

application areas including medical imaging [13]. For the SMLM imaging modality, deep

learning has been applied to PSF localization, i.e. estimating the X, Y, Z coordinates of the indi-

vidual molecules in the fluorescent state from the raw event data collected by the microscope

[14–16]. However, to the best of our knowledge, deep learning has yet to be applied to the sub-

sequent (post-localization) analysis and quantification of the localization data, e.g. identifying

the various biological structures.

SMLM analysis of Cav1 has previously been reported in zebrafish [17, 18]. Super-resolution

microscopy enabled them to study the colocalization of Cav1 and CRFB1 clusters and their

role in antiviral signalling [17]. SMLM has also been applied to study caveolae deformation in
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response to hypotonic shock [19]. In this work, we focus on the analysis of SMLM images of

PC3 cancer cell labeled with antibodies to the membrane protein Cav1. Cav1 can be localized

to invaginated caveolae or non-caveolar scaffolds [3]. The presence of the CAVIN1/PTRF pro-

tein, a Cav1 adaptor protein, is required for the creation of a caveola [1]. Caveolae have func-

tional roles in the cell as mechanoprotective membrane buffers, mechanosensors, signaling

hubs and endocytic transporters [20]. The role of scaffolds is less well-characterized, in large

part due to difficulties distinguishing these two Cav1-positive membrane domains, but they

have been specifically associated with regulation of receptor signaling and prostate cancer pro-

gression [21, 22]. The primary objective of our research is to identify whether a given Cav1-po-

sitive membrane structure is or is not a caveolae.

SMLM data is difficult for humans to visually inspect and manually analyze as the data is

noisy and contains hundreds of thousands or millions of points representing complex cellu-

lar structures. As SMLM technology is a recent development, the majority of the published

methods on SMLM are related to the image acquisition, with less published work about

quantitative analyses from SMLM data. Among the SMLM quantification methods, many

primarily investigate how to accurately segment 2D SMLM point clouds into clusters repre-

senting individual cellular structures. These cluster analysis methods currently rely on the

extraction and analysis of a few primitive features (radius, density, number of points, etc.) to

describe the 2D clusters as in Owen et al. [23, 24], where they applied Ripley’s functions to

analyze the 2D clusters of super-resolution data. Beyond segmentation, some methods use

the features to identify, group, and query of the different types of clusters. Lillemeier et al.

[25] used the number of points per cluster and the cluster’s radius to compare between the

clusters of two SMLM imaging techniques for two types of cells. Rossy et al. [26] extracted

cluster features that capture the circularity, number of points, radius, and density of every

cluster and then found simple statistics for each feature alone to compare more than two

types of clusters. Pageon et al. [27] used the cluster density and diameter statistics to compare

between two types of clusters. Caetano et al. [28] proposed an analytical tool that to extract

cluster density, diameter, and size and then statistically compare different types of clusters

based on these features. In the work of Rubin-Delanchy et al. [29], a simple statistic of each

individual cluster feature was used to compare the clusters of two different types of cells. The

primary features were the number of points, radius, and density, which were used to com-

pare between two types of clusters. Levet et al. [30] proposed a software called SR-Tesseler

that can be used to segment the 2D clusters and extract elementary features for them, but

without training a system to identify them automatically. The software extracts four simple

features for every 2D cluster. Their software is capable of extracting the area, number of

points, circularity, and diameter of the individual clusters.

The aforementioned methods used a small number of features (cluster properties/descrip-

tors) to quantify and analyze 2D (not 3D) SMLM clusters (blobs). The feature extraction

methods used on 2D SMLM data are not sufficient to effectively identify and analyze these

3D clusters. Fortunately, the explosive growth in the field of machine learning over the last

decade has yielded a number of algorithms that are able to analyze large data such as 3D

SMLM data. In addition to being able to learn more and perhaps currently unknown features

on its own, the machine learning approaches will also be capable to combine and weigh its

learned features to automatically classify molecular structures. To our knowledge, we are

the first to use machine learning to help in the identification and analysis of the SMLM data

clusters.

In order to better understand the nature of the caveolae and its role in human biology, in

this work, we have employed and compared a number of machine learning algorithms for

identifying the caveolar structures from 3D SMLM data of PC3 cells.
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Materials and methods

Methods overview

The primary objective of this research is to be able to accurately predict the class labels of seg-

mented cellular structures originating from SMLM images of the same type of cells. We call

these segmented structures blobs. We have approached this problem as a binary classification

problem: caveolae (positive) or not caveolae (negative). Our approach to this problem involves

three steps (described in detail later in the paper):

1. Data pre-processing: Denoises and segments blobs from SMLM data;

2. Data representation: Describes the blob representations used (i.e., the representation of

the input to the next step) we denote the transformation of the representation as x! g(x) =

x0 where x is an input blob as a point cloud, x0 is a new representation of the same data; and

g is the transformation function that may include transforming the point cloud into vol-

umes, extract the 2D projections, etc.

3. Machine learning models: Describes models used on each input representation and

how they are trained to predict the class of a blob. We denote this prediction operation as

x0 ! f ðx0Þ ¼ f ðgðxÞÞ ¼ ŷ, where ŷ is the predicted class (i.e. caveoalae or not). The function

f is learned from a training set of M blobs with known class labels {(xi, yi), i = 1, 2, . . ., M}

Image acquisition

PC3 prostate cancer cells (American Type Culture Collection (ATCC) and PC3 cells stable

transfected with CAVIN1/PTRF-green fluorescent protein (GFP) (PC3-PTRF)(obtained from

Michelle Hill, The University of Queensland Diamantina Institute, Brisbane, Australia) were

cultured as previously described [1, 31] and plated on coverslips (NO. 1.5H, Carl Zeiss AG;

coated with fibronectin) for 24 h before fixation with 3% paraformaldehyde (PFA) for 15 min

at room temperature. Coverslips were rinsed with PBS/CM (phosphate buffered saline com-

plemented with 1 mM MgCl2 and 0.1 mM CaCl2), permeabilized with 0.2% Triton X-100 in

PBS/CM, blocked with PBS/CM containing 10% goat serum (Sigma-Aldrich Inc.) and 1%

bovine serum albumin (BSA, Sigma-Aldrich Inc.) and then incubated with the rabbit anti-

caveolin-1 primary antibody (BD Transduction Labs Inc.) for 12 h at 4˚C and with Alexa

Fluor 647-conjugated goat anti-rabbit secondary antibody (Thermo-Fisher Scientific Inc.) for

1 h at room temperature. The primary and secondary antibodies were diluted in SSC (saline

sodium citrate) buffer containing 1% BSA, 2% goat serum and 0.05% Triton X-100. Cells were

washed extensively after each antibody incubation with SSC buffer containing 0.05% Triton X-

100, post-fixed using 3% PFA for 15 min and washed with PBS/CM. Before imaging, cells were

immersed in imaging buffer (freshly prepared 10% glucose (Sigma-Aldrich Inc.), 0.5 mg/ml

glucose oxidase (Sigma-Aldrich Inc.), 40 μg/mL catalase (Sigma-Aldrich Inc.), 50 mM Tris, 10

mM NaCl and 50 mM β-mercaptoethylamine (MEA; Sigma-Aldrich Inc.) in double-distilled

water [4, 32] and sealed on a glass depression slide for imaging.

Ground state depletion microscopy (GSD) super-resolution imaging was performed on a

Leica SR GSD 3D system using a 160x objective lens (HC PL APO 160x/1.43, oil immersion),

a 642 nm laser line and an EMCCD camera (iXon Ultra, Andor). Preview images were taken

with 5% laser power in both the GFP and Alexa Fluor 647 channels for each cell, in TIRF

(total internal reflection fluorescence) mode. Full laser power was then applied to pump

the fluorophores to the dark state; at a frame correlation value of 25% the imaging program

auto-switched to acquisition with 50% laser power, at 6.43 ms/frame speed. The TIRF mode

was also applied to the acquisition step of the GSD super-resolution imaging to eliminate
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background signals. The eventlist (i.e. SMLM data, also known as a point cloud) was gener-

ated using the Leica SR GSD 3D operation software with a XY pixel size of 20 nm, Z pixel

size of 25 nm and Z acquisition range +/- 400 nm. The CAVIN1/PTRF masks for the

PC3-PTRF cells were generated by converting the GFP-channel of the preview images to

binary images in ImageJ.

Data

Experimental data

The data used in this research comes from an experiment using PC3 prostate cancer cells [33].

The experiment is first run on 10 SMLM images from CAVIN1/PTRF absent PC3 cells, which

from now on will simply be referred to as PC3 cells. It is then rerun on PC3 cells transfected

with CAVIN1/PTRF-GFP, called PC3-PTRF cells (Fig 1). Due to imaging artifacts and high

background signals, cell 6 of the PC3 cells and cell 7 of the PC3-PTRF cells were omitted from

the data, leaving us with 9 PC3 and 9 PC3-PTRF cells. The experiment additionally captured

Fig 1. The process of obtaining Cav1 blobs (clusters) for the various learning tasks. Filtering, segmenting and labeling the blobs from the

PC3 and CAVIN1/PTRF-transfected PC3 cells (PC3-PTRF cells). (A) 3D view of PC3 and PC3-PTRF cells of size 18 × 18 × 1 μm3. The view

showing all the blobs (3D clusters) within a cell after applying the 3D SMLM Network Analysis computational pipeline [9]. The pipeline contains

modules to reconstruct the Cav1 molecules via the iterative merging of the localizations, filtering the noisy localizations, and segmenting the

Cav1 blobs. The different colors show the segmented Cav1 blobs within the cell. (B) The blobs are color-labelled as PTRF-positive (PTRF+) and

PTRF-negative (PTRF-). It shows that PC3 cell only has PTRF- blobs (non-caveolae blobs) that appear in red while the PC3-PTRF cell has both

PTRF- and PTRF+ blobs that appear in red and blue respectively. (C) A sample PTRF+ blob taken from the PC3-PTRF cell showing the Cav1

molecules distributions. (D) A sample PTRF- blob taken from the PC3 cell showing the Cav1 molecules distributions.

https://doi.org/10.1371/journal.pone.0211659.g001
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lower resolution wide-field microscopy images of the GFP channel of PC3-PTRF cells to iden-

tify the location of CAVIN1/PTRF within each cell Fig 2. This mask provides us with a strong

indication of where the caveolae are located and hence, we use it to label the blobs. Therefore,

the blobs in PC3-PTRF data are labelled as PTRF-positive (PTRF+) and PTRF-negative

(PTRF-). We used this mask and the known biology that caveolae contain more than 60 Cav1

molecules [9] to stratify the PTRF+ blobs into PTRF+� 60 and PTRF+< 60. Since caveolae

cannot exist in PC3 cells, all blobs in PC3 cells were labeled as PTRF-negative (not caveolae or

scaffold) as shown in the red color in Fig 1B.

For our binary classification task, the 9 PC3 cells provide us 14491 negative blobs. The

PC3-PTRF cells provide us 857 positive blobs (PTRF+� 60) and 10009 negative blobs (PTRF-

and PTRF+< 60). To solve this data imbalance, we randomly downsample the negatives from

24500 blobs to 857 blobs to match the number of positives blobs. Figs 1B and 2 show the blobs

from the two populations and their corresponding class labels before and after the number of

molecules stratification respectively.

Fig 2. The process of obtaining the class labels for the Cav1 blobs using wide-field CAVIN1/PTRF mask. The class labels are necessary to

train the machine learning models to identify the Cav1 blobs types automatically. (A) The first row shows the imaged wide-field TIRF

CAVIN1/PTRF mask before and after morphological closing. The morphological closing operation is used to close the small holes in the

consecutive regions of CAVIN1/PTRF mask. The CAVIN1/PTRF regions are delineated in yellow to highlight the locations of the CAVIN1/

PTRF regions in the cell. (B) The second row shows the Cav1 blobs and the overlay of the Cav1 blobs with the wide-field CAVIN1/PTRF mask

to label the blobs into PTRF+ and PTRF-. The caveolae structures have a minimum of 60 Cav1 molecule per blob [9] that can be used to stratify

the PTRF+ blobs into PTRF+� 60 and PTRF+< 60. Our goal is to use machine learning approaches to automatically identify the PTRF+� 60

blobs (caveolar domains) from the rest of the non-caveolar domains (i.e. PTRF+< 60 and PTRF-) using different features and data

representations of the blobs.

https://doi.org/10.1371/journal.pone.0211659.g002
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Simulated data

Simulated data can help in validating the methods. We want to generate a simulated dataset of

blobs with known class labels that mimic the real experimental dataset. In the real experiments,

we are mainly studying two kinds of biological structures, i.e. caveolae and non-caveolar scaf-

folds. In our simulation, we are generating blobs that are similar to both classes. Specifically,

we are generating a balanced dataset of 1000 blobs of isotropic point clouds and 1000 blobs of

non-isotropic point clouds. The isotropic class of blobs mimicking the caveolae (positive class)

and the non-isotropic class mimicking the non-caveolae (negative class). The non-isotropic

class of blobs are more planar structures, while the isotropic class are more spherical struc-

tures. To simulate the real dataset, the number of points per generated blob is drawn randomly

from 60–210 in the positive class and 10–160 in the negative class (Fig 3B). This insures that

the blobs could have various number of points per blob in both classes. Also, the negative

blobs might have a number of points that is equal or greater than the number of points in

some of the positive blobs. Fig 3A shows two samples of the simulated dataset from both

classes.

In our simulation, we used the multivariate normal distribution to generate the samples of

the two classes. Please see the following probability density function (pdf) of the 3-dimensional

multivariate normal distribution that we adopted in our simulation experiments, Eq 1.

f ðx; m;SÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jSjð2� pÞ
3

q expð�
1

2
ðx � mÞS� 1ðx � mÞTÞ ð1Þ

Fig 3. Simulated dataset that contains two types of simulated blobs that are generated with known classes. (A) The figure shows two

samples from each class of the simulated data. The samples are taken from a dataset of 2000 blobs. The blue blobs are samples from the class 1

(positive) and the red blobs are samples from class 2 (negative). (B) The number of generated points per blob in both classes. It shows the

percentage of generated blobs from both classes that have a variable number of points per blobs. There is a large overlap between many of blobs

from both classes in terms of the number of generated points per blob.

https://doi.org/10.1371/journal.pone.0211659.g003
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Where x and μ are 1 × 3 vectors and S is a 3 × 3 symmetric, positive definite matrix. For the

generated blobs from class 1 (isotropic), we used the covariance matrix S ¼ diagðs2
11
; s2

22
; s2

33
Þ,

where the standard deviation σ = 10 nm. For the generated blobs from class 2 (non-isotropic),

we used the covariance matrix S ¼ diagð2� s2
11
; s2

22
; s2

33
Þ, where the standard deviation σ = 10

nm. For both classes, we generated each blob to be centered at zero, i.e. μ = [0, 0, 0].

Results and discussion

Data pre-processing

We adopted the computational pipeline of Khater et al. [9] to pre-process and post-process the

SMLM data. The iterative merging algorithm is used for molecular reconstruction and correct-

ing for multiple blinking of a single fluorophore artifact by iteratively merging all the localiza-

tions within 20 nm until converging to the predicted Cav1 localizations. The unclustered Cav1

molecules, as well as the background events, are removed via the filtering module by compar-

ing the features of the Cav1 network with a random network. The clustered Cav1 node features

are retained due to their distinct features as compared to the random network nodes features.

Their pipeline then segments each cluster into individual cellular structures, i.e., blobs. Fig 1A

shows two cells from both populations (PC3 and PC3-PTRF) after the denoising and segmen-

tation of the blobs. Fig 1B shows the blob labelling of PC3-PTRF cell using the corresponding

CAVIN1/PTRF mask that creates two types of blobs, PTRF-positive (PTRF+) that match

with the mask and PTRF-negative (PTRF-) not-caveolae blobs outside the mask. The caveolae

structures have a minimum of 60 Cav1 molecule per blob [9]. Therefore, in Fig 2 we show the

PTRF+ blobs are stratified based on the number of molecules into PTRF+� 60 and PTRF+<

60. The PC3 cell expresses one type of blob in the absence of CAVIN1/PTRF protein. Hence,

they mainly have one class label.

Data representation

The application of the pre-processing pipeline results in a set of segmented blobs and their

associated labels identifying them as caveolae (PTRF+� 60) or not-caveolae (PTRF- and PTRF

+< 60) as seen in Fig 1C and 1D respectively. The blobs are left in the original point cloud for-

mat. While this representation has some benefits, it also has drawbacks and is not commonly

used in deep learning. We, therefore, investigate a number of different input representations.

Fig 4A–4D shows the different representations a given blob can take for the different machine

learning tasks.

Input (x). Our SMLM dataset is 3D, i.e. contains location information for each molecule

in all three dimensions. While the extra dimension provides additional information, which

can improve the analysis of the data, three dimensional data also poses a number of possible

pitfalls if one is not careful with how it is represented. The first is the size of the data. The first

versions of SMLM were only two dimensional, and therefore images can be neatly represented

on a plane divided into pixels. If we expand this idea into three dimensions by dividing a 3D

area into voxels, we get an exponential increase in size. Since the maximum range of our data

is 512 nm, using 1 nm as our subdivision unit, an increase from 2D to 3D increases the size of

a single blob from 262 thousand 218 pixels to 134 million 227 voxels. The second pitfall is the

sparsity of each input data. The largest number of points belonging to a single blob is 512

points. If we encode this data in a 2D plane such that each point is encoded as a pixel with a

value of 1 and every other pixel is has a value of 0, the ratio of effective bits (non-zero) is 29/218

= 0.2%. Expanding this to three dimensions and the ratio drops to 29/227 = 3e − 4%. From the
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above, it is clear that a voxel representation is ill-suited for the task at hand. Instead, we repre-

sent the data in three ways that avoid the above pitfalls.

1. Expert features: Relies on a simple analysis of the blob to generate hand-designed features

reducing the input down to a size of 28 floating point numbers (Fig 4C).

2. Multi-view: Transforms the 3D point cloud by projecting it onto three orthogonal 2D

planes forming three 512 × 512 arrays of pixels (Fig 4A and 4B).

3. Point cloud: Keeps the original point cloud representation from SMLM. When stored as a

set of points, the data ratio of effective bits is 100%, and has a size of a number of points

(512) × number of dimensions (3) (Fig 4D).

Output (y). We defined the output to be a one-hot encoding of the two classes, i.e. y =

[1, 0] for positives, and y = [0, 1] for negatives. The two deep learning models (MVCNN and

point cloud—PointNet below) first find a set of representative features x0!h(x0) = X0, which

are then linearly combined and passed through a softmax function X0 ! sðwTX0 þ bÞ ¼ ŷ,

where w is a learned set of weights and b is learned bias. From this it follows that x! f (g(x)) =

σ(wT h(g(x) + b). This approach significantly outperformed using a sigmoid to output a single

number between 0 and 1.

Fig 4. Possible input representations of a point cloud with range R and number of points N. (A) Three projections of the 3D point cloud

onto 2D planes. Requires 3 × R2 values to represent. This data representation is used for MVCNN. (B) A voxel representation. Requires R3

values to represent. (C) Hand-crafted/designed features. Requires 28 values to represent. This data representation is used for random forest. (D)

A point cloud. Requires 3 × N values to represent. WhereN is the number of points per blob. This data representation is used for PointNet.

https://doi.org/10.1371/journal.pone.0211659.g004
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Different machine learning ML models

We have developed three models to best match the input representation. The deep features

are the non-hand-crafted learned features extracted using the deep layers from either CNN or

PointNet architectures. The hand-crafted features are the manually-designed features extracted

based on previous domain knowledge [34].

Expert features—Random forest classifier. The first model relies on 28 hand-crafted

features that were chosen to capture different properties of the blobs based on known

biology (Fig 4C). The 28 features describe the size (volume, XYZ range), shape (spherical,

planar, linear), topology (hollowness), and network measures (degree, modularity, charac-

teristic path, etc.) of each individual blob. To extract the shape features, we represented

each blob as 3D point cloud centered at the blob mean of the points positions. Then, we

used the eigendecomposition of the N × 3 matrix of every blob (Fig 4D) to extract the eigen-

values associated to the eigenvectors of the 3D matrix representation using the principal

components analysis PCA method. The extracted eigenvalues are used to extract the differ-

ent shape features of the blob. We mainly extracted the planer, linear, spherical, and frac-

tional anisotropy (FA) shape features of every blob [35]. The volume is calculated using the

convex hull of the Delaunay triangulation of the 3D matrix of the blob (Fig 4D). The hollow-

ness features are extracted from the distance to centroid of the blob. We calculated the mini-

mum, maximum, average, median, and the standard deviation of the distances from every

point to the centroid of the blob. To extract the network features for every blob we repre-

sented the blob as a network where the nodes represent the points and the edges represent

the proximity between every pair of nodes. We picked the proximity threshold for the net-

work construction such as every blob in our dataset is one connected component. Then, the

network features [36] are extracted from the constructed network for every blob [9]. The

final feature vector is composed of all the extracted features and has a dimension of 1 × 28

[9] (Fig 4C).

We adopted machine learning random forest classifier [37] trained on the 28 hand-crafted

features to automatically identify the blobs. Additionally, our goal is to design a machine learn-

ing classification model that generalizes well and therefore could be used to classify blobs not

seen by the model. However, overfitting and underfitting cause poor performance and might

prevent the model from generalization. To generalize better and avoid overfitting in our

model, we used the bagging. Specifically, we leveraged Matlab TreeBagger toolbox. TreeBagger

trains a large number of strong learners (i.e. random forest trees) in parallel. Then, it combines

the results of all the trees to smooth out their predictions.

To evaluate the performance of the classifier to identify positive and negative classes of the

blobs, we used the binary classification evaluation measures. Specifically, we used accuracy,

sensitivity, and specificity measures. After the classification process, we need to count: the

number of correctly identified blobs from the positive class which is known as true positive

(TP), the number of correctly classified blobs from the negative class which is known as true

negative (TN), the number of incorrectly identified (i.e. misclassified) positive blobs which is

known as false negative (FN), and number of misclassified negative blobs which is known as

false positive (FP). The classification accuracy is a statistical measure used to assess the perfor-

mance of the binary classifier in identifying the number of correctly classified blobs to the total

number of the examined blobs. Formally, accuracy ¼ ðTPþTNÞ
ðTPþTNþFPþFNÞ. The sensitivity measures

the ability of the classifier to correctly identify the positive blobs. Formally, sensitivity ¼ ðTPÞ
ðTPþFNÞ.

The specificity, on the other hand, measures the ability of the classifier to correctly identify the

negative blobs. Formally, specificity ¼ ðTNÞ
ðTNþFPÞ.
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Firstly, we need to validate the first model on the simulated dataset. We extracted 28 hand-

crafted features for the simulated blobs from both classes (i.e. class 1/positive and class 2/nega-

tive). The random forest classifier is used to classify the blobs with number of trees equal 100.

We used the TreeBagger Matlab implementation for the random forest. To evaluate the perfor-

mance of the classifier on the simulated dataset, a 10-fold-cross validation is used. We obtained

a 98.8% classification accuracy. The obtained specificity is 99% and sensitivity is 98%, which

shows that the classifier can recognize the blobs from both classes with very low misclassifica-

tion even when the number of points per blob is overlapping in both classes (Fig 3B). This

shows the robustness of the used hand-designed features in identifying the blobs.

We then trained a random forest (RF) classifier using 100 trees in Matlab based on the

extracted features from all the blobs in the dataset and using the binary labels of every blob. A

10-fold cross-validation is used to evaluate the classification results as seen in the first row of

Table 1. A leave-one-cell-out is used in another experiment to evaluate the classification results

also as shown in the first row of Table 2.

Multi-view—CNN. The second model applies a Convolutional Neural Net (CNN) to 2D

multi-view data representations with projections of the point clouds onto 3 planes (xy, yz, xz)

as shown in Fig 4A. Following Su et al. [38] naming convention, we call this model Multi-View

CNN (MVCNN). A straightforward CNN architecture using alternating layers of convolutions

and pooling and two final fully connected (FC) layers worked well. Variations to this model

showed no discernible improvement. The layers of the CNN are as follows (Fig 5): conv1

(3x32), pool1(3x3), conv2 (32x64), pool2 (3x3), conv3 (64x128), pool3 (3x3), conv4 (126x256),

pool4 (3x3), conv5 (256x512), pool5 (3x3), FC (256), FC (512), FC (2). A ReLu activation func-

tion was used on every layer except for the final fully connected layer, which uses a softmax

activation. A cross entropy loss was used for the objective function, with the addition of a L2

weight regularization term.

Point cloud—PointNet. The third model is based on PointNet, which takes as input a set

of 3D points. Minimal changes were made to the model described in [39]. In summary, Point-

Net uses the symmetric max function to enable its input to be unordered, as in the case of a

point cloud. A number of hidden layers are used before the max function to transform the

points into a higher dimensional space. The output of the max function is a representation of

the point cloud and is passed through an FC network to classify the blob. For more detail see

Table 1. Test set results on mixed cells.

Accuracy Sensitivity Specificity Parameters Training time�

Hand-crafted 0.92 0.97 0.86 N/A N/A

Multi-view 0.92 0.98 0.85 31093187 �3500s

Point cloud 0.81 .79 0.83 3470284 �680s

Results using sets made with blobs from each cell.

�Trained until convergence on a GeForce GTX 1060 GPU.

https://doi.org/10.1371/journal.pone.0211659.t001

Table 2. Test set results using segregated cell.

Accuracy Sensitivity Specificity

Hand-crafted 0.94 0.97 0.90

Multi-view 0.94 0.98 0.90

Point cloud 0.83 0.72 0.96

Results using sets where each set uses different cells.

https://doi.org/10.1371/journal.pone.0211659.t002
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[39]. The alterations made are the removal of the dropout layer and of the data jittering, both

of which were found to lower results. Consistent with the MVCNN model, a cross entropy

loss was used. Qi et al. [39] demonstrates the success that both the MVCNN and PointNet

approach can have on point cloud classification.

Evaluation methodology

To evaluate our model, we divide the 1714 blobs (the positive and the sampled negative blobs)

into a training set, a validation set, and a test set in two different ways. The first way of creating

the sets involves mixing the blobs of each cell, then keeping 200 blobs as a test set, using 100

blobs as a validation set, and using the remaining 1414 blobs as a training set. The second way

is keeping cell 1, containing 124 blobs, as a test set, using cell 2, containing 100 blobs, as valida-

tion, and using the remaining 1290 blobs from the other cells as a training set. Each of the

above sets is balanced in terms of negative and positive blobs. The use of the two groupings

reveals if the data from one cell can be generalized to other cells.

Mixed blobs

From the above results, we see that the hand-designed features and multi-view models gener-

ate similar results, while the point cloud model falls behind. A fundamental difference between

the point cloud input and the other inputs is that it is un-ordered i.e. a blob can be mapped to

more than one representation. The hand-designed features have a human chosen order. The

multi-view input is a projection of the data on a 2D plane, which forces the data into a geomet-

rical ordering. In point clouds, however, changing the order of the points does not change the

underlying blob. The results would support the hypothesis that a useful order to data benefits

data analysis.

While it does perform worse on the primary metrics, it is important to note that the point

cloud input does have some advantages. First, compared to the hand-designed features, it does

not require any preliminary analysis or expert knowledge. Second, compared to multi-view,

the input data size and number of parameters is significantly smaller, and consequently, the

model trains significantly faster. Finally, if segmentation of caveolae was a concern, both hand-

designed features and multi-view would encounter major obstacles, but it has been demon-

strated in [39] that it is possible to segment point clouds using PointNet.

Cell-wise blobs

From the cell-wise results, we can show that knowledge learned can be generalized to other

cells. This is important as it demonstrates the usefulness of this model on unlabeled blobs from

Fig 5. The architecture of the network used in the MVCNN. The layers of the CNN are: conv1 (3x32), pool1(3x3), conv2 (32x64), pool2 (3x3),

conv3 (64x128), pool3 (3x3), conv4 (126x256), pool4 (3x3), conv5 (256x512), pool5 (3x3), FC (256), FC (512), FC (2).

https://doi.org/10.1371/journal.pone.0211659.g005
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future cells. The small increase in performance could be due to the slightly larger training set,

or simply that the randomly chosen test cell contained an easier set of blobs to identify.

In both tables, the multi-view and hand-designed features approaches performed similarly

well. However, we believe that an increase in dataset size may be more beneficial to the deep

learning approach, meaning that using a larger dataset may allow the multi-view approach to

outperform the hand-designed features. As we continue to collect more data, we hope to test

on a larger dataset in the future to confirm this hypothesis.

The higher sensitivity (in both Tables 1 and 2) suggests that our learned models are capable

to identify the caveolae blobs more accurately, whereas the relative lower specificity means

that our learned models are less accurate in identifying the scaffolds. This opens the door for

further study of the scaffolds and suggests that those biological structures are more complex

and have higher variation than the positive blobs. We expect more than one sub-category in

the negative blobs. Moreover, the negative blobs in PC3 population might be different from

the negative blobs in PC3-PTRF population (i.e. the CAVIN1/PTRF might also affect the

structure of the scaffolds). We leave this investigation for the future as it requires more biologi-

cal experiments and data.

Hand-crafted/designed VS. deep features

Multiple data representations have a critical impact on the performance of the final semantic

learning task. For classification task, the separability of the classes is highly dependent on the

features and the way they were extracted. Fig 6 shows the t-SNE visualization of the features

where the high-dimensional feature space is projected onto a 2-dimensional space [40]. The

hand-crafted and MVCNN features are more clustered and separable compared to the Point-

Net features. However, the classes in this 2D projected view are not perfectly separable. This is

likely due to the negative class having many complex subcategories, which depicts the com-

plexity of the classification tasks at hand.

The trade-offs (Table 3) between the different methods used to represent and classify the

blobs in this work involve time and space (memory) complexity of training and inference,

classification accuracy achieved, interpretabilty of the discriminant features, and the level of

Fig 6. 2D t-SNE visualization of the projected feature space from the various data representations used for identifying the Cav1 blobs. We

visualize the projection of high-dimensional feature space into 2-dimensional space using t-SNE from the MVCNN, point cloud—PointNet, and

hand-crafted features. Every point in the t-SNE plot represents the projected features of a blob. The red, green, and blue points represent the

projected features of the PTRF-, PTRF+< 60, and PTRF+� 60 blobs respectively.

https://doi.org/10.1371/journal.pone.0211659.g006
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automation required (amount of human involvement). See Table 1 for the time and computa-

tional complexities of the deep learning methods.

The key advantage of deep learning is that it avoids the manual process of constructing and

selecting hand-designed and engineered features and that it boasts fast inference. However,

the requirement of large training dataset, large computational resources for training, and its

opaque uninterpretable, black box models are still major issues in deep learning.

Deep learning approaches that operate directly on unstructured data, such as PointNet that

consumes the point cloud directly without any transformation, have the additional advantage

of retaining the compactness and precision of the original data.

We hypothesize that the inferior classification accuracy performance of PointNet is due to

its unordered input. PointNet was originally tested using a dataset that is an order of magni-

tude larger than ours, and it is possible that with a larger dataset the model would be able to

learn to overcome the unordered nature of its input.

MVCNN capitalizes on the highly successful CNNs to achieve superior performance in

classification accuracy but at the expense of longer training times and requiring large underly-

ing representations, i.e. a large number of small pixels, needed to diminish quantization errors

(compared with the pure 3D point cloud input adopted by PointNet).

Albeit being easily interpretable (which MVCNN and PointNet are not) and achieving higher

accuracy than PointNet, hand-crafted features used in conjunction with classical machine learn-

ing approaches (e.g. RF) require prior expert knowledge of the biological structures in order to

design and select features, which is may not always be feasible especially in scientific discovery.

We summarize the trade-offs of the hand-crafted and deep features in Table 3.

Conclusion

Our research into the analysis of super-resolution images using machine learning algorithms

has yielded a number of successful techniques that can be used to accurately and automatically

predict whether or not a blob is a caveola. Both using hand-designed features, as well as apply-

ing a convolutional neural net to projections of the point cloud, performed similarly well while

using PointNet on a point cloud was less successful. Classifying biological structures at the cell

membrane is of importance as it allows the biologist to study the relationship between struc-

ture and function. It could also be used to identify biomarkers for the different structures that

could enable drug design at the molecular level and potentially lead to disease therapy.

Future work

Further research on this topic would greatly benefit from additional labelled data. SMLM data

for both PC3 and CAVIN1/PTRF from the same labeled cell would provide additional and

Table 3. Hand-crafted and deep (MVCNN and PointNet) features trade-offs.

Hand-designed features method Deep features methods

MVCNN PointNet

Automatic feature learning? No Yes Yes

Operate directly on point cloud? (i.e. does not require new data representation) No No Yes

Require previous domain knowledge? Yes No No

Number of parameters Very small Very large Small

Training time Very fast Slow Fast

Feature understanding Interpretable Hard to interpret Hard to interpret

Overall classification performance High (Acc = 94%) High (Acc = 94%) Acceptable (Acc = 83%)

https://doi.org/10.1371/journal.pone.0211659.t003
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more precise labels than the current method which relies on a wide-field TIRF CAVIN1/PTRF

mask of lower resolution. Additional data would include double labeled SMLM images with

high-resolution localizations for both Cav1 and CAVIN1/PTRF that would provide us with a

more accurate class blob label. Moreover, the proposed methods described in this paper could

be applied to other applications and other labeled proteins to automatically characterize the

underlying biological structures. The feature extraction either via hand-designed or automati-

cally derived features via deep learning could be applied to any SMLM data after extracting the

SMLM clusters for the different machine learning tasks. We applied our method to Cav1 pro-

tein clusters from SMLM images. However, the methods are applicable to other SMLM biolog-

ical data/applications.

While the current methodology relies on binary classification, caveolae or not-caveolae, it is

likely that the not-caveolae class may be better represented as many classes. Using unsuper-

vised methods such as k-means or mixture of Gaussians can allow us to subclassify the non-

caveolae structures into more representative classes [9]. Applying similar models to ones

described in this paper to a multi-class version of the problem may increase performance if the

classes are better a representation of the true data.

Future work could also involve examining methods for interpreting deep learning models

(e.g. [41]) applied to biological structures, and exploring research trends in unsupervised deep

learning. It will also be interesting to explore developing deep neural network layers from the

ground up particularly targeted to processing typical visual patterns seen in biological struc-

tures (as opposed typical man-made objects common in computer graphics applications).
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