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Abstract

Background: In precision medicine, deep phenotyping is defined as the precise and 

comprehensive analysis of phenotypic abnormalities, aiming to acquire a better understanding of 

the natural history of a disease and its genotype-phenotype associations. Detecting phenotypic 

relevance is an important task when translating precision medicine into clinical practice, especially 

for patient stratification tasks based on deep phenotyping. In our previous work, we developed 

node embeddings for the Human Phenotype Ontology (HPO) to assist in phenotypic relevance 

measurement incorporating distributed semantic representations. However, the derived HPO 

embeddings hold only distributed representations for IS-A relationships among nodes, hampering 

the ability to fully explore the graph.

Methods: In this study, we developed a framework, HPO2Vec+, to enrich the produced HPO 

embeddings with heterogeneous knowledge resources (i.e., DECIPHER, OMIM, and Orphanet) 

for detecting phenotypic relevance. Specifically, we parsed disease-phenotype associations 

contained in these three resources to enrich non-inheritance relationships among phenotypic nodes 

in the HPO. To generate node embeddings for the HPO, node2vec was applied to perform node 

sampling on the enriched HPO graphs based on random walk followed by feature learning over the 

sampled nodes to generate enriched node embeddings. Four HPO embeddings were generated 

based on different graph structures, which we hereafter label as HPOEmb-Original, HPOEmb-

DECIPHER, HPOEmb-OMIM, and HPOEmb-Orphanet. We evaluated the derived embeddings 

quantitatively through an HPO link prediction task with four edge embeddings operations and six 
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machine learning algorithms. The resulting best embeddings were then evaluated for patient 

stratification of 10 rare diseases using electronic health records (EHR) collected at Mayo Clinic. 

We assessed our framework qualitatively by visualizing phenotypic clusters and conducting a use 

case study on primary hyperoxaluria (PH), a rare disease, on the task of inferring relevant 

phenotypes given 22 annotated PH related phenotypes.

Results: The quantitative link prediction task shows that HPOEmb-Orphanet achieved an 

optimal AUROC of 0.92 and an average precision of 0.94. In addition, HPOEmb-Orphanet 

achieved an optimal F1 score of 0.86. The quantitative patient similarity measurement task 

indicates that HPOEmb-Orphanet achieved the highest average detection rate for similar patients 

over 10 rare diseases and performed better than other similarity measures implemented by an 

existing tool, HPOSim, especially for pairwise patients with fewer shared common phenotypes. 

The qualitative evaluation shows that the enriched HPO embeddings are generally able to detect 

relationships among nodes with fine granularity and HPOEmb-Orphanet is particularly good at 

associating phenotypes across different disease systems. For the use case of detecting relevant 

phenotypic characterizations for given PH related phenotypes, HPOEmb-Orphanet outperformed 

the other three HPO embeddings by achieving the highest average P@5 of 0.81 and the highest 

P@10 of 0.79. Compared to seven conventional similarity measurements provided by HPOSim, 

HPOEmb-Orphanet is able to detect more relevant phenotypic pairs, especially for pairs not in 

inheritance relationships.

Conclusion: We drew the following conclusions based on the evaluation results. First, with 

additional non-inheritance edges, enriched HPO embeddings can detect more associations between 

fine granularity phenotypic nodes regardless of their topological structures in the HPO graph. 

Second, HPOEmb-Orphanet not only can achieve the optimal performance through link prediction 

and patient stratification based on phenotypic similarity, but is also able to detect relevant 

phenotypes closer to domain expert’s judgments than other embeddings and conventional 

similarity measurements. Third, incorporating heterogeneous knowledge resources do not 

necessarily result in better performance for detecting relevant phenotypes. From a clinical 

perspective, in our use case study, clinical-oriented knowledge resources (e.g., Orphanet) can 

achieve better performance in detecting relevant phenotypic characterizations compared to 

biomedical-oriented knowledge resources (e.g., DECIPHER and OMIM).
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1. Introduction

The Human Phenotype Ontology (HPO) is commonly used as a resource to provide a 

controlled vocabulary of phenotypic characterizations related to human diseases [1]. 

Characterizations maintained by the HPO are collected from heterogeneous knowledge 

resources, including biomedical literature, the database of chromosomal imbalance and 

phenotype in humans using ensemble resources (DECIPHER) [2], the Online Mendelian 

Inheritance in Man (OMIM) [3], and the Orphanet [4]. Deep phenotyping is defined as the 

precise and comprehensive analysis of phenotypic abnormalities, aiming to obtain a better 
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understanding of the natural history of a disease and its genotype-phenotype associations [5, 

6]. Therefore, the HPO is able to play an important role in deep phenotyping by translating 

precision medicine into clinical practice, especially for rare disease differential diagnostic 

support. Patient stratification is an essential step involved in differential diagnosis, aiming to 

group patients with similar clinical phenotypic characterizations into the same subgroups so 

as to accelerate the diagnostic process. Hence, methodology to detect the relevance between 

clinical phenotypes has become an important piece in deep phenotyping research. A 

majority of existing studies (see related work in section 2) identify phenotypes as relevant 

solely based on topological and inheritance relationships of any two phenotypic nodes in the 

HPO graph. Those studies do not take into account feature learning of different nodes for 

detecting associations that cannot be inferred directly through the graph structure.

Meanwhile, inspired by the success of word embeddings in building distributed semantic 

representations for each word given a corpus, node embeddings provide a solution to map 

nodes to distributional representations and translate nodes’ relationships from graph space to 

embedding space. Node2vec is one of the commonly adopted models used to build node 

embeddings [7]. It uses a biased random walk algorithm [8] to perform a flexible 

neighborhood sampling strategy and feeds the sampling data as input to a word2vec model 

[9]. In previous work, we constructed node embeddings for the HPO using the node2vec 

model [10]. The resulting HPO embeddings can quantify the relevance between any two 

phenotypic characterizations, which is considered to be an important factor for patient 

stratification on rare disease differential diagnosis. However, the lack of non-inheritance 

relationships in the HPO hampers the ability to fully explore the graph. For example, 

according to the HPO, chronic kidney disease is a subclass phenotype of renal insufficiency, 

so it is not difficult to detect their relevance by just checking for an inheritance relationship. 

On the other hand, Chronic kidney disease is also related to synovitis by contributing to the 

same rare disease primary hyperoxaluria but does not share any direct inheritance 

relationship with renal insufficiency in the HPO. Therefore, it would be difficult to detect the 

link between those two relevant phenotypes through the HPO.

In this study, we sought to improve our prior developed HPO embeddings and developed 

HPO2Vec+, a framework to enrich HPO embeddings with information gained from 

heterogeneous knowledge resources. To the best of our knowledge, it is the first study to 

enhance HPO embeddings by incorporating knowledge insights from heterogeneous 

knowledge resources. Specifically, three knowledge resources, namely DECIPHER, OMIM 

and Orphanet, were used in this study. Based on the annotations provided by these three 

knowledge resources for HPO, we first designed an algorithm to extract disease-phenotype 

associations and used these associations to enhance the connectivity of the HPO graph. We 

then generated different node embeddings using HPO2Vec+. We conducted the evaluation 

quantitatively and qualitatively. For the quantitative evaluation, we first generated different 

HPO embeddings using a downstream application on graph link prediction and measured the 

performance with different machine learning algorithms. The resulting best embeddings 

were then evaluated for patient stratification of 10 rare diseases using electronic health 

records (EHR) collected at Mayo Clinic with five [0, 1] bounded conventional HPO based 

semantic similarity measurements implemented by an existing tool, HPOSim. For the 

qualitative evaluation, we visualized selected clusters generated by different HPO 
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embeddings through a two-dimensional visualization plot. We then conducted a use case 

study on primary hyperoxaluria (PH), a rare disease. Given some annotated PH related 

phenotypes, we analyzed relevant phenotypes inferred by different HPO embeddings and 

conventional graph based semantic similarity measurements.

2. Related work

In the general domain, several metrics are commonly used to measure the similarity amongst 

ontology annotations. For example, information content (IC) [11] assigns the probability of 

information gained for each node based on graph structure. The Resnik [12] metric 

quantifies the similarity between any two nodes as the IC of their most informative common 

ancestor (MICA) using IS-A relationships. The Jiang-Conrath [13] and Lin [14] metrics 

measure IC similarity of two terms without considering their MICA score. The information 

coefficient [15] and relevance [16] metrics are variations of the Lin measure. The graph IC 

[17] metric takes into account all of the shared ancestor nodes given any two nodes. The 

Wang [18] metric assigns a weight to each edge representing its semantic contribution, with 

the limitation of only being applicable to directed acyclic graphs (DAG).

In the clinical domain, several existing studies have built applications specifically leveraging 

the HPO graph structure with the aforementioned similarity measurements to check the 

relevance of any two phenotypic terms. For example, Phenomizer [19] is a clinical 

diagnostic tool that uses the Resnik metric for phenotypic similarity measurements 

leveraging the hierarchical structure of the HPO to provide differential diagnostic 

suggestions. Masino et al. also proposed a clinical phenotypic-based gene prioritization 

system using semantic similarity derived from the combination of IS-A relationships and IC 

scores provided by the HPO [20]. OWLSim [21] applied the Jaccard similarity [22] and the 

Resnik-based approach to support pairwise term-term similarity based on users’ manual 

inputs. Built on top of OWLSim, PhenoDigm [23] applied the mean of the Jaccard and 

Resnik-based similarities for cross-species phenotype comparisons. PhenomeNET [24] uses 

the graph IC metric to calculate nodes’ similarity derived from different ontologies (e.g., 

HPO, Mammalian Phenotype Ontology (MPO) [25], Worm Phenotype Ontology (WPO) 

[26] etc.) for constructing a disease network. The PhenoHM [27] tool is used to integrate 

human diseases and mouse models according to phenotypic characterizations annotated in 

both the HPO and MPO using MetaMap [28] similarity scores. PhenoSim [29] leveraged 

both path-constrained IC and PageRank-based noise reduction methods to measure 

similarity among the HPO terms. Gong et al. proposed the RelativeBestPair [30] approach 

utilizing hierarchical IC and the best pair method to measure semantic similarity for terms 

contained in the HPO. HPOSim [31] is an HPO-based R package for phenotypic similarity 

measurement using seven similarity measurements, including the Resnik, Jiang-Conrath, 

Lin, information coefficient, relevance, graph IC, and Wang metrics.

On the topic of incorporating the HPO with other biomedical resources for knowledge 

enrichment, several related studies do exist. HPO2GO [32] predicted associations between 

phenotypic terms using co-occurrences recorded in cross ontology annotation (the HPO and 

Gene Ontology [33]). OntoFUNC [34] integrated pharmacogenomics databases and 

biomedical ontologies to identify disease pathway through multi-ontology enrichment. 
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STOP [35] uses over 650,000k annotations derived from the Gene Ontology, HPO, Disease 

Ontology [36], and Pathway Ontology [37] for gene and protein annotations. Shen et al. 

developed a framework using association rule mining [38] to enrich Orphanet annotations 

for the HPO through data mining from electronic medical records [39]. However, none of 

these studies have investigated how to build HPO-based distributed semantic representations 

leveraging heterogeneous resources.

3. Materials

3.1 HPO annotations on disease-phenotype from heterogeneous resources

The HPO team prepared a file “phenotype_annotation.tab” (version released on May 2018) 

[40] to annotate diseases with relevant HPO phenotypes derived from three knowledge 

resources: DECIPHER, OMIM, and Orphanet. We leveraged this file to identify 

relationships amongst HPO phenotypes and enrich relationships utilizing the different 

resources. DECIPHER aims to facilitate data sharing for phenotypes and genotypes, which 

stores data for over 28,000 patients. The HPO annotation file incorporates 285 disease-

phenotype associations annotated by DECIPHER. The OMIM maintains up-to-date and 

comprehensive knowledge about human genes and genetic phenotypes that relate to 

Mendelian disorders. We leveraged 88,169 disease-phenotype associations annotated by the 

OMIM in this study. The Orphanet is a knowledge resource specifically designed for rare 

diseases. We found 58,968 disease-phenotype associations annotated by the Orphanet in the 

HPO annotation file.

3.2 Node2Vec

The node2vec model is designed based on the word2vec model. Each node in the graph is 

analogous to a single word in text, and a group of neighborhood nodes are similar to the 

context around said word. The difference is that graph data is represented in a non-linear 

manner and it is non-trivial to identify a “context” for any single node in the graph. 

Therefore, node2vec first prepares input data through a random walk based sampling 

strategy. Specifically, for graph data, node2vec takes two forms of equivalences into 

consideration: homophily [41] and structural equivalence [42–44]. For homophily 

equivalence, node2vec uses a breadth first search (BFS) algorithm to reach neighborhood 

nodes based on homogeneous clusters. For structural equivalence, node2vec leverages a 

depth first search (DFS) strategy to identify neighborhood nodes based on their structural 

roles (e.g., hub node or peripheral node). Node2vec makes a mixture of both equivalence 

and customizes a random walk algorithm to switch between BFS and DFS in a moderate 

way, in order to balance graph searching. After the input data is ready, the node2vec model 

applies word2vec to generate node embeddings. There also exist some algorithms that are 

able to generate node embeddings, such as DeepWalk [45] and Line [46]. DeepWalk is a 

random walk based algorithm with a fixed return parameter and in-out parameter of 1. The 

node2vec model extends DeepWalk by providing a more flexible way to train different 

combinations of these parameters. Therefore, the sampling strategy provided by DeepWalk 

can be considered as a special case of node2vec. Line provides an efficient way to learn 

graph embedding leveraging both first-order and second-order proximities. However, it lacks 

the ability to learn feature representation with a balance between BFS and DFS in a graph 
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network. According to a graph embedding survey paper [47], node2vec is the only work that 

takes into account both BFS and DFS in a biased random walk algorithm, which is 

important for learning an enriched embedding with relationships from both intra-

communities and inter-communities. Therefore, we chose node2vec in this study on 

generating node embeddings.

4. Methods

The workflow of HPO2Vec+ consists of two components as shown in Figure 1: graph 

structure preparation and node embeddings generation. The graph structure preparation 

component first enriches the original HPO graph with phenotype-phenotype associations 

from knowledge resources and builds the structure of different graphs. The node2vec model 

then samples network neighborhoods for nodes and performs feature learning to generate 

node embeddings for each specific graph.

4.1 Preparation of graph structure

In our previous work, we only represented the HPO graph by parsing the IS-A relationships 

that connected between superclass and subclass nodes. In this study, we extended this work 

by incorporating three different knowledge resources (DECIPHER, OMIM, and Orphanet) 

and made updated HPO graphs with enriched non-inheritance relationships amongst the 

different nodes. For each knowledge resource, we constructed a bipartite graph G = (D,P,E), 

where D represents disease set, P stands for phenotype sets and E denotes edges between 

diseases and phenotypes. For any two phenotypes pi ∈ p and pj ∈ P, if there exists a common 

disease d ∈ D that could be connected to both pi and pj through edges ei ∈ E and ej ∈ E 
respectively, we linked a sibling edge between pi and pj in the original HPO graph. As 

shown in Figure 1, four different graphs were generated for further processing: the original 

graph HPO-Original generated in our previous work and three new graphs HPO-

DECIPHER, HPO-OMIM, and HPO-Orphanet generated by HPO2Vec+ in this study.

4.2 Generation of node embeddings

4.2.1 HPO sampling strategy—Node2vec first analyzed each specific HPO graph and 

adopted a biased random walk algorithm to sample neighborhood sets for each individual 

node.

Node2vec adopts a 2nd order random walk based on the topology of any graph, indicating 

that three nodes will be involved in a walk, namely source node, intermediate node, and 

target node. We defined any source node as phi, any target node as phj, and any intermediate 

node that exists on the path between phi and phj as phx, the distribution of phenotypic node 

phj with a fixed length of random walk can be represented as:

P ph j phx   =  
π phx, ph j

Z i f   < phx,  ph j >   f orms an edge

0 otherwise
(1)
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where Z indicates the normalization constant. A transition probability π(phx, phj) between 

phenotypic nodes phx and phj can be calculated as:

π phx,  ph j   =  α phi,  ph j   ⋅  w phx,  ph j (2)

Here w(phx, phj) indicates the weight assigned to the edge between phx and phj. Specifically, 

in this study, we set (phx,phj) = 1

To determine the search bias term α with respect to phi and phj, Node2vec used a re-

visitation parameter p and an in-out parameter q to control balance between BFS and DFS to 

implement homophily and structural equivalence simultaneously. α for phenotypic nodes phi 

and phj is computed based on p and q:

α phi,  ph j   =  

1
p i f  sp phi, ph j   =  0

1 i f  sp phi, ph j   =  1
1
q i f  sp phi, ph j   =  2

(3)

where sp(phi,phj) indicates the shortest path between phi and phj.

4.2.2 Feature learning—A feature learning component was then used to construct 

different HPO embeddings based on different sample strategies. Let HPO graph HG = 
(PH,E) be a specified network, where PH denotes phenotypic nodes and E indicates edges 

between nodes. Let f  :  PH   ℝd denote the mapping function from any HPO phenotypic 

nodes to their corresponding feature representation, where d specifies dimensions and f is a 

matrix of size |PH| × d.

Node2vec extends the Skip-gram model provided by word2vec and applies it on each 

sampled neighborhood node using the aforementioned biased random walk algorithm. For 

each phenotypic node phi ∈ PH, we used N(phi) to represent the neighbors of a phenotype 

phi, with an objective function for feature learning described as:

max
f

∑phi ∈ PH log P N phi f phi (4)

We used a softmax function to produce a vector of normalized probabilities for each 

neighbor nk and node feature f(phi):

P nk f phi   =  
exp f nk   ⋅   f phi

∑ph j ∈ PH exp f ph j   ⋅   f phi
(5)
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Two assumptions are made by node2vec. First, it assumes that the likelihood of observing 

any neighborhood from one source phenotypic node is conditionally independent. In 

addition, it assumes that the feature space between any phenotypic node and its 

neighborhood node is symmetric. Based on these two assumptions, eq. (4) and (5) were 

combined and an objective function was simplified as shown in eq. (6), where 

T phi   =  ∑ph j ∈ PH exp f ph j   ⋅   f phi . Given a constant window size, the Stochastic 

gradient descent algorithm was applied to optimize this objective function.

max
f

∑phi ∈ PH −log T phi   +  ∑nk ∈ N phi
f nk   ⋅   f phi (6)

Figure 2 shows an example of learning node embeddings for four graphs given an input node 

nephrolithilasis with the Skip-gram model. Since various graphs provide their own insight to 

define neighbors for nephrolithilasis using biased random walk, node2vec was able to 

leverage the sampled neighbors within a certain window size to train embeddings. As a 

result, four node embeddings for the HPO were generated based on differing graph 

structures which we hereafter label as HPOEmb-Original (the basic embeddings done in 

previous work), HPOEmb-DECIPHER, HPOEmb-OMIM, and HPOEmb-Orphanet.

5. Graph characterizations

We first characterized details of different HPO graphs that were used in the evaluation. In 

addition to using the size of nodes and edges for graph characterizations, the average degree 

and density were also introduced here. For any given graph G = (V,E), average degree and 

density for G are defined as shown in eq. (7) and (8) respectively, where |V| indicates the 

number of vertices and |E| denotes the number of edges in the graph.

Δ(G)  =  2 E
V (7)

D(G)  =   2 E
V ( V   −  1) (8)

HPO-Original is a subgraph of the HPO containing 7,258 nodes, a size consistent to that 

reported in our previous work [10]. We enriched the phenotypic relationships extracted from 

HPO-Original using 87, 20,881, and 21,171 disease-phenotype associations that have 

phenotypic terms overlapping with those contained in HPO-Original from DECIPHER, 

OMIM, and Orphanet respectively. The HPO-DECIPHER, HPO-OMIM, and HPO-Orphanet 

graphs all hold a consistent node count of 7,258 but contain differing numbers of edges. We 

made specific characterizations for different HPO graphs as shown in Table 1. In the 

experiment, we used a subset of the entire edges for each graph that formed among these 

7,258 nodes to learn embeddings. We observed that without any enrichment, HPO-Original 
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has the lowest average degree and density. HPO-DECIPHER does not show much increment 

on average degree and density due to a fewer number of enriched associations. Although the 

OMIM holds fewer disease-phenotype associations than the Orphanet, HPO-OMIM has 

more new edges created than HPO-Orphanet, which leads to the highest average degree and 

density.

6. Evaluation Approaches

6.1 Quantitative evaluation

We first generated the optimal embeddings by conducting a link prediction task. The aim of 

the link prediction task is to predict the relationships between any two HPO nodes (positive 

or negative) and use the performance of prediction to evaluate the quality of the four 

generated embeddings. Edge embeddings were used in this task to investigate relationships 

between nodes leveraging distributional features provided by node embeddings. Given any 

two phenotypic nodes phi and phj and their corresponding feature representations f(phi) and 

f(phj), edge embeddings can be calculated using four operations as shown in Table 2.

For any given phenotypic nodes phi and phj, a boolean function L(phi,phj) was used to 

indicate the existence of edge(s) between these two nodes, where L(phi,phj) = 1 indicates 

positive links and L(phi,phj) = 0 denotes negative links. During the training process, we fit 

features provided by L(phi,phj) to build the model. For positive examples, for each of the 

four graphs, we randomly used 60%, 10%, and 30% of all their edges for training, 

validation, and testing purposes respectively. For negative examples, we randomly sampled 

an equal number of node pairs and kept the same ratio amongst training, validation, and 

testing sets as 60%, 10%, and 30% respectively. Specifically, we used the Decision Tree 

(DT) [51], Logistic Regression (LR) [52], Support Vector Machine (SVM) [53], Random 

Forest (RF) [54], Naïve Bayes (NB) [55], and Multi-Layer Perceptron (MLP) [56] machine 

learning algorithms to perform the evaluation. We plotted the receiver operating 

characteristic (ROC) curve and computed the area under the ROC curve (AUROC) to report 

link prediction performance. In addition, as shown in eq. (9)–(12), precision, recall, F1 

score, and average precision were used to quantify the performance on link prediction for 

the different HPO embeddings.

Precision  =   True Relations   ∩   Predicted Relations
Predicted Relations (9)

Recall  =   True Relations   ∩   Predicted Relations
True Relations (10)

F1 score  =  2  *  precision  *  recall
precision  +  recall (11)
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AP  =  ∑n Recalln  −  Recalln  −  1 Precisionn (12)

In order to evaluate if the generated HPO embeddings had the capability to assist patient 

stratification in clinical practice, in this section, we conducted another task on detecting 

similar patients for a list of rare diseases using the optimal HPO embeddings and other 

semantic similarity measurements. Specifically, we first selected 10 rare diseases with high 

prevalence in electronic health records (EHR) generated at Mayo Clinic from 2010 to 2015. 

These rare diseases are ovarian cancer, myelofibrosis, primary sclerosing cholangitis, b-cell 
lymphoma, dilated cardiomyopathy, laryngomalacia, cryoglobulinemia, esophageal cancer, 
papillary thyroid carcinoma, and clear cell renal cell carcinoma.

We first filtered out patients who have more than one rare disease. For each aformentioned 

rare disease, we then randomly selected 5 patients who already received a final diagnosis. 

We applied our previously developed HPO annotation pipeline [57] on the diagnosis section 

of each patients’ EHR within 12 months of their confirmed diagnosis of a rare disease, in 

order to extract annotated phenotypes and assembled them together for each patient as a 

phenotype vector. For each rare disease, we compared each patient with 4 other patients that 

had the same diagnosis (each disease has 5 * 4 = 20 pairwise comparisons) by applying 

different measurements solely based on patients’ phenotypic characterizations. This 

experiment was done with the aim of investigating which measurement can achieve a better 

performance for detecting similar patients for each specific rare disease.

As shown in eq. (13), for each patient p, we applied the optimal HPO embeddings over the 

phenotype vector phvp and calculated the average embeddings (AE), where f is a feature 

matrix to map any phenotype php to its embeddings. A cosine similarity calculation 

(PatientSim) was followed to compare similarity between any two patients using average 

embeddings (eq. (14)).

AE(p)  =  
∑php ∈ phvp

phvp f php

phvp
(13)

Patient Sim  pi,  p j   =  
AE pi   ⋅  AE p j

AE pi AE p j
(14)

We further compared the optimal embedding generated by HPO2Vec+ with conventional 

phenotypic similarity measurements. Specifically, we selected HPOSim as it implements 

seven different ontology-based similarity measurements and it uses the HPO as the 

backbone ontology. These similarity measurements are Resnik (HPOSim-Resnik), Jiang-

Conrath (HPOSim-JC), Lin (HPOSim-Lin), information coefficient (HPOSim-ICE), 
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relevance (HPOSim-RL), graph IC (HPOSim-GIC), and Wang (HPOSim-Wang). In this 

task, since we only used the positive space for cosine similarity bounded in [0,1], to make a 

fair comparison, we adopted five out of seven conventional similarity measurements with the 

same value range: HPOSim-Lin, HPOSim-ICE, HPOSim-RL, HPOSim-GIC, and HPOSim-

Wang.

6.2 Qualitative evaluation

We first visualized phenotypic clusters generated by different HPO embeddings with a two-

dimensional plot leveraging t-distributed stochastic neighbor embedding (t-SNE) [58]. We 

then conducted a use case study on primary hyperoxaluria (PH). PH is a rare heterogeneous 

disease but is an important cause of variable progression into kidney failure from childhood 

through adolescence [59]. Differential diagnosis among recurrent nephrolithiasis, 

nephrocalcinosis, or end-stage renal disease (ESRD) must be provided before making a 

confirmed diagnosis for PH [60]. Since delayed diagnosis of PH is extremely common, 

given its rarity, it is meaningful if phenotypic characterizations can accelerate the differential 

diagnosis process. Specifically, for each selected phenotypes related to PH, we identified the 

most relevant phenotypes using cosine similarity with four HPO embeddings as shown in eq. 

(15), where phi denote annotated PH related phenotypes and phj indicate each phenotype 

inferred by node embeddings, and Vi and Vj denote the embeddings for phi and phj 

respectively.

similarity phi,  ph j   =  
V i  ⋅  V j
V i V j

(15)

In addition, we invited a nephrologist as a domain expert to validate the usefulness on 

phenotypic relevance detection with different HPO embeddings. Specifically, the 

nephrologist considered whether the inferred phenotypes are relevant if they are 

comorbidities of the given phenotypes, or holds a similar meaning to that of the given 

phenotypes, or shares the same risk factors (risk equivalent [61]) as the given phenotypes. 

As shown in eq. (16), we used information retrieval metric precision at k (P@K) to quantify 

the domain expert’s evaluation, where K inferred phenotypes indicate top K phenotypes 

recommended by the embeddings with the descending order of cosine similarity. We 

compared the top inferred phenotypes for each of the PH related phenotypes respectively 

given by HPO2Vec+ and seven conventional similarity measurements (HPOSim-Resnik, 

HPOSim-JC, HPOSim-Lin, HPOSim-ICE, HPOSim-RL, HPOSim-GIC, and HPOSim-

Wang). Relevance for each inferred phenotype was also evaluated by the domain expert.

P@K  =   Relevant Phenotypes   ∩   K In f erred Phenotypes
K In f erred Phenotypes (16)
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7. Results

7.1 Embeddings generation with link prediction task

We used a neighbor size of 10, number of walks of 10, walk length of 5, and dimensions of 

128 to generate four different embeddings. We leveraged the validation set to tune p and q. 

By heuristics, we chose p, q ∈ {0.05, 0.25, 1}, and the optimal combinations for p and q for 

HPOEmb-Original, HPOEmb-DECIPHER, HPOEmb-OMIM, and HPOEmb-Orphanet are 

(1, 0.05), (1, 0.25), (1, 0.05), and (1, 0.05), respectively.

Table 3 illustrates the link prediction performance (AUC) for four HPO embeddings with 

different edge embeddings operations. In general, we found that HPOEmb-DECIPHER did 

not show much difference on link prediction compared to HPOEmb-Original. HPOEmb-

OMIM achieved its optimal performance (AUC = 0.9) when using the LR and RF 

algorithms with either the Hadamard or Average operations, while the performance was even 

worse than HPOEmb-Original and HPOEmb-DECIPHER with the L1 and L2 operations. 

With the Hadamard and Average opoerations, HPOEmb-Orphanet achieved an optimal AUC 

of 0.92 with both of the RF and LR algorithms. HPOEmb-Orphanet did not perform well 

with the L1 and L2 ooperations. ROC curves for different machine learning algorithms with 

the optimal HPOEmb-Orphanet embeddings using Hadamard is shown in Fig. 3. A 

comprehensive ROC analysis for all the HPO embeddings with different experiment settings 

are illustrated in Supplementary File 1.

We selected HPOEmb-Orphanet as the optimal embeddings and calculated average precision 

for four edge embeddings operations and six machine learning algorithms as shown in Table 

4. Average (optimal: 0.94) and Hadamard (suboptimal: 0.93) performed better than the other 

two operations with RF (0.74 for both). In addition, the highest F1 score (0.86) for 

HPOEmb-Orphanet was achieved with Hadamard and Average. Comprehensive evaluation 

results on the precision, recall, and F1 scores for all HPO embeddings is provided in 

Supplementary File 2.

7.2 Patient similarity measurement

As shown in Table 5, HPOEmb-Orphanet with cosine similarity can achieve the highest 

average patient similarity score across ten rare diseases (0.71) as well as the highest 

similarity score for 6 out of 10 rare diseases, including ovarian cancer, myelofibrosis, 

primary sclerosing cholangitis, b-cell lymphoma, cryoglobulinemia, and esophageal cancer.

By checking the percentage of shared phenotypes by each pair of patients, we observed that 

HPOEmb-Orphanet performed better than others especially for patient pairs with fewer 

shared phenotypes (<=10% in our experiment). For example, two patients with esophageal 
cancer had phenotype vectors of [dehydration, nausea, vomiting] and [gastrointestinal 
stroma tumor, neoplasm] respectively. One patient’s observable phenotypes were all about 

digestive problem and abnormal fluid regulation, and the other patient’s phenotypic 

characterizations were about neoplasm of the gastrointestinal tract. Since phenotypes from 

these two patients are neither directly connected nor within short reachable distance 

according to the HPO graph, all five conventional similarity measurements can hardly 

consider they are relevant. HPOEmb-Orphanet increased the chance of detecting these 
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patients as similar even though the phenotypic nodes in the graph were separate. For each 

disease for which any two patients share many common phenotypes, HPOEmb-Orphanet 

was also able to detect these similar patients in a manner consistent with HPO-Lin, HPO-

GIC, and HPO-Wang (e.g., 1 for b-cell lymphoma, 0.95 for dilated cardiomyopathy, 0.9 for 

laryngomalacia, 0.97 for papillary thyroid carcinoma, and 0.96 for clear cell renal cell 
carcinoma). Although some of the conventional similarity measurements achieved a higher 

patient similarity based on commonly shared phenotypes, it is more interesting and 

meaningful to consider any two patients as similar even if they held a large number of 

phenotypic characterizations that seem to be different but are actually relevant, which is the 

motivation of constructing HPOEmb-Orphanet.

7.3 Phenotypic cluster visualization

We picked one cluster from each subset of randomly generated HPO embeddings as shown 

in Figure 4 (all the subsets of randomly generated clusters could be found in Supplementary 

File 3). Figure 4.1 depicts a cluster generated by HPOEmb-Original including the greatest 

number of phenotypic terms with coarse granularity in the HPO graph, such as abnormal 
epiphyseal ossification, abnormal lung morphology, abnormality of muscle morphology, 

abnormal proportion of double-negative alpha-beta regulatory T cell. The other three HPO 

embeddings were able to generate more clusters with phenotypic terms in finer granularity. 

As shown in Figure 4.2, a cluster generated by HPOEmb-DECIPHER contains six 

phenotypes that are inherited from different root phenotypic terms. For example, 

compensatory chin elevation belongs to abnormality of the eye, high forehead is a subtype of 

abnormality of head or neck, increased hematocrit belongs to abnormality of blood and 
blood-forming tissues, hamartoma is a neoplasm, emphysema is an abnormality of the 
respiratory system, and progressive alopecia is inherited from abnormality of the 
integument. Progressive alopecia and increased hematocrit appeared in clusters generated by 

both HPOEmb-DECIPHER and HPOEmb-OMIM, but the latter assigned different 

neighbors to these two phenotypes. For example, as shown in Figure 4.3, skeletal muscle 
atrophy (a subclass of abnormality of the musculature), low back pain (a subclass of 

abnormality of the skeletal system), and micromelia (a subclass of abnormality of limbs) are 

also included in the selected cluster. As shown in Figure 4.4, the cluster generated by 

HPOEmb-Orphanet shared hamartoma with HPOEmb-DECIPHER and shared skeletal 
muscle atrophy with HPOEmb-OMIM. In addition, this cluster also included elevated right 
atrial pressure (a subclass of abnormality of the cardiovascular system), increased serum bile 
acid concentration during pregnancy (a subclass of abnormality of metabolism/homeostasis), 

and pericarditis (a subclass of abnormality of the cardiovascular system).

7.4 Use case study

We selected 22 phenotypes annotated by the HPO that are proved to be related to PH and 

also overlapped with our generated graphs. As shown in Table 6, the average P@5 and 

P@10 were calculated for these 22 phenotypes based on the domain expert’s comments 

(Detailed information for domain expert’s evaluation and cosine similarity scores can be 

found in Supplementary File 4). For both P@5 and P@10, HPOEmb-Orphanet achieved the 

optimal overall performance amongst all HPO embeddings, with a P@5 slightly higher than 

P@10. HPOEmb-Original yielded suboptimal precision for the top 5 as well as for the top 
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10 phenotypes. HPOEmb-DECIPHER has the same performance as HPOEmb-Original for 

P@5, and HPOEmb-DECIPHER outperformed HPOEmb-OMIM for both P@5 and P@10. 

The performance for each of the 22 selected phenotypes can also be found in Supplementary 

File 5.

We further picked nephrocalcinosis, stage 5 chronic kidney disease, and calcium oxalate 
nephrolithiasis out of the 22 phenotypes as significant phenotypes for PH patient 

stratification, as suggested by the domain expert, in order to compare qualitative 

performance between optimal HPOEmb-Orphanet and HPOSim with seven similarity 

measurements. Specifically, we applied HPOSim on the HPO-Orphanet graph for a fair 

comparison. Table 7 depicts top 5 inferred phenotypes for each of the selected three 

phenotypes using different metrics. For nephrocalcinosis, we found that only HPOEmb-

Orphanet inferred 4 out of 5 relevant phenotypes but all the other similarity measurements 

failed to generate relevant phenotypes. For stage 5 chronic kidney disease, all the 

measurements detected relevant phenotypes. However, seven conventional similarity 

measurements implemented in HPOSim all inferred the exact same term “stage 5 chronic 
kidney disease” as one of the top answers. In addition, chronic kidney disease and renal 
insufficiency are phenotypes that were highly recommended for all different measurements. 

We found that all the inferred phenotypes provided by the seven conventional similarity 

measurements belong to the urinary system. In other words, those inferred phenotypes were 

detected via solely traversing the hierarchical structure of the HPO graph. HPOEmb-

Orphanet was, however, able to infer relevant signs and symptoms from different organ 

systems that are not predecessor or descendent nodes of the urinary system in the HPO. For 

example, secondary hyperparathyroidism belongs to abnormality of the parathyroid 
physiology and polyarticular arthritis belongs to abnormality of the skeletal system. For 

calcium oxalate nephrolithiasis, HPOSim-Resnik detected the greatest number of relevant 

phenotypes, but all of the inferred phenotypes were either exactly the same phenotype or a 

subclass/superclass of calcium oxalate nephrolithiasis. HPOSim-RL inferred increased 
urinary sulfite, which is a urinary phenotype in fine granularity. Other conventional 

similarity measurements inferred either non-relevant phenotypes or superclass term 

(nephrolithiasis). Although HPOEmb-Orphanet only inferred 3 out of 5 relevant phenotypes, 

it provided insights to link diseases in the urinary system (calcium oxalate nephrolithiasis, 

renal calcium wasting, and hypercalciuria) to diseases in the endocrine system (parathyroid 
hyperplasia).

8. Conclusion and discussion

In this study, we proposed a framework, HPO2Vec+, to enrich node embeddings for the 

HPO leveraging heterogeneous biomedical and clinical knowledge resources. We used 

DECIPHER, OMIM, and Orphanet to generate enriched HPO embeddings, namely 

HPOEmb-DECIPHER, HPOEmb-OMIM, and HPOEmb-Orphanet. For the quantitative 

evaluation, we evaluated performance on link prediction amongst three aforementioned 

embeddings and our previously constructed HPO embeddings (HPOEmb-Original). For the 

qualitative evaluation, we analyzed different node embeddings through clustering 

visualization. We then conducted a use case study on PH and invited a domain expert to 

evaluate the quality of the inferred phenotypes generated by the different embeddings as 
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well as by conventional graph-based similarity measurements, given any annotated PH 

related phenotypes. Results indicated that HPOEmb-Orphanet outperformed both the other 

HPO embeddings and conventional similarity measurements in all evaluations. This study 

showed that by combining enriched non-inheritance edges derived from appropriate 

knowledge resources with HPO hierarchy and gene annotations, HPO2Vec+ is able to 

provide a generalized way to enhance HPO embeddings and better assist in detecting 

phenotypic relevance for deep phenotyping. Resources could be found at: https://github.com/

shenfc/HPO2Vec.

For the link prediction task in quantitative evaluation, although the HPO-DECIPHER graph 

had a higher average degree and density than the HPO-Original graph, the performance did 

not show much improvement over HPOEmb-Original, which may be due to the relatively 

small number of enriched phenotype-phenotype relationships derived from DECIPHER with 

only 316 pairs. The HPO-OMIM graph had the largest average degree and density but 

HPOEmb-OMIM did not achieve the best performance, which may be caused by the lack of 

differentiation of significance based on random walk due to the large number of phenotype-

phenotype relationships detected from the OMIM with a total of 116,751 pairs. The top five 

phenotypic nodes in the HPO-OMIM graph ranked by the number of phenotype-phenotype 

relationships are hypertelorism, depressed nasal bridge, malar flattening, frontal bossing, 

and downslanted palpebral fissures. Specifically, hypertelorism has 1,423 connections, 

depressed nasal bridge has 1,152 connections, malar flattening has 1,030 connections, 

frontal bossing has 1,005 connections, and downslanted palpebral fissures has 984 

connections. Such a large number of enriched connections resulted in high in-/out-degrees at 

the point of choosing next step during random walk algorithm, which could weaken the 

importance of existing associations. The large number of connections in HPO-OMIM is 

primarily due to the genetic oriented characteristics of OMIM. For example, osteogenesis 
imperfecta (type X) is recorded to have a strong relationship with gene SERPINH1 in 

OMIM. Therefore, HPO-OMIM associates this disease with nephrocalcinosis and another 

29 phenotypes solely based on this specific gene. As genetic information could be inherited 

by hierarchical superclasses or subclasses, more phenotypes could be considered to be 

related, which hampers the capability of detecting phenotypic relevance. As shown in 

Supplementary File 6, we found that with dimension size 128, HPOEmb-Orphanet achieved 

the similar performance compared to the usage of other options (i.e., 32, 64, and 256). In 

HPO-Orphanet, hypertelorism has the largest number of connections with other phenotypic 

nodes, a total of 943 connections, smaller than the 1,423 connections in HPO-OMIM. Since 

Orphanet tends to provide more descriptions from the perspective of clinical observations, 

there are relatively fewer overlaps between phenotypic nodes, which highlight significant 

phenotype-phenotype connections.

For the patient similarity measurement task, we also tested HPOEmb-Original, HPOEmb-

DECIPHER, and HPOEmb-OMIM on the same 10 rare diseases mentioned in section 7.2 

and found that the similarity scores generated by those three HPO embeddings were all 

above 0.99. However, similarities between patient groups across many combinations of 

totally different diseases (e.g., idiopathic pulmonary fibrosis patients and PH patients) were 

also above 0.99. This showed that the phenotypic embeddings generated by HPOEmb-

Original, HPOEmb-DECIPHER, and HPOEmb-OMIM could not make a differentiation. 
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Compared to these three embeddings, HPOEmb-Orphanet can represent appropriate 

distributed semantic representations among phenotypes leveraging both the entire HPO 

topological structure as well as disease-phenotype associations maintained in Orphanet.

Through our quantitative evaluation experiments, we learned that it is essential to understand 

the art of balancing the size of the enriched phenotype-phenotype associations for generating 

optimal HPO embeddings. One of the future studies would be to investigate how to filter out 

redundant noise from heterogeneous knowledge resources to extract phenotype-phenotype 

associations with high information gain. We also found HPOEmb-Orphanet did not 

outperform other conventional similarity measurements especially for patients with highly 

similar phenotypic characterizations. This may be because, after enriching HPO embedding 

with Orphanet, HPOEmb-Orphanet tends to find phenotypic similarity across multiple 

disease systems so that it is easier to detect inter-community patients (heterogeneous) rather 

than intra-community patients (homogeneous). Therefore, it is also important to tune the re-

visitation parameter p and the in-out parameter q to switch between BFS and DFS based on 

different use cases. We plan to investigate further on how to better utilize HPOEmb-

Orphanet for a more balanced capability to detect patient similarity.

With respect to the qualitative evaluation, for cluster visualization, the reason behind the 

frequent appearance of nodes with coarse granularity in HPOEmb-Original might be related 

to fewer non-inheritance edges amongst phenotypic nodes, which increases the chance of 

random walking through IS-A links. All the relationships between nodes maintained by the 

HPO-Original graph are represented as IS-A and different phenotypic nodes are only 

connected through subclass or superclass relationships [62]. Therefore, HPOEmb-Original 

only applied a biased random walk algorithm on IS-A relationships and the only way to find 

a neighbor is through the HPO hierarchical edges. Such a “vertical” searching strategy is 

more likely to include neighbor nodes with coarse granularity and thus infer that these nodes 

are relevant. For example, nephrocalcinosis is a subclass of abnormal renal morphology 
according to the HPO hierarchical structure and the cosine similarity provided by HPOEmb-

Original is also high (0.99). However, it would be more interesting to discover two 

phenotypes as relevant if they contribute to the same diseases rather than an obvious 

hierarchical inheritance relationship (e.g., nephrocalcinosi and decreased numbers of 
nephrons inferred by HPOEmb-Orphanet), which will increase the chance to detect more 

phenotypic relevance.

The same influence was observed in the use case study. For example, 7 of 10 inferred 

phenotypes for stage 5 chronic kidney diseases were high level nodes with coarse 

granularity: abnormality of the musculature of the lower limbs, abnormality of the phalanges 
of the 5th finger, abnormal macular morphology, abnormality of epiphysis morphology, 

abnormal tongue morphology, abnormality of phalanx of finger, and abnormality of muscle 
morphology. By adding more non-inheritance links between nodes, HPOEmb-DECIPHER 

inferred 5 out of 10 phenotypic nodes with coarse granularity, among which behavioral 
abnormality and abnormality of hair pigmentation were two phenotypes that were not 

inferred by HPOEmb-Original. With many non-inheritance edges being enriched, HPOEmb-

OMIM was able to infer 8 out of 10 leaf nodes with fine granularity, such as malar 
flattening, hydronephrosis, progressive intellectual disability, inguinal hernia, gingival 

Shen et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overgrowth, short foot, childhood onset and deeply set eye. HPOEmb-Orphanet achieved the 

optimal performance in both quantitative and qualitative evaluations. It inferred 6 out of 10 

leaf nodes with fine granularity, such as secondary hyperparathyroidism, polyarticular 
arthritis, synovitis, cellulitis, gangrene, and isothenuria, and 3 out of 6 were considered 

relevant for stage 5 chronic kidney disease.

According to the domain expert’s feedback, HPOEmb-Orphanet achieved the highest P@5 

and P@10, indicating that disease-phenotype associations in Orphanet best complement 

relationships in the HPO graph and enhance the clinical predictive power on detecting 

relevant phenotypes for embeddings. Although HPOEmb-DECIPHER and HPOEmb-OMIM 

were also able to enrich the HPO graph with new relationships and achieve better 

performance on quantitative link prediction task, they did not show much performance 

difference on inferring relevant phenotypes compared to HPOEmb-Original. Compared to 

the other three HPO embeddings, since the Orphanet annotates disease-phenotype 

associations based on comorbidities and signs/symptoms of rare diseases, it is easier to link 

different phenotypic characterizations from a clinical perspective. This shows that, 

distributed representations coming from clinical-oriented knowledge resources (e.g., 

Orphanet) can provide more evidence to assist in detecting similar phenotypic 

characterizations compared to biomedical-oriented knowledge resources (e.g., DECIPHER 

and OMIM). In addition, compared to HPOSim with seven conventional similarity 

measurements, since HPOEmb-Orphanet enriched the original HPO hierarchical relations 

with more clinical insights from Orphanet, most of the inferred relevant phenotypes are 

more than synonyms or in inheritance relationships, showing an increasing chance of 

detecting relevant phenotypes.

There are some limitations in our study. First, due to the limited size of annotations and a 

desire to maximize enrichment of the HPO, associations derived from different annotation 

files were solely based on co-occurrences between diseases and phenotypes. Although the 

annotations used were all manually curated, it may be important to limit to a smaller set of 

disease-phenotype associations. For example, there exist some studies utilizing association 

rule mining and odds ratio to further extract significant disease-phenotype associations from 

a large amount of EHR [39, 57]. Secondly, we used an old version of the HPO as well as the 

phenotype annotation file released in May 2018 to construct the HPO embeddings. We used 

a subset of 7,258 nodes and their relationships in the old version to be consistent with our 

prior work. We plan to apply our generalized framework HPO2Vec+ on the latest 

heterogeneous knowledge resources to update the HPO embeddings and assess the impact of 

versioning for our experiments as even 7,258 nodes and their relationships remain the same 

in the latest HPO version, annotations for HPO do increase in the latest phenotype 

annotation file (accessed May 2019) with 609 and 761 more diseases for OMIM and 

Orphanet, respectively.

In the future, we would like to leverage the large volume of clinical notes available at Mayo 

Clinic and mine essential disease-phenotype associations from clinical narratives to further 

enrich connectivity among the HPO nodes and thus enhance embeddings. In addition, we 

will upgrade HPO2Vec+ to integrate normalized entity nodes from different biomedical 

ontologies into the HPO to increase the size of the graph and to allow for larger HPO-based 
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heterogeneous embeddings to be generated and tested. Moreover, associations between 

phenotypes and common diseases will also be investigated, and phenotypic relevance 

measurements will be combined with our previously developed collaborative filtering rare 

disease recommendation system [63] to further transform phenotypic level analysis into 

patient similarity and disease similarity measurements. Regarding methodology, to 

generalize the 2-step random walk algorithm implemented by node2vec, we will seek to 

develop a k-step based biased random walk algorithm based on distances between any pair 

of nodes contained in the graph leveraging some previously developed distance-based 

knowledge discovery algorithms [64].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Node embeddings trained from heterogeneous biomedical knowledge 

resources.

• Enriched HPO embeddings can detect more associations between fine 

granularity nodes.

• Node embeddings trained from Orphanet showed the optimal performance.
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Figure 1. 
The workflow of HPO2Vec+
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Figure 2. 
An example of feature learning process for different graphs
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Figure 3. 
ROC curves and AUCs on link prediction performance for HPOEmb-Orphanet with six 

machine learning algorithms using Hadamard.
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Figure 4. 
Examples of phenotypic clusters in the visualization of four HPO embeddings using t-SNE
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Table 1.

Graph characterizations for four graphs

Graphs Number of Nodes Number of Edges Average Degree Density

HPO-Original 7,258 16,250 4,48 6.17E-04

HPO-DECIPHER 7,258 16,534 4.56 6.28E-04

HPO-OMIM 7,258 130,916 36.07 0.005

HPO-Orphanet 7,258 93,944 25.89 0.004
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Table 2.

Operations to generate edge embeddings.

Operations Definition

Hadamard [48] f(phi) * f(phj)

Average f phi   +   f ph j
2

L1 [49] |f(phi) − f(phj)|

L2 [50] |f(phi) − f(phj)|2
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Table 3.

AUCs for link prediction performance amongst four HPO embeddings with six machine learning algorithms 

using four edge embeddings operations. (The best AUC for each edge embeddings in bold.)

Operations Algorithms HPOEmb-Original HPOEmb-DECIPHER HPOEmb-OMIM HPOEmb-Orphanet

Hadamard DT 0.69 0.69 0.77 0.8

LR 0.76 0.76 0.9 0.92

SVM 0.72 0.73 0.84 0.85

RF 0.79 0.79 0.9 0.92

NB 0.73 0.73 0.82 0.85

MLP 0.72 0.72 0.84 0.86

Average DT 0.7 0.69 0.76 0.8

LR 0.79 0.79 0.9 0.92

SVM 0.75 0.75 0.84 0.86

RF 0.79 0.8 0.9 0.92

NB 0.75 0.75 0.84 0.86

MLP 0.75 0.74 0.84 0.86

L1 DT 0.67 0.66 0.58 0.57

LR 0.81 0.8 0.71 0.67

SVM 0.75 0.74 0.66 0.64

RF 0.8 0.8 0.73 0.71

NB 0.75 0.75 0.65 0.62

MLP 0.75 0.75 0.67 0.63

L2 DT 0.67 0.66 0.58 0.57

LR 0.8 0.8 0.7 0.66

SVM 0.74 0.74 0.64 0.61

RF 0.8 0.8 0.73 0.72

NB 0.74 0.74 0.63 0.6

MLP 0.75 0.74 0.65 0.63
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Table 4.

Average precision for link prediction performance on HPOEmb-Orphanet with six machine learning 

algorithms using four edge embeddings operations. (The best average precision in bold.)

Operations DT LR SVM RF NB MLP

Hadamard 0.74 0.93 0.82 0.93 0.82 0.82

Average 0.74 0.93 0.82 0.94 0.82 0.82

L1 0.54 0.69 0.6 0.74 0.59 0.59

L2 0.54 0.66 0.58 0.74 0.58 0.59
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Table 5.

Patient similarity measurement between HPOEmb-Orphanet and five conventional similarity measurements 

(The highest similarity score in bold.)

Rare diseases Shared same 
phenotypes per 

pairwise 
patients 
(average 

percentage)

HPOSim-
Lin

HPOSim-
ICE

HPOSim-
RL

HPOSim-
GIC

HPOSim-
Wang

HPOEmb-
Orphanet

ovarian cancer 6.67% 0.42 0.31 0.38 0 0.41 0.55

myelofibrosis 2.5% 0.25 0.17 0.28 0.11 0.23 0.33

primary sclerosing 
cholangitis

10% 0.42 0.29 0.36 0.05 0.46 0.56

b-cell lymphoma 50% 1 0.83 0.99 1 1 1

dilated 
cardiomyopathy

43.2% 0.97 0.72 0.91 0 0.96 0.95

laryngomalacia 43.3% 1 0.82 0.99 1 1 0.9

cryoglobulinemia 9.64% 0.09 0.06 0.08 0.04 0.4 0.56

esophageal cancer 5% 0.23 0.17 0.22 0 0.25 0.36

papillary thyroid 
carcinoma

43.3% 1 0.84 0.99 1 1 0.97

clear cell renal cell 
carcinoma

46% 1 0.82 0.99 1 1 0.96

Average 26% 0.64 0.5 0.62 0.42 0.67 0.71
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Table 6.

Average of P@5 and P@10 amongst four HPO embeddings. (The best score in bold.)

Metrics HPOEmb-Original HPOEmb-DECIPHER HPOEmb-OMIM HPOEmb-Orphanet

Average of P(@)5 0.25 0.25 0.21 0.81

Average of P(@)10 0.26 0.23 0.16 0.79
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Table 7.

Inferred relevant phenotypes for nephrocalcinosis, stage 5 chronic kidney disease, and calcium oxalate 

nephrolithiasis generated by HPOEmb-Orphanet and HPOSim with seven conventional similarity 

measurements. (Phenotypes in bold indicate they are relevant to a corresponding PH-related phenotype 

according to the domain expert’s feedback.)

Methods Nephrocalcinosis Stage 5 chronic kidney disease Calcium oxalate nephrolithiasis

HPOEmb-
Orphanet

1 Medullary 
nephrocalcinosis

2 Decreased numbers of 
nephrons

3 Hyperechogenic kidneys

4 Renal atrophy

5 Nephrosclerosis

1 Chronic kidney disease

2 Secondary 
hyperparathyroidism

3 Renal insufficiency

4 Polyarticular arthritis

5 Synovitis

1 Renal calcium 
wasting

2 Hypercalciuria

3 Parietal bossing

4 Obtuse angle of 
mandible

5 Parathyroid 
hyperplasia

HPOSim-
Resnik

1 Overbite

2 Abnormal glomerular 
filtration rate

3 Severe periodontitis

4 Premature loss of permanent 
teeth

5 Agenesis of incisor

1 Stage 5 chronic kidney 
disease

2 Chronic kidney disease

3 Renal insufficiency

4 Acute kidney injury

5 Glomerulonephritis

1 Calcium oxalate 
nephrolithiasis

2 Calcium 
nephrolithiasis

3 Nephrolithiasis

4 Uric acid 
nephrolithiasis

5 Xanthine 
nephrolithiasis

HPOSim-
JC

1 Ulnar claw

2 Central hypothyroidism

3 Mucopolysacchariduria

4 Abnormality of the 5th 
metacarpal

5 Percussion myotonia

1 Renal insufficiency

2 Stage 5 chronic kidney 
disease

3 Abnormal renal 
physiology Abnormality 
of the urinary system 
physiology

4 Abnormality of the 
kidney

1 Delayed calcaneal 
ossification

2 Mask-like facies

3 Abnormal atrial 
septum morphology

4 Nephrosclerosis

5 Schizencephaly

HPOSim-
Lin

1 Orthostatic tachycardia

2 Childhood onset short-limb 
short stature

3 Odontoma

4 Finger symphalangism

5 Acute necrotizing 
encephalopathy

1 Stage 5 chronic kidney 
disease

2 Chronic kidney disease

3 Renal insufficiency

4 Abnormal renal 
physiology

5 Abnormality of the 
urinary system physiology

1 Impaired pursuit 
initiation and 
maintenance

2 Thenar muscle 
atrophy

3 Decreased urinary 
urate

4 Urocanic aciduria

5 Elevated urinary 
catecholamines

HPOSim-
ICE

1 Foam cells

2 Abnormality of the fallopian 
tube

3 Increased mean platelet 
volume

1 Stage 5 chronic kidney 
disease

2 Chronic kidney disease

3 Renal insufficiency

4 Abnormal renal 
physiology

1 Irregular myelin 
loops

2 Fused cervical 
vertebrae

3 Precocious puberty in 
males
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Methods Nephrocalcinosis Stage 5 chronic kidney disease Calcium oxalate nephrolithiasis

4 Aplasia/Hypoplasia of the 
fibula

5 Congenital nonbullous 
ichthyosiform erythroderma

5 Nephrotic syndrome 4 Hemiparesis

5 Abnormality of 
forebrain 
morphology

HPOSim-
RL

1 Colon cancer

2 Abnormality of the seventh 
cranial nerve

3 Facial hypertrichosis

4 Progressive flexion 
contractures

5 Mandibular aplasia

1 Stage 5 chronic kidney 
disease

2 Chronic kidney disease

3 Renal insufficiency

4 Abnormal renal 
physiology

5 Nephrotic syndrome

1 Rib segmentation 
abnormalities

2 Cerebral calcification

3 Vacuolated 
lymphocytes

4 Increased urinary 
sulfite

5 Abnormality of 
brainstem 
morphology

HPOSim-
GIC

1 Short nail

2 Abnormal autonomic 
nervous system physiology

3 Leiomyosarcoma

4 Abnormal platelet 
membrane protein 
expression

5 Dilated vestibule of the 
inner ear

1 Stage 5 chronic kidney 
disease

2 Acute kidney injury

3 Chronic kidney disease

4 Renal insufficiency

5 Nephrotic syndrome

1 Hypermobility of 
distal interphalangeal 
joints

2 Duodenal atresia

3 Delayed peripheral 
myelination

4 Curved linear dimple 
below the lower lip

5 Spastic tetraplegia

HPOSim-
Wang

1 Ulnar claw

2 Corneal stromal edema

3 Central hypothyroidism

4 Mucopolysacchariduria

5 Abnormal blistering of the 
skin

1 Stage 5 chronic kidney 
disease

2 Chronic kidney disease

3 Renal insufficiency

4 Abnormal renal 
physiology

5 Acute kidney injury

1 Delayed calcaneal 
ossification

2 Radial metaphyseal 
irregularity

3 Mask-like facies

4 Abnormal atrial 
septum morphology

5 Nephrosclerosis
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