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Abstract

Microbial communities can perform a variety of behaviors that are useful in both therapeutic and 

industrial settings. Engineered communities that differ in composition from naturally-occurring 

communities offer a unique opportunity for improving upon existing community functions and 

expanding the range of microbial community applications. This has prompted recent advances in 

various community design approaches including artificial selection procedures, reduction from 

existing communities, combinatorial evaluation of potential microbial combinations, and model-

based in silico community optimization. Computational methods in particular offer a likely avenue 

towards improved synthetic community development going forward. This review introduces each 

class of design approach and surveys their recent applications and notable innovations, closing 

with a discussion of existing design challenges and potential opportunities for advancement.

Graphical abstract

Introduction

Microbial communities have long been recognized for the important impact they have on 

human health, agriculture, and industry. In the context of health, specifically, recent studies 
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have highlighted the key role that the human microbiome – the ensemble of microorganisms 

that live in and on the human body – plays in human physiology, immunity, development, 

and nutrition. For example, microbially-produced butyrate contributes to colonic health via 

its function as an important energy source [1] and anti-inflammatory agent [2]. Proper 

immune system development also relies on the gut microbiome, which modulates aspects 

such as lymphoid structure development and T cell differentiation [3,4]. Beyond human 

health, microbial activity is important to a range of industrial applications including 

microbially-mediated denitrification in wastewater treatment [5,6] and biofuel production 

[7,8]. These microbial influences also extend to agriculture, where bacteria support plant 

access to nitrogen [9,10] and phosphorus [11].

These myriad important functions suggest that microbial communities can serve as a prime 

target for medical, agricultural, and industrial advancement and have sparked recent interest 

in developing microbiome-based biotechnologies and therapeutics [12,13]. Specifically, 

microbiome engineering – the manipulation of naturally occurring microbial communities or 

the construction of synthetic communities to produce a specific function – is a promising 

tool for improving and innovating upon various clinical and industrial applications. Such 

attempts to engineer a given community can be done by various approaches. One simple 

microbiome engineering technique is the modulation of environmental conditions to effect 

changes in community function. This approach is frequently applied to optimize bioreactor 

communities, which are used for the production and degradation of various compounds. 

Indeed, previous studies have shown that bioreactor operators can improve community 

function by changing substrate composition [14–16], aeration [17], pH [14,18], and 

temperature [19]. Another simple approach is to modify a community by adding beneficial 

species or removing undesirable ones. Antibiotics are perhaps the most prevalent example of 

this approach in therapeutics, acting as a tool for removing pathogenic species. Probiotics, 

on the other hand, are an example of an additive tool, aiming to improve gut community 

function by introducing beneficial species [13,20,21].

Importantly, however, for microbiome engineering to realize its full potential, more 

sophisticated techniques must be employed to provide researchers with greater control when 

engineering microbial communities. This is especially important for the construction of 

synthetic communities that consist of a human-developed mixture of species. In the context 

of microbiome-based therapy, such synthetic communities could enable more precise 

modulation of the microbiome and bypass the negative side effects of antibiotics usage 

[22,23] or potential inconsistency of probiotic engraftment [24,25]. Synthetic communities 

can also be useful for industrial applications, where the novel coupling of microbial 

metabolisms can lead to the improved production or degradation of economically important 

compounds [26]. More generally, synthetic communities provide a more flexible and 

powerful engineering approach, allowing researchers to engineer the community as a whole, 

rather than being limited to the perturbation of an existing community. However, one key 

challenge in developing such synthetic communities is the identification of novel species 

compositions that optimize, or at least improve upon, desired functions. This task, which can 

be thought of as ‘rational design’ for community engineering, is far from trivial and various 

techniques have been developed and applied to address this need.
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In this review, we survey a variety of approaches for designing synthetic compositions with 

targeted functions, highlighting recent methodological innovations and applications. 

Importantly, we focus on methods for designing synthetic compositions (i.e., new mixtures 

of existing microbial species), rather than the use of genetically engineered microbes in 

synthetic compositions, which has been reviewed elsewhere [27–30]. We begin with 

approaches that rely on selective pressures and adaptation of community composition to 

reach synthetic compositions with optimized functions. Next, we cover methods that use 

microbial isolates from existing communities to formulate reduced, well-defined 

compositions that recapitulate the desired functions of the source communities. We then 

describe techniques that evaluate possible synthetic compositions in a combinatorial manner 

to identify desirable compositions. Finally, we describe the recently expanding range of 

computational tools that identify candidate compositions predicted to optimize a desired 

function. We conclude by discussing the challenges and potential opportunities that are still 

present in the field of synthetic community composition design. Since therapeutic 

community design studies are currently limited, we illustrate the application of certain 

design approaches using examples from industrial settings.

Community enrichment towards synthetic compositions

Naturally occurring microbial communities can carry out an amazing variety of functions, 

many of which could be harnessed towards clinical, industrial, and environmental 

applications. For example, the human gut microbiome can perform multiple metabolic 

processes that are crucial for the host, including harvesting energy from the diet [31], 

synthesizing important vitamins [32], and resisting pathogen colonization via competitive 

exclusion [33]. Indeed the transplantation of fecal microbiota from healthy donors has 

proven effective at treating several gastrointestinal disorders [13,34–36]. Similarly, different 

soil communities can degrade various pollutants, such as diesel fuel [37] and polycyclic 

aromatic hydrocarbons [38], or prevent non-biodegradable pollutants, such as uranium [39], 

from contaminating water supplies by catalyzing their conversion to insoluble forms. 

However, the efficiency at which naturally occurring communities perform these functions 

may not be sufficient for industrial settings, necessitating an optimization procedure that can 

build upon such communities and ultimately produce synthetic communities with enhanced 

capabilities. A common approach to achieve this goal is through enrichment – a community 

design methodology that aims to reach a community composition with optimal desired 

capabilities by subjecting an existing community to environmental conditions that favor 

species that can perform the target function. To date, enrichment has primarily been used for 

biotechnological application, including microbial fuel cells (MFCs), biopolymer production, 

and biohydrogen production, which will be described below.

MFCs have become a prime target of microbial community engineering due to both the 

promise of efficient microbially-mediated electricity generation and the wide range of 

substrates that they can utilize. This biotechnology was originally inspired by marine 

sediment communities that reduce various elements for energy in a manner that can be 

exploited to generate electricity [40–43]. Recent MFC applications can now utilize a wide 

range of substrates (depending on the specific microbial community employed) including 

glucose [44,45], acetate [44], lactate [46], cellulose [47,48], and ammonium [49]. Indeed, 
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MFCs can even consume various industrial waste products, enabling the coupling of 

electricity generation with waste degradation [50–53]. Though naturally occurring 

communities can already achieve these tasks, MFCs seeded with such communities often 

undergo compositional changes and exhibit gradual improvement in efficiency over time as 

the community adapts to operating in the MFC environment. Such changes were shown to 

include enrichment for species potentially related to current generation [54] and degradation 

of the supplied substrate [55], and the observed changes in community composition during 

extended operation of an MFC were demonstrated to be linked to concurrent increases in 

MFC efficiency [56].

Notably, while MFC communities experience inherent and appropriate selective pressures, 

other biotechnologies may require the application of artificial selection procedures to 

optimize community function. For example, to increase the yield and efficiency of microbial 

communities grown and harvested for biopolymers used in biodegradable plastics, 

researchers have applied an artificial feast-famine cycle [57,58]. This cycle selects for 

communities that store energy (in the form of biopolymers) more efficiently during the feast 

phase so that energy is available during the famine phase. This procedure can be further 

enhanced by introducing phosphate limitation, which can ensure that biopolymer production 

is advantageous while also reducing the growth of sub-communities that do not contribute to 

production [59]. Recent work has also demonstrated that photosynthetic communities can be 

enriched for biopolymer production without a famine step when oxygen is limited [60].

Artificial selection procedures have also improved microbial community hydrogen 

production, though in this context, artificial section is often applied as a pretreatment rather 

than as part of post-enrichment operating conditions. Such pretreatments include heat shock, 

acidic or basic incubation, freeze drying, and chloroform treatment [61]. Each of these 

pretreatments aims to enrich for hydrogen-producing species in the original community 

while excluding hydrogen consumers. Interestingly, though, the efficacy of different 

pretreatments is inconsistent across different studies, likely due to difference in the set of 

species present in the initial community [62]. Consequently, the discovery of new promising 

hydrogen-producing communities necessitates the re-evaluation of these enrichment 

procedures to identify the best pretreatment [63].

Community reduction from existing compositions

Some microbial community applications may impose specific restrictions on the species that 

can be present in the synthetic community. For example, microbiome therapeutics must meet 

various regulatory guidelines [64], and be devoid of pathogenic species so as to avoid 

inadvertently infecting the recipient [12]. However, it may not be possible to fully satisfy 

such restrictions using enrichment approaches due to the relatively broad and unspecified 

nature of environmental selection. For example, applying environmental conditions that 

inhibit the growth of pathogens may simultaneously negatively impact the growth of 

desirable species. This challenge can be addressed by a complementary design approach, 

referred to in this review as community reduction, wherein individual members of some 

initial community are isolated and characterized to rationally determine whether they should 

be used in the synthetic community. While some community members may be lost during 
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the isolation step [65], this approach provides better control over community composition 

and enables a more principled selection of desirable species and the explicit exclusion of 

undesirable ones.

This design paradigm has been used, for example, to reconstruct synthetic communities for 

treating Clostridium difficile infection (CDI). CDI is a gastrointestinal infection where C. 
difficile, a spore-forming, antibiotic-resistant enteric pathogen, dominates the gut 

microbiome, causing inflammation and diarrhea [66]. Previous clinical studies have 

demonstrated that CDI can be effectively treated with fecal microbiota transplantation 

(FMT) from a healthy donor [35]. This makes CDI a prime target for synthetic FMTs that 

could potentially recapitulate the same beneficial effects using a simplified, well-defined 

community composition. Indeed, an early study used a mixture of ten previously identified 

and isolated intestinal species to formulate a reduced synthetic CDI treatment composition 

[67]. In this study, all five patients treated with the synthetic composition exhibited marked 

improvement, similar to that observed in a patient treated with a donor stool sample. 

Surprisingly, one of these five patients was previously treated unsuccessfully with a donor 

stool transplant, suggesting that reduced synthetic FMT compositions may not be strictly 

inferior in efficacy to traditional FMTs. In a more recent study, a synthetic FMT 

composition was designed by isolating as many individual species as possible from a single 

donor’s stool [68]. These isolates were screened for pathogens, and the remaining 

nonpathogenic isolates were mixed to form a synthetic community. Both patients treated 

with this synthetic community composition responded well to treatment, and longitudinal 

sampling revealed notable engraftment of the species in the synthetic composition, though 

this declined over time.

The community reduction approach has also shown success when used for non-CDI 

therapeutic applications. For example, rather than targeting C. difficile, Caballero et al. 
investigated the role that gut species play in resisting Vancomycin-resistant Enterococcus 
(VRE) colonization in mice [69]. As part of this larger study, the authors isolated ampicillin-

resistant strains from mouse stool and examined which strains could confer VRE resistance. 

From these experiments, they identified a four-strain synthetic composition that both resisted 

VRE colonization and ameliorated pre-established VRE colonization. In another example, 

Atarashi et al. set out to design a synthetic composition that would induce Treg cells in the 

mouse colon [70]. The authors isolated species from a human donor’s chloroform-treated 

stool and found that a synthetic community composed of 17 isolates induced Treg cells in 

germ-free mice to a similar extent as the original chloroform-treated stool. The same group, 

as part of a larger study of intestinal Th17 cell induction, also used community reduction to 

successfully identify a synthetic composition of 20 human gut strains with notable Th17 cell 

induction in mice [71]. These examples illustrate the potential of community reduction to 

recapitulate various important gut microbiome functions, making it a promising tool for 

future microbiome therapeutics. One important caveat to note, however, is that community 

reduction inherently cannot design synthetic compositions with novel functions, thus 

restricting its wider applicability.
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Combinatorial evaluation of potential compositions

One of the unique benefits of synthetic communities is that they can include combinations of 

species that never co-occur in naturally occurring communities, potentially facilitating a 

wider range of metabolic capacities. Such synthetic communities may therefore be able to 

perform certain functions better than existing communities (or communities obtained via 

enrichment or reduction) or even perform entirely new functions. This is of particular 

interest for industrial applications such as the production of biofuel and other biological 

compounds [26]. Indeed, exploration of novel metabolic coupling in synthetic communities 

has already proved successful, demonstrating potential applications for the production of 

various resources including hydrogen [72], acetic acid [73–75], and lactic acid [76,77], as 

well as the degradation of undesirable substances including polycyclic aromatic 

hydrocarbons [78] and cellulose [79,80]. To go beyond a simple trial and error exploration 

approach for identifying such beneficial combinations, researchers can employ a more 

comprehensive process, referred to in this review as combinatorial evaluation, the systematic 

enumeration, construction, and evaluation of possible combinations of a set of species to 

identify the best-performing composition. The set of species used could, for example, 

consist of candidate species that are believed to contribute to the desired function.

When the number of species to consider is small, combinatorial evaluation can be performed 

in its ideal form, constructing and assessing all possible combinations of the species of 

interest. For example, to optimize the biodegradation of dyes in textile wastewater, 

researchers isolated three species from a textile wastewater plant and evaluated the 

degradation capabilities of all combinations of these three species [81]. In fact, due to the 

relatively small number of species considered, they were also able to evaluate additional 

compositions that varied in the relative abundances of each species.

Importantly, however, as the number of candidate species grows, the number of potential 

compositions grows exponentially, quickly rendering the evaluation of all possible 

combinations impossible. This setting calls for techniques that can drastically reduce the 

number of evaluated compositions. One such technique is fractional factorial design (FFD). 

In general terms, FFD aims to estimate the effects of, and potentially the interactions 

between, particular components of a system on a specified output [82]. These effect and 

interaction measurements then provide a basis for mathematically identifying an optimal 

parameterization of these components. In the context of microbial community design, FFD 

reduces the required number of evaluated compositions by carefully selecting a subset of 

potential community compositions that can isolate specific species effects or interactions of 

interest. One important caveat is that FFD achieves this reduction in evaluated compositions 

by assuming negligible effects of higher-order interactions. However, if later evidence 

suggests that one or more higher-order interactions have important contributions, a technique 

called foldover design can be applied to efficiently determine those specific interaction 

effects based on the findings of the original FFD experiment [82].

Microbial community function optimization via FFD has historically focused on factors 

external to the community. For example, various studies have used FFD to examine the 

impact of environmental factors such as substrate composition [15,37,83–85], pH 
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[83,84,86], temperature [83], and heavy metal presence [86] on specific community 

functions. More recent efforts, however, have used FFD, or FFD-like techniques, to 

investigate the potential of individual species effect estimation. A recent study, for example, 

has used random gut community subsets to estimate individual microbial contributions to 

host phenotypes [87]. Though these compositions were randomly selected (rather than 

specifically constructed to most efficiently separate individual contributions), the results of 

this study suggest that FFD could be applied in a similar manner for synthetic composition 

optimization by treating species as the components of interest. Indeed, one group has already 

applied FFD to develop wastewater treatment communities [88,89]. In this pair of studies, 

the authors used FFD to estimate the contributions of both individual species and 

interspecies interactions to total organic carbon (TOC) degradation [88] and substrate 

utilization rate [89]. They then employed this information to develop synthetic compositions 

with improved biodegradation capacities. Interestingly, both studies found that the optimized 

three- and four-strain communities performed better than a baseline mixture of all six strains 

evaluated, demonstrating the utility of FFD in synthetic community design.

Another technique for efficiently evaluating potential compositions is the definition of 

microbial consortia that will be treated as single units when enumerating possible species 

combinations (i.e., each combination will either include or exclude all species in a given 

consortium). This technique is particularly useful when a microbial consortium has 

previously demonstrated a desirable emergent function. For example, one group observed 

that a consortium of marine species, named the NPMC, could efficiently fix CO2 [90]. They 

later treated this consortium as a single candidate community member when using a 

combinatorial evaluation approach to develop a synthetic community for CO2 fixation [91]. 

Importantly, in addition to reducing the pool of available species to six candidate community 

members (one of which was the NPMC), this approach also allowed the researchers to 

include species that could not be isolated from the NPMC in the final community. In a 

separate study, the same group designed a synthetic community for lignocelluloytic enzyme 

activity by considering a synthetic consortium previously designed for cellulolytic activity 

[80] alongside several fungal strains [92]. These studies highlight the benefits of this 

approach, allowing researchers to evaluate designed communities with higher complexity 

without drastically increasing the number of evaluated compositions.

Computational model-based design of synthetic compositions

The design paradigms described above rely on various approaches for characterizing and 

assessing candidate community compositions, with techniques like FFD and consortium 

inclusion allowing researchers to reduce the set of compositions ultimately evaluated. 

Importantly, however, such approaches may still entail evaluating many compositions that a 
priori might be expected to perform the desired function poorly based on existing knowledge 

of microbial ecology, genomics, and metabolism. Indeed, databases such as NCBI [93] and 

IMG [94] provide access to an ever increasing number of sequenced microbial genomes, 

which when coupled with various gene annotation databases, such as KEGG [95] and 

MetaCyc [96], can be used to infer the functional capacities of individual microbial species. 

Design methodologies that could harness such information to pinpoint community 

compositions that are likely to successfully and efficiently perform the desired function 
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might dramatically reduce the time and labor needed for experimental evaluation. As a 

simple example, a collection of previously sequenced and genomically-annotated microbial 

species could be searched to identify species whose genomes confer the capacity to perform 

a certain function, even when these species have never been experimentally tested for that 

function in the lab. In this review, however, we will focus on more sophisticated 

computational methods for designing synthetic community compositions, primarily 

highlighting methods that aim to model community-level metabolism and to identify 

synthetic compositions that are predicted to perform the desired function well. We refer to 

this approach as computational model-based design.

Microbial community metabolism can be modeled with varying levels of complexity and 

using a variety of modeling frameworks [97,98]. A relatively simple form of metabolic 

modeling, often referred to as network-based or topology-based modeling, represents each 

species as a directed network where nodes denote metabolites and edges connect substrates 

to products, reflecting the set of metabolic reactions the modeled species can catalyze. With 

this framework, community metabolism can be modeled as a collection of such networks, 

where outputs from one network can be used as input for another. A recently introduced 

design algorithm, termed CoMiDA [99], has utilized this modeling framework to identify a 

minimal set of microbial species that collectively provide the enzymatic capacity required to 

synthesize a set of desired products from a predefined set of available substrates. To achieve 

this, the CoMiDA algorithm integrates a graph-theoretic representation of network flow with 

the set cover problem to consider all possible metabolic paths from substrates to products 

and to detect the minimal set of species that can catalyze these reactions. The obtained 

solution can provide a starting point for further synthetic community experimentation and 

development. Another design algorithm, termed MultiPus [100], utilizes a similar 

framework but aims to minimize the number of reactions and inter-microbial transfers, 

rather than the number of species.

While network-based models are easy to construct and analyze, they generally only account 

for the potential metabolic capacity of each species, rather than for the way each species will 

behave in a given environment. Accordingly, communities designed by CoMiDA or 

MultiPus are indeed guaranteed to have the metabolic potential to carry out the desired 

function, but may not actually perform this function in reality. Instead, the accurate 

estimation of microbiome behavior requires a detailed model of microbial metabolism, one 

that can predict the specific activity of each species, the flux through each reaction, the 

uptake and secretion rate of environmentally available metabolites, and the growth rate of 

each species in a given environment. One such modeling framework utilizes constraint-

based models and flux balance analysis (FBA) [101,102]. Such models can predict the 

steady state metabolic activity of a given species by identifying a set of metabolic fluxes that 

maximize microbial growth while adhering to a set of thermodynamic constraints [103,104]. 

Recent years have witnessed an explosion of studies that aim to extend constraints-based 

modeling from single species models to community models that can predict community-

level metabolism, species interactions, and community dynamics [105–108]. Building on 

these effort, a recent design method, termed FLYCOP [109], has utilized a previously 

introduced community modeling framework to evaluate synthetic composition function in 
silico. Importantly, the underlying modeling framework accounts for community dynamics 
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and spatial community organization, as well as metabolism-mediated species-interactions 

via changes to the shared environment [107]. Using this framework, FLYCOP explores 

potential synthetic compositions using a stochastic search procedure and identifies an 

optimized composition. Interestingly, FLYCOP is not restricted to optimizing metabolic 

activity, and can also consider a community’s growth over time. This allowed the authors to 

identify an initial synthetic composition of four cross-feeding strains that optimized 

community stability. This ability to optimize community stability could be extremely 

important for therapeutics, where treatment may require the community to function for a 

prolonged period.

Another modeling approach that can be useful for community design efforts, especially 

when stability is an important consideration, aims to model community ecological dynamics 

rather than community metabolism. These models capture how the abundance of each 

community member impacts the abundances of others over time [110,111]. Such models can 

be especially useful when interactions between species may not be mediated via metabolism 

or when detailed metabolic models are not available. In one example, a group optimized a 

synthetic composition for both a non-metabolic function and community stability through a 

combination of ecological modeling and experimental characterization of individual 

microbial activity [112]. In this case, the authors aimed to develop a community for Treg 

induction in the mouse colon that would persist over time. To achieve this, the authors first 

created a model of community induction effectiveness for a set of Clostridia strains using 

data on Treg induction contributions. They then simulated the community’s ecological 

dynamics using a previously published ecological model for those strains [110], and used 

their induction model to estimate Treg induction over time. This enabled them to predict each 

potential composition’s inductive effect and stability simultaneously. Such integration of 

different modeling framework may be a promising avenue for future expansion and 

improvement of computational design capabilities.

Synthetic composition design challenges and opportunities

The previous sections have surveyed recent applications of, and advances in, synthetic 

composition design. Importantly, however, there are still many daunting challenges, as well 

as exciting opportunities, for future development in this field. Clearly, each design approach 

described above has its own strengths and weaknesses that make it more suitable for certain 

applications and less appropriate for others and that impose a specific set of challenges and 

opportunities (Table 1). Enrichment can often work without detailed knowledge of 

individual species, instead relying on understanding the desired biological process in order 

to create a selection procedure. However, each novel application may require a completely 

new selection procedure, which could be challenging to develop [113]. Additionally, the 

time required for optimization can be extensive, with some experiments showing continued 

improvement over the course of months [58,114]. The community reduction and 

combinatorial evaluation approaches similarly avoid the need for detailed mechanistic data 

while also incorporating greater control over the specific species used. Unfortunately, due to 

our inability to culture a large fraction of microbial species [65], community reduction can 

suffer from a failure to isolate a set of species sufficient to recapitulate the original 

community’s function. Additionally, community reduction does not inherently optimize a 
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synthetic composition’s function, but rather only identifies a well-defined synthetic 

composition with the desired function. Combinatorial evaluation, on the other hand, can 

suffer from tractability issues regarding the number of compositions to evaluate, as 

described above. Finally, computational model-based design can drastically decrease the 

time and labor needed to identify optimal, or near-optimal compositions, but it requires 

detailed and thorough mechanistic and/or ecological data about the species being 

considered. Understanding these differences between approaches, as well as considering the 

available time, labor, and knowledge resources, will help future designers select the 

approach best suited for their specific application.

While each design technique offers unique benefits, the power and flexibility of 

computational model-based design, combined with the recent expansion of available 

genomic, metabolic, and other mechanistic data, render such computational design efforts an 

especially promising route toward rapid advancement in synthetic community design. For 

example, methods that can concurrently optimize multiple community functions could 

enable synthetic therapeutic communities to simultaneously treat diverse health concerns, 

such as metabolic deficiencies and pathogenic infections, while also ensuring community 

stability. There are however substantial obstacles that must be overcome for model-based 

design to reach its full potential. One key challenge is the inability of many currently 

modeling frameworks to directly incorporate knowledge of non-metabolic microbial 

interactions into models of community function, which recent evidence suggests can be 

important factors in shaping the human gut microbiome [115]. Ecological models that are 

based on observed community dynamics may only partially capture the outcomes of such 

interactions, and it is likely that the nuanced effects of key interaction mediators are ignored 

[116]. The potentially important functional impact of higher-order interactions (i.e., 

interactions involving multiple species in the community) [117–119] poses another 

challenge for computational methods, specifically when such methods evaluate only a subset 

of possible compositions. This calls for more sophisticated methods that efficiently search 

the space of potential compositions while adequately accounting for higher-order 

interactions, which would be especially advantageous.

Perhaps the most promising avenue for advancement in synthetic design might entail the 

integration of multiple design approaches such that the weaknesses of one approach are 

addressed by the incorporation of a complementary strategy. Indeed, there is already 

evidence that communities designed using one method can be further improved via 

orthogonal design techniques. The computationally-designed synthetic Treg induction 

community described above [112] was developed from a Treg induction community 

originally designed using community reduction [70]. In this case, community reduction 

identified a set of culturable species that could form a synthetic Treg induction community 

and computational design optimized the composition to improve its function. Pairing 

enrichment with combinatorial evaluation or model-based design could also offer potentially 

fruitful composite approaches. Specifically, the enrichment procedure could begin with 

compositions identified and pre-optimized by other design techniques, rather than 

environmentally sampled or randomly constructed initial communities. Such method 

integration could potentially reduce the time required to select for an optimal composition 

since the initial community is hopefully closer in composition to the final community that 
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enrichment would achieve. Additionally, this could help augment combinatorial evaluation 

or computational design, which may result in sub-optimal communities due to insufficient 

coverage of evaluated compositions or insufficient mechanistic and ecological knowledge 

respectively. Such innovative combinations of design approaches could enhance or enable 

the development of synthetic compositions that may have previously been challenging due to 

the various limitations of each individual approach.

Conclusions

In this review, we have surveyed various methods for designing synthetic microbial 

communities, highlighting their utility in formulating and optimizing communities for a 

wide variety of applications. These methods range from experimentally driven techniques, 

including enrichment, community reduction, and combinatorial evaluation, to computational 

approaches that employ mechanistic models of microbial function and ecological models of 

community dynamics. We have described various successful applications of these methods 

to both industrial and therapeutic synthetic community design, noting interesting and 

important observations made during the design process. Perhaps the most important of these 

observations is that optimized communities are often smaller and less complex than 

naturally occurring communities. Indeed, as in some cases mentioned above, simpler 

synthetic communities with fewer strains have achieved better performance than their more 

complex counterparts. This suggests that design methods will continue to play an important 

role in identifying the particular subcommunities that best achieve specific functions. Given 

this, we believe that continued advancement in all classes of design approaches will greatly 

expand the uses of, and improve the efficacy of, synthetic microbial communities.
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Highlights

• Synthetic microbial communities can be engineered for targeted functions

• Artificial selection has been employed to improve existing communities

• Several methods have been used to identify new compositions with desired 

functions

• Recent progress in computational model-based design has enabled novel 

design tools

• Computational and integrative approaches are promising avenues for 

advancement
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