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Abstract

Understanding intrinsic and acquired resistance is crucial to overcoming cancer chemother-

apy failure. While it is well-established that intratumor, subclonal genetic and phenotypic

heterogeneity significantly contribute to resistance, it is not fully understood how tumor sub-

clones interact with each other to withstand therapy pressure. Here, we report a previously

unrecognized behavior in heterogeneous tumors: cooperative adaptation to therapy (CAT),

in which cancer cells induce co-resistant phenotypes in neighboring cancer cells when

exposed to cancer therapy. Using a CRISPR/Cas9 toolkit we engineered phenotypically

diverse non-small cell lung cancer (NSCLC) cells by conferring mutations in Dicer1, a type

III cytoplasmic endoribonuclease involved in small non-coding RNA genesis. We monitored

three-dimensional growth dynamics of fluorescently-labeled mutant and/or wild-type cells

individually or in co-culture using a substrate-free NanoCulture system under unstimulated

or drug pressure conditions. By integrating mathematical modeling with flow cytometry, we

characterized the growth patterns of mono- and co-cultures using a mathematical model of

intra- and interspecies competition. Leveraging the flow cytometry data, we estimated the

model’s parameters to reveal that the combination of WT and mutants in co-cultures allowed

for beneficial growth in previously drug sensitive cells despite drug pressure via induction of

cell state transitions described by a cooperative game theoretic change in the fitness values.

Finally, we used an ex vivo human tumor model that predicts clinical response through drug

sensitivity analyses and determined that cellular and morphologic heterogeneity correlates

to prognostic failure of multiple clinically-approved and off-label drugs in individual NSCLC

patient samples. Together, these findings present a new paradox in drug resistance
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implicating non-genetic cooperation among tumor cells to thwart drug pressure, suggesting

that profiling for druggable targets (i.e. mutations) alone may be insufficient to assign effec-

tive therapy.

Author summary

Here, we provide mathematical and empirical evidence to support a potentially new

paradigm in drug resistance, which we have termed “cooperative adaptation to therapy”

(CAT). CAT is defined by a phenomenon wherein drug-sensitive cancer cells with differ-

ent genetic and phenotypic features within a 3-dimensional heterogeneous tumor induce

non-mutational resistance in their neighboring cells under pressure of cancer therapy. To

develop this novel conclusion we deployed an interdisciplinary effort including an ex vivo
human tumor model, a CRISPR/Cas9 platform with 3-dimensional in vitro experiments,

and high throughput flow cytometry. Importantly, we wove these data together using a

mathematical model of intra- and interspecies competition to understand how tumor

heterogeneity influenced our observations. By estimating the model’s parameters, we

determined that the combination of genetic clonal variants in co-cultures allowed for pre-

viously drug-sensitive cells to continue to grow despite drug pressure. We were thus able

to characterize distinct growth regimens in mono- and co-cultures without and with drug

pressure.

Introduction

Lung cancer is the leading cause of cancer-related death in the United States, and non-small

cell lung cancer (NSCLC) accounts for the majority of lung cancer cases each year [1]. Recent

advances in the molecular understanding of NSCLC progression have informed the develop-

ment of new targeted therapies that are safer and more effective than standard chemotherapy:

of the nearly two-thirds of patients who have an oncogenic driver mutation, about half have

of these are druggable [2]. ATP-competitive small molecule inhibitors of mutant epidermal

growth factor receptor (e.g., erlotinib, gefinitib, afatinib, osimertinib), of mutant serine/threo-

nine kinase b-raf (e.g., vemurafenib, dabrafenib), and of mutant anaplastic lymphoma kinase

or of ROS1 proto-oncogene receptor tyrosine kinase (e.g., crizotinib, ceritinib, alectinib) have

been approved for management of NSCLC [3]. Despite the increasing number of agents that

have entered the clinic, successful treatment of NSCLC is hampered by drug resistance [4].

Two primary forms of resistance are predominantly studied: intrinsic and acquired [5].

Intrinsic resistance is largely considered to be due to aberrations including somatic mutations

and DNA amplifications, which render primary therapy failures [6]. Acquired resistance,

however, can emerge under selective pressures, and during treatment [7]. More recently,

phenotypic plasticity and the role of ‘adaptive’ and drug-induced cell state transitions have

introduced a new paradigm in acquired drug resistance [8, 9]. It is increasingly clear that an

underlying driver of acquired resistance is due to the dramatic range of genetic and phenotypic

diversity that is conferred during tumor evolution, comprising both passenger and driver

mutations [10]. This heterogeneity within tumors, termed intratumor heterogeneity (ITH),

can significantly impact responses to therapy and sensitivities to certain targeted agents, such

as those listed above [11]. In NSCLC, intrinsically resistant tumor subpopulations can expand,

or drug-tolerant cells can acquire alterations that confer more robust resistance to therapy [4,

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC
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12–15]. To improve the effectiveness of cancer therapeutics, it is therefore critical to under-

stand whether, and to what extent, phenotypically distinct cells within the same tumor interact

to promote resistance.

In combination with experimental approaches, quantitative methods arising from evolu-

tionary theory have contributed to our understanding of the role of genetic heterogeneity in

tumor initiation, progression, and resistance [16–24]. Mathematical models have previously

demonstrated that local cell density and cell cycle can contribute to spatiotemporal heteroge-

neity and differences in cell response to treatment [25]. However, applying computational

approaches to examine phenotypic heterogeneity has been less well pursued [26]. Here, we

explore how intratumor phenotypic heterogeneity in a model of NSCLC affects the acquisition

of resistance and population growth. To generate phenotypically unique sub-clones, we use

the CRISPR/Cas9 system to stochastically mutate Dicer1, a cytoplasmic riboendonuclease

responsible for maturation of microRNA [27]. Indeed, dysregulation of microRNA is heavily

implicated in NSCLC [28]. Using a three-dimensional in vitro culture platform, which most

closely parallels in vivo growth, we show that intrinsically-sensitive, phenotypically distinct

NSCLC sub-clones support each other to rapidly evolve a therapy-resistant phenotype via

drug-induced cell state transitions, a behavior we term “cooperative adaptation to therapy”

(CAT). We develop an in vitro-validated model of intra- and interspecies competition gov-

erned by replicator dynamics [29] to simulate how CAT affects population growth over time.

These findings build on previous evidence that drug-induced phenotypic transitions can

underpin resistance, and implicate a population-wide impact of this phenomenon.

Methods

Ethics statement

Anonymous non-small cell lung cancer (NSCLC) tissue samples were collected under IRB

approval with due written consent from each patient.

Chemicals and reagents

Unless noted otherwise, all reagents, small molecule inhibitors and chemotherapies were of

the highest grade purchased from Sigma-Aldrich (St. Louis, MO). The NCI Diversity Set VI

was used to screen cells against clinically approved drugs for cancer therapy [30]. All chemo-

therapeutics and small molecule inhibitors were dissolved in DMSO to a stock concentration

of 10mM and kept frozen.

Cell culture

Parental cell lines were generated as previously described [31] as a clone LCC1.11, with

KrasG12D;p53-/-;Dicer1f/+, where Dicer 1 is heterozygous. Dicer1 mutant clones were gener-

ated by transfecting the parental clone with CRISPR plasmid targeting the Dicer1 locus, and

selection and expansion of single colonies. Lentiviral particles expressing codon optimized

fluorescent proteins under suCMV promoter were transfected into cell lines following manu-

facturer protocol (GenTarget, San Diego, CA). A blasticidin gene under RSV promoter was

used to select positively transduced cells. Despite multiple rounds of selection, there were

some noticeable cells ‘negative’ for the fluorescent protein expression, or populations of cells

that remained at a low confident level of expression, which were subsequently excluded from

analysis in flow cytometry (see flow cytometry section, below).

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC
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Human explant studies

Anonymous human NSCLC tissues were assessed by CANscript using fresh specimen. Fresh

tumor tissues were collected immediately after surgical resection. The tumor samples were

transported to the laboratory at 4˚C, in appropriate transport buffer within 60 minutes post-

resection, for ex vivo studies and molecular and pathological evaluations. Tissues were cut into

thin sections and cultured in 48-well plate using optimized conditions. Tumors were treated

with the indicated drugs at the clinical max concentration (Cmax) for 72 hours. DMSO was

used as a vehicle control. Tissue was then formalin fixed and paraffin embedded (FFPE) for

subsequent analyses.

Quantifying intratumor phenotypic, morphologic, and cellular heterogeneity was per-

formed by visual inspection of a clinical pathologist (Dr. David Goldman, MD, co-author on

the present study) using the following methodology: FFPE tissue sections were stained with

hematoxylin and eosin (H&E) to identify the respective nuclear DNA content and cytoplasm

of cells in the tissue. 1) In an effort to quantify the outgrowth of different tumor ‘clones’, a clin-

ical pathologist then counted the number of histologically distinct tumor ‘neighborhoods’,

which were defined as grossly-distinct (clusters of tumor cells growing within a confined

region and sharing unique distinguishing morphology from other clusters of tumor cells in the

same visual field). 2) Within each tumor ‘neighborhood’, cells were scored based on nuclear

density and uniformity as well as cellular morphology uniformity on a scale of 1-5, where 5 is

the most distinct and 1 is the most similar. 3) A score for cellular and morphologic heterogene-

ity was developed by adding together the value attributed to each ‘neighborhood’ for nuclear

content uniformity and cellular morphology uniformity (2), which was multiplied by the num-

ber of respective tumor neighborhoods (1) for that tissue.

Predicting response to therapy was performed using a clinically trained algorithm that was

previously described [32]. Briefly, multiple terminal and kinetic assay (tumor morphology,

tumor cell proliferation, cell death, viability, cell growth, and metabolic status) inputs were

trained in a proprietary machine learning algorithm [32]. The algorithm generates a single

score (currently defined as M-Score, but previously published under the nomenclature

S-Score) for each drug arm tested. An M-Score > 25 indicates positive response and a value of

M-Score� 25 is indicative of a negative response.

Flow cytometry analyses

Cells were cultured as indicated above using the tumor spheroid NanoCulture plates (MBLI,

Woburn MA). To assess the total number of cells growing in the 3-D spheroid versus aberrant

2-D growth, cells were plated and counted every other day for 7 days. Cells were imaged by

brightfield microscope and 2-D adherent were quantified. Number of 2-D growing cells were

quantified as % of total cells growing in culture. Less than 2% of cells on any day were noted to

grow in 2-D versus the majority (98%-99% of cells) growing in the 3-D tumor spheroids. Cells

were cultured in various proportions with either the parent WT cell line or any one of a combi-

nation of the different Dicer1 mutants. Cells were removed from culture dishes with StemPro

Accutase dissociation reagent (Invitrogen, Carlsbad CA) and fixed with 4% paraformaldehyde

in PBS for 30 minutes at RT. Cells were then processed using the BD Fortessa 4 laser, 17

parameter flow cytometer. Measurements were made in the indicated fluorescent channel

based on the fluorescent tag (typically blue fluorescent protein (BFP) and red fluorescent

protein (RFP)), and any overlap was compensated prior to analysis. A gating strategy was

employed to select cells based on the side scatter (SSC) and forward scatter (FSC) from the

vehicle-treated parental population, followed by a selection of singlets based on FSC width and

height. Propidium iodide exclusion was used to validate viable cells are contained within the

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC
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FSC:SSC gate. An equal volume of cells was analyzed for each experiment and events were

recorded in the defined gates (described above) and in the correct fluorescent channels. Data

analysis was performed using FlowJo software (Tree Star Inc., Ashland OR). Experiments were

performed a minimum of three times (biological replicates) on independent days. Notably,

and despite blasticidin selection, there were identifiable populations of cells that expressed

no detectable fluorescent tag. This was attributed to heterogeneity of both CMV infection,

expression and blasticidin selection. During analysis in flow cytometry, there was no increase,

decrease or change in the proportion of labeled to unlabeled cells in the vehicle treatment or

drug treatment cohorts.

RNA sequencing

RNA was isolated from cells that were cultured in 3-D culture after 48 hours of growth in

spheroids. Cells were rinsed and then lysed followed by RNA extraction using manufacturer

protocol (Qiagen, Hiden Germany).

Library preparation and sequencing

RNA libraries were prepared using Illumina TruSeq Stranded mRNA sample preparation kits

from 500ng of purified total RNA according to the manufacturer’s protocol. The resultant

dsDNA libraries were quantified by Qubit fluorometer, Agilent TapeStation 2200, and RT-

qPCR using the Kapa Biosystems library quantification kit according to manufacturer’s proto-

cols. Uniquely indexed libraries were pooled in equimolar ratios and sequenced on a single

Illumina NextSeq500 run with single-end 75bp reads by the Dana-Farber Cancer Institute

Molecular Biology Core Facilities.

RNAseq analysis

Sequenced reads were aligned to the UCSC mm9 reference genome assembly and gene counts

were quantified using STAR (v2.5.1b) [33]. Differential gene expression testing was performed

by DESeq2 (v1.10.1) [34] and normalized read counts (FPKM) were calculated using cufflinks

[35]. RNASeq data was mapped to a reference obtained from NCBI GRCh38.p12. Indexing of

the raw sequence data contained in GRCH38.p12 was performed by the STAR open source

alignment tool. These services were run on the Amazon Web Service (AWS) Elastic Cloud

Compute (EC2) infrastructure with 8 vCPU cores and 32 GB Ram. Mapped results were

correlated to index files using STAR 2pass. Indels were realigned and bases recalibrated before

variant calling by STAR. We utilized the HaplotypeCaller as outlined in GATK best practices

with the Java implementation. Variant calls (.vcf) were generated and annotated back to the

GRCh38.p12 genomic reference assembly in order to determine point mutations.

Modeling the population dynamics of adaptive resistance in mono- and co-

cultures

The mathematical model of adaptive resistance consists of two ordinary differential equations

describing intra- and inter-species phenotypic switching founded upon game theoretic inter-

action assumptions identical to the Lotka-Volterra model commonly used in ecology [36, 37].

This choice is founded upon well-developed mathematical modelling approaches to under-

standing, for example, the dynamics of interacting microbes and cancer cell populations [38,

39]. Full details of the model are provided in the Supplementary Information file S1 SuppInfo.

Briefly, we consider a wild xWT and mutant xMi
(i = 1, 2, 3) type. Let b be the birth rate of cells

and d be their rate of death. In absence of drugs, cells initially grow exponentially at rate ltype

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC
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(type = WT, Mi), where ltype is the effective birthrate, or fitness, given by ltype = b − d. Cell

numbers eventually saturate at Ktype (the population’s effective carrying capacity, where

K ¼ ~Kð1 � d=bÞ with ~K being the standard carrying capacity–see S1 SuppInfo for extended

details). Based on the observation of a temporary decline and eventual rebound in the mono-

culture growth assays after drug pressure was applied, we assumed each cell type is capable of

developing an intra-species drug tolerant phenotype under drug pressure [40, 41] that we

termed ‘intra-species phenotypic switching’. The intra-species growth dynamics can then be

summarized by

dxsenstype

dt
¼ lsenstypex

sens
type 1 �

ðxsenstype þ xtoltypeÞ

Ktype

 !

� ntypexsenstype

dxtoltype

dt
¼ ltoltypex

tol
type 1 �

ðxsenstype þ xtoltypeÞ

Ktype

 !

þ ntypexsenstype;

ð1Þ

where the superscript sens describes the drug-sensitive phenotype, and tol the drug-tolerant

phenotype; νtype measures the intra-species switching rate. Note that no backwards switching

from tolerant to sensitive is considered.

We assume that intra-species interactions are dominated by inter-species relationships, that

is to say that the adaptive behaviors of cells in co-culture are dictated by CAT dynamics. Co-

culture dynamics were modelled as

dxWT

dt
¼ l1xWT 1 �

xWT

KWTco

þ a12xMi

 !

dxMi

dt
¼ l2xMi

1 �
xMi

KMico

þ a21xWT

 !

;

ð2Þ

where xWT ¼ xsensWT þ xtolWT, xMi
¼ xsensMi

þ xtolMi
, KWTco

and KMico
are the carrying capacities of the

WT and mutant in co-culture, and the terms a12 and a21 denote the interactions between cell

types.

In summary, we assumed the following:

• In absence of drugs, monoculture growth is initially exponential and eventually saturates at

an effective carrying capacity specific to each cell type (logistic growth). Mathematically, we

assume that lsenstype;Ktype > 0 and all other parameters in (Eq 1) are equal to 0.

• Under exposure to drugs, sensitive cells in monoculture can perform intra-species switches

to drug tolerant type at rate νtype. The effective carrying capacity Ktype remains unchanged

from the non-drug case, however ltoltype; ntype are no longer assumed to be identically equal to

zero, and lsenstype may be negative to account for decreased fitness in the presence of the drug.

• In the presence of the therapeutic stresses, sensitive subtypes phenotypically switch into

more drug tolerant/resistant types. Further, each phenotypic trait is heritable, that is that

daughter cells have the same phenotype.

• Intra-species growth dynamics are weaker than inter-species co-operative adaptation to

therapy, so that the inter-species interaction terms a12 and a21 dominate. This implies that

the additional co-culture effects are not changing or modifying the intra-species phenotypic

switching mechanism but rather inducing a game theoretic change in the fitness values due

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC
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to genotype-genotype interactions. Mathematically, we hypothesized that, as xWT and xMi

denote the total number of tolerant and sensitive cells, intra-species transformation events

are inconsequential based on the dynamics defined by (Eq 2).

• The proliferation potentials and apoptosis rates of the sensitive and drug-tolerant subtypes

are dose-dependent (note, however, that since only a single dose was considered experimen-

tally, we fixed the dose and did not elaborate the dose-response function of each genotype).

Adaptive resistance model parameter optimization

The mathematical model’s parameter values were estimated from the experimental procedures

described in S1 SuppInfo. To perform the optimization, we used the Matlab function fmincon
that minimizes the objective (cost) function of a nonlinear model with constraints [42]. To

reduce the influence of initial conditions on the outcome, goodness-of-fit was assessed by min-

imizing over the resulting set of cost function values obtained via a multi-step parameter esti-

mation procedure, as described in the Supplementary Information file S1 SuppInfo.

Results

Establishing a model of phenotypic heterogeneity, in vitro
To study the role of intratumor heterogeneity in therapy failure, we first derived and cloned a

cell line [43]. This cell line possesses an oncogenic Kras in conjunction with homozygous p53

and heterozygous Dicer1 loss of function (Kras G12D/+;p53 / ;Dicer1 +/) and is capable of

inducing tumors when transplanted into immunocompromised mice. Because Dicer1 regu-

lates the production of miRNA that can dramatically influence the phenotypic heterogeneity

of a cell [44, 45], we engineered clones using the CRISPR/Cas9 toolkit to introduce a variety of

mutations in Dicer1 (Fig 1a). Confirmation of Dicer1 sequence mutations were determined

using NCBI reference data, identifying insertions and deletions as well as 17 unique single

nucleotide polymorphisms (SNPs) in the mutant cell lines compared to WT (Fig 1b and

S1 Fig).

The mutants and WT cell lines were cultured in a physiologically-relevant manner in vitro,

using a three-dimensional nano-culture platform that provided a substrate-free growth surface

containing uniform, nanofabricated imperfections, which forced spheroid growth (NanoCul-

ture plates –Fig 1c). NanoCulture plates enabled better long term growth potential than ultra

low adherence (ULA) plates, and growth of spheroids were also more uniform (S2 Fig). Using

this approach, tumor spheroid growth is not confounded by external factors such as matrigel

or collagen.

We characterized transcriptional heterogeneity of the wild type (WT) and mutant (M1-3)

cells via interrogation of the mRNA sequencing from 3D cell cultures (Fig 1c). Primarily, dif-

ferential expression analysis confirmed Dicer1 target-gene expressions (i.e. miRNA) were sig-

nificantly, statistically different among mutants compared to WT with varying expression

profiles (Fig 1d). Differential expression profiling of the top and bottom 500 dysregulated

genes in each cell line confirmed unique transcriptional heterogeneity was observed in each

mutant cell line with many reaching statistical significance (p-adjusted < 0.05) (see S1 Table).

Experimentally-observed multi-drug resistance in Dicer1 wild-type and

mutant heterotypic co-cultures

In order to study how clonal diversity might impact response to drugs (sensitivity or resis-

tance) we grew Dicer1 mutant clones and parental wild-type in separate mono-cultures or

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC
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mixed co-cultures in 3-D and exposed them to different drugs at lethal concentrations. Using

lentiviral-transfected fluorescent ‘tags’, flow cytometry was deployed to quantify the abun-

dance of the different mutant clones in dual co-cultures, as described in the methods section

(Fig 2a). We cultured the pre-labeled clones alone or together with WT in 3-D culture at a

ratio of 50:50 in the presence or absence of multiple clinically-relevant anticancer drugs: doce-

taxel, bortezomib, and afatinib [46]. Primarily, we determined that, while all cell lines showed

heterogeneous sensitivities to drugs in mono-cultures as indicated by the proportion of tumor

cells in spheroids after 96 hours of drug exposure, a mutant-WT mixed co-culture resulted in

an increased proportion of each clone relative to the vehicle control (Fig 2b). The data indi-

cated that both cell lines ‘benefitted’ in a mixed co-culture (WT or mutant), increasing their

Fig 1. Characterizing phenotypic heterogeneity in Dicer1 engineered NSCLC cells. a) Murine-derived non-small cell lung cancer (NSCLC) cells were engineered

with mutant Dicer1 clones using the CRISPR/Cas9 toolkit. b) Lollipop graph quantifies SNPs in the mutant vs. WT cells including location and mutation annotation.

Total number of normalized SNP counts is shown on the Y-axis. Table shows number of SNP identified in each cell line, GAPDH was used as a control to validate SNP

identification algorithm. c) 3D cultured cells were characterized for transcriptional and therapeutic sensitivity heterogeneity. d) (left) Heat map shows differential

expression pattern of miRNA compared to WT; (right) List of unique and shared differentially expressed miRNA.

https://doi.org/10.1371/journal.pcbi.1007278.g001
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relative ‘resistance’ to drug compared to the same cell line’s mono-culture. This finding was

consistent in each drug tested and in every mixed culture, with the exception of the M3/WT

co-culture exposed to afatinib.

Model development to study clonal growth dynamics

Next, we sought a method to study the growth dynamics of the phenotypically diverse mutant

clones in mono- and co-culture with parental WT cells in a competitive growth assay. We cul-

tured the pre-labeled clones alone or together with WT in 3-D culture at different population

density ratios of 50:50, 90:10, or 10:90. Using flow cytometry, we then performed two measure-

ments at 48 hour intervals over the course of 7 days: 1) the % and number of cells in the tumor

sphere population that is either WT or Mu, and 2) the size of the tumor sphere based on the

number of fluorescently-detected, gated cells (Fig 3), which is indicative of overall tumor

sphere growth. These data were integrated into the subsequent math modeling experiments

and computational analyses described in the following sections.

Genotype interactions induce a cooperative adaptation to therapy (CAT)

We leveraged the mathematical model to better understand the growth dynamics in the in
vitro competitive growth assays. We first characterized monoculture dynamics (with and with-

out drug) for the WT and all three mutants. In the absence of drug pressure, cells initially grew

Fig 2. In vitro tumor spheroid growth of wild-type and Dicer1 mutant NSCLC clones. a) Experimental design schematic. Fluorescently-tagged WT or mutant

NSCLC clones (M1, M2 or M3), designated as M(X), were cultured alone or in a heterotypic 3-D co-culture (WT+M) at 50:50. Drugs or vehicle control were

introduced to culture for 96 hours followed by flow cytometry and count of gated cells (see Methods for details). b) Stacked histograms quantify the number of cells in

each clone remaining in spheroids after 96 hours drug treatment in mono-culture or mixed, dual co-culture with WT. WT stacked bar graph indicates mono-culture

or co-culture with mutants. Values above columns indicate the % mean in monoculture/co-culture. Experiments performed in biological replicate on independent

occasions (N>3 in each group). Error bars indicate standard error from the mean.

https://doi.org/10.1371/journal.pcbi.1007278.g002

Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous NSCLC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007278 August 26, 2019 9 / 19

https://doi.org/10.1371/journal.pcbi.1007278.g002
https://doi.org/10.1371/journal.pcbi.1007278


exponentially in monoculture (Fig 4a and 4b, top left) with no suggestion of intra-species phe-

notypic switching (“No Drug” columns in Table 1). However, the ‘dip and rebound’ observed

in the monoculture growth assays after the addition of docetaxel, bortezomib, or afatinib was

successfully captured through the monoculture model in (Eq 1) (Fig 4a and 4b top right, bot-

tom; Drug columns in Table 1—see S1 SuppInfo). Our estimates predicted decreased growth

of the sensitive phenotype and increased growth of the tolerant subtype in the presence of

drugs in monoculture. The complete results of the monoculture parameter estimation proce-

dure are reported in Table 1.

As previously described, we hypothesized that genotype-genotype interactions are the dom-

inant growth mechanism in co-culture (see Eq (2)). This assumption was borne out as the

model successfully captures the WT and mutant growth dynamics in co-culture mixes (10:90,

50:50, 90:10 WT:Mu), as shown for M1 in Fig 4, and for fixed proportion (50:50) across all

mutant co-culture mixes (S2 Table and S4 Fig), with the exception of the previously identified

M3/WT 50:50 co-culture exposed to afatinib.

Next, we tested the hypothesis that cancer cells induce rapid adaptations within and among

neighboring cells to improve fitness of the heterogeneous population under drug pressure and

thwart destruction. That is to say, cancer cells behave in a ‘cooperative’ manner to promote

drug resistance in neighboring cells that do not have similar genetic and phenotypic features,

hereafter referred to as cooperative adaptation to therapy (CAT). We hypothesized that the

form of ‘adaptive’ resistance describing monoculture growth does not impact on the overall

co-culture dynamics (i.e. the additional co-culture effects induce a change in the fitness values

due to genotype-genotype interactions in a cooperative game) [47]. Therefore, we leveraged

the parameterized mathematical model for comparative analysis. For the four drug scenarios

(no drug, docetaxel, bortezomib, and afatanib), we compared monoculture growth dynamics

to those in all three co-culture proportions by simulating all scenarios with identical initial

condition (xWT(0) = 1, xMi
ð0Þ ¼ 1) for the WT and M1 mutant. In the absence of drug expo-

sure, for both cell types, we found that growth in monoculture is demonstrably stronger than

in co-culture (Fig 5 left, top and bottom). However, under drug pressure, growth in co-culture

quickly outpaces that of the monoculture (Fig 5 docetaxel, bortezomib, and afatanib panels,

top and bottom). These results demonstrate mathematically that our model, parameterized

to our in vitro NanoCulture growth assays, predicts that an advantageous drug tolerant

Fig 3. Lentiviral tagging and flow cytometry strategy. WT and mutant cells were induced to constitutively express blue and red, respectively, fluorescence by

lentiviral transfection. Cells were then cultured alone (monocultures) or WT and mutant together (co-cultures) in 3-D culture at density ratios of 50:50, 90:10, and

10:90. The % of cells in the tumor sphere population and the size of the tumor sphere were measured by flow cytometry twice at 48 hour intervals in the presence or

absence of drug.

https://doi.org/10.1371/journal.pcbi.1007278.g003
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Fig 4. Population dynamics in mono- and co-cultures. a) WT monocultures growth without drug pressure, in docetaxel, in afatinib, and bortezomib (from top left to

bottom left). b) M1 monoculture growth without drug pressure, in docetaxel, in afatinib, and bortezomib (from top left to bottom left). c) M1 90:10 growth without

drug pressure, in docetaxel, in afatinib, and bortezomib (from top left to bottom left). d) M1 50:50 growth without drug pressure, in docetaxel, in afatinib, and

bortezomib (from top left to bottom left). e) M1 10:90 growth without drug pressure, in docetaxel, in afatinib, and bortezomib (from top left to bottom left). Error bars

represent normalized standard deviation of experimental data.

https://doi.org/10.1371/journal.pcbi.1007278.g004

Table 1. Monocultures without and with drugs.

No Drug Docetaxel Bortezomib Afatinib

Parameter WT M1 M2 M3 WT M1 M2 M3 WT M1 M2 M3 WT M1 M2 M3

lsenstype 0.5988 0.6499 0.714 0.6676 -2.776 -1.643 -0.8176 – -3.6713 -1.9917 -1.9874 -1.9807 -1.9948 -1.9921 -1.9984 -1.7984

Ktype 999 999 999 999 999 999 999 – 999 999 999 999 999 999 999 999

ltoltype 0 0 0 0 0.144 0.1581 0.001 – 0.3404 0.0233 -0.7449 -1.9807 0.1644 0.8394 -0.0458 0.1091

νtype 0 0 0 0 9.7352 0.8641 9.9977 – 9.5633 0.5724 0.5724 7.837 1.8546 0.1441 2.5399 9.9975

Error 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 – 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3

https://doi.org/10.1371/journal.pcbi.1007278.t001
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phenotype, due only to heterogeneity, is conferred in co-culture. Indeed, these findings are

consistent with the CAT hypothesis.

Intratumor phenotypic heterogeneity correlates to multi-drug resistance in

individual patients, ex vivo
The data produced to this point indicate that heterogenous tumors can overcome the

onslaught of anti-cancer drugs by rapidly inducing resistance through co-supportive effects

(i.e. CAT). We tested the hypothesis that ITH directly correlates to therapy response of many

drugs, not just those predisposed by mutations. Indeed, ITH is a consequence of genetic and

phenotypic (i.e. mutations giving rise to unique cellular and morphologic characteristics) vari-

ability among tumor cells, which is tightly associated with treatment resistance [48]. To do

this, we deployed a human tumor explant platform that replicates the native tumor microenvi-

ronment including stromal and immune cells and allows for testing multiple drug responses

in a single tumor explant [32]. First, tumor explants were generated from fresh biopsies iso-

lated from NSCLC patients, cultured ex vivo on matched tumor matrix proteins supplemented

with autologous patient plasma, and exposed to various clinically-relevant drug regimens

(Fig 6a and S3 Table). This platform uses a trained algorithm that incorporates phenotypic

response assays, which enables clinical response prediction (given by the M-Score) with pub-

lished clinical accuracy (Fig 6b) [32].

Next, we wanted to quantify phenotypic heterogeneity by assessing the morphologic and

cellular diversity of tumor cells using an assessment of clinical pathology. i.e. phenotypic rather

Fig 5. Heterogeneity is beneficial to growth during drug exposure. In absence of drug pressure, monoculture growth (solid black line) for both WT and M1 is

significantly faster than all three co-cultures of 10:90 (dashed blue line), 50:50 (dotted red line), and 90:10 (dashed-dotted yellow line) mixes of WT:M1. However,

when exposed to docetaxel, bortezomib, and afatanib, co-culture heterogeneity is beneficial to both cell types, conferring faster growth than in the monoculture case.

Top: model predictions of WT growth; bottom: model predictions of M1 growth.

https://doi.org/10.1371/journal.pcbi.1007278.g005
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than genetic heterogeneity. To do this, we developed a ‘heterogeneity score’ for each patient

tumor sample based on the cellular and morphologic diversity of the tumor as quantified by a

clinical pathologist using the following approach: Fresh tumor biopsies were stained with

hematoxylin and eosin to visualize and differentiate the nucleus and cytoplasm of each cell.

Next, a clinical pathologist (see Methods) quantified the number of distinct tumor ‘neighbor-

hoods’, which are defined by clusters of tumor cells growing with similar morphologies within

a single visual field at 20X magnification. This was performed on three independent tumor

fragments from the same patient. Within each ‘neighborhood’ we then quantified, on a scale of

1-5, the uniformity of cell morphology and nuclear content in each visual field wherein 1 is

more uniform and 5 is highly diverse. We then calculated the ‘heterogeneity score’ by multi-

plying the number of histologically distinct tumor neighborhoods from a single field-of-

view with cellular morphology and nuclear uniformity, each on a scale of 1-5 (Fig 6c). The

resulting score was used to stratify NSCLC patient samples across a spectrum of heterogeneity

from low to high (Fig 6d). Interestingly, and consistent with evidence that ITH associates with

therapy failure [48], we determined that the degree of ITH (as defined by our ‘heterogeneity

score’) significantly affects predicted antitumor effect of multiple anticancer therapeutic

Fig 6. Assessing and quantifying ITH using CANscript. a) Tumor explants were generated from tumor biopsy isolated from NSCLC patients and were cultured ex
vivo on matched tumor matrix proteins supplemented with autologous patient plasma. Illustration by Wendy Chadbourne, 2018 Inky Mouse Studios, www.

inkymousestudios.com, provided under CC BY 4.0. b) clinical response prediction was performed using the M-Score; c) description of the development of a histology-

based ‘heterogeneity score’ developed by pathology. Scores from 1-5 were collected by multiplying the number of histologically distinct tumor regions with cellular

morphology and nuclear uniformity; d) stratified patient samples across a spectrum of heterogeneity scores and their predicted response to anticancer therapy based

on the M-Score; e) histogram shows the heterogeneity score of all patient samples (N = 8). Lower panel shows box and whisker plot quantifying the % of predicted

responder from clusters of patient samples with a heterogeneity score<5.5 (N = 4) or>5.5 (N = 4). ���p<0.001 by T-test.

https://doi.org/10.1371/journal.pcbi.1007278.g006
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regimens and combinations in an individual patient sample, as determined by the M-Score

(Fig 6e, p< 0.001).

While this finding is compatible with previous evidence that heterogeneity across a popula-

tion of patients associates to therapy failure [49, 50], these data provide evidence that in an ex
vivo setting, within a single patient, numerous conventional treatment options are similarly

ineffective when ITH is high, supporting the hypothesis that ITH and CAT are potentially

linked.

Discussion

Identifying the biomarkers and patterns that result in drug resistance is penultimate to eradi-

cating therapy failure in cancer. To achieve this and to advance precision medicine, mutational

profiling for ‘druggable’ targets has been an active area of investigation for oncology in the

past several decades [51]. However, there is mounting evidence that non-mutational mecha-

nisms result in drug resistance, regardless of the mutational load in tumors [52]. Indeed, we

have outlined here a potentially new paradigm in drug resistance by showing how “cooperative

adaptation to therapy” (CAT), due to ITH, can induce a drug tolerant phenotype, which has

significant consequences for therapeutic response. We took an approach that combined exper-

imental evidence with theoretical modeling, and constructed a replicator dynamics model of

intra- and interspecies competition that can potentially explain how individual clones within a

tumor lead to treatment resistance. We determined that the emergence of CAT is directly

related to the presence of neighboring clonal subsets within a tumor that force de-novo drug

resistance after drug exposure.

We investigated how phenotypic switching can occur within heterogenous tumors by

leveraging a three-dimensional nanoculture in vitro spherical growth platform and Dicer1

mutants derived from CRISPR/Cas9 gene editing. We characterized tumor spheroid growth

over 7 days in monocultures and co-cultures (in proportions of 10:90, 50:50, and 90:10 WT:

Mutant) in the absence of drugs and in the presence of docetaxel, bortezomib, and afatinib as

unique drug classes with differing mechanisms of action. We observed persistent growth in

co-cultures under drug pressure, despite previous drug sensitivity of both the WT and the

mutant, demonstrating the ability for phenotypic switching in heterogenous tumors. To quan-

tify this behavior, we developed a mathematical model of the growth dynamics in mono- and

co-cultures. We assumed that previously sensitive types exhibit an increased drug tolerance in

the presence of drugs through non-linear interactions. Our model successfully characterized

the phenotypic switching and our results demonstrated how genotype/genotype interactions

promote increased tolerance to drugs.

The empirical data presented in Fig 2 demonstrated that the mixed, heterotypic co-culture

conditions resulted in improved survival of both cell lines in the mixed culture (with the excep-

tion of M3 in afatinib). Indeed, in the case of docetaxel, such behavior could be attributed to

decreased cell cycling or other mechanisms that would argue against CAT as a method of

thwarting drug pressure. However, the evidence for mutually beneficial growth of both cell

lines, relative to vehicle control, when exposed to multiple different classes of drugs with differ-

ent mechanisms of action, some of which don’t rely on cell cycling or proliferation (e.g. borte-

zomib), support the hypothesis of CAT and indicates that it may explain a drug-agnostic,

or more universal phenomenon. While CAT is one possible explanation for the behavior

observed here, there are other potential mechanisms also at play. Given these surprising

empirical data, mathematical modeling of game theoretic cooperation was employed to align

theoretic and empirical evidences. Indeed, the numerous instances in which the in silico model

fit the experimental data provide support for the overall hypothesis. There is more work to be
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done, and understanding the mechanisms that contribute to this phenomenon still need fur-

ther investigation.

Leveraging the ex vivo human-autologous explant platform, our results suggested that ITH

affects a patient’s sensitivity to multiple anticancer drugs predominated by kinase specific as

well as general cytotoxics. In the context of our findings, this means that, regardless of drug-

gable targets, CAT may confer universal drug resistance behavior. Therefore, better-informed

therapeutic interventions should be considered such as timing the sequence of drugs [9], or

using combinations of rational agents based on computational modeling [53]. Indeed, many

complex alternative therapeutic interventions exist, and are being tested, which could poten-

tially address some of the challenges of CAT.

While the present study focused on theoretical models, examining the transcriptional and

proteomic profile of cells in co-culture could result in novel therapeutic targets to combine

with therapy and thwart CAT. Future studies might focus on growth dynamics in models of

complex heterogeneity that include the microenvironment, immune cells and stromal cells.

This could paint a clear picture of how CAT influences drug response. Given the evidences

presented here, using strategies that can inform mutational evolution and provide single cell

transcriptional profiling should be applied in parallel to a computational effort to gain a com-

plete picture of cell-cell interactions and help guide therapeutic options for patients receiving

care.
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S3 Fig. Schematic of mono- and co-culture population dynamics. In absence of drugs,

monoculture dynamics were modelled as being governed by logistic growth, where the popula-
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phenotype/phenotype interactions were assumed to be dominated by genotype/genotype

interactions (cooperative adaptation to therapy). We hypothesized that the constant fitness of

each type differs in mono- and co-cultures due to differences in culture protocols and spatial

constraints. Further, we assumed additional frequency-dependent cross-terms representing
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