Skip to main content
. 2019 Aug 14;15(8):e1008086. doi: 10.1371/journal.pgen.1008086

Fig 4. PaRid is essential to complete fruiting body development and to produce ascospores.

Fig 4

(A) Homozygous crosses of wild type S strains (left panel) and of ΔPaRid strains (right panel) on M2 medium after 5 days at 27°C. Each dark dot is one fruiting body resulting from one event of fertilization. The homozygous ΔPaRid cross forms reduced-size fruiting bodies only (right panel). (B) Close up of fruiting bodies (perithecia) originating from either a wild-type genetic background (left panel) or a ΔPaRid genetic background (right panel). Scale bar: 250 μm. (C) After 4 days of growth at 27°C, the wild type fruiting bodies start to produce ascospores (left panel) while the mutant micro-perithecia are barren (right panel). Scale bar: 50 μm. (D) Fluorescence microscopy pictures of 48h-old fruiting body content from homozygous crosses of wild type S strains (left panel) and of ΔPaRid strains (right panel), performed on M2 medium at 27°C. The nuclei are visualized thanks to histone H1-GFP fusion protein. Croziers are readily formed inside the wild type perithecia (left panel, white arrows) while no crozier but large plurinucleate ascogonial cells only are seen inside the ΔPaRid perithecia (right panel, white arrow). Scale bar: 10 μm.