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Abstract

Three-dimensional (3D) printing enables the production of personalized tissue-engineered 

products with high tunability and complexity. It is thus an attractive and promising technology in 

the pharmaceutical and medical fields. Printable and biocompatible hydrogels are attractive 

materials for 3D printing applications because they offer favorable biomimetic environments for 

live cells, such as high water content, porous structure, bioactive molecule incorporation, and 

tunable mechanical properties and degradation rates. However, most conventional hydrogel 

materials are brittle and mechanically weak and hence cannot meet the mechanical needs for 

handling and soft and elastic tissue use. Thus, the development of printable, high strength, and 

elastic hydrogel materials for 3D printing in tissue repair and regeneration is critical and 

interesting. In this review, we summarized the recent reports on high strength and elastic hydrogels 

for printing use and categorized them into three groups, namely double-network hydrogels, 

nanocomposite hydrogels, and single-network hydrogels. The reinforcing mechanisms of these 

high strength hydrogels and the strategies to improve their printability and biocompatibility were 

further discussed. These high-strength and elastic hydrogels may offer opportunities to accelerate 

the development of 3D printing technology and provide new insights for 3D-printed product 

design in biomedicine.
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Introduction

Three-dimensional (3D) printing is an advanced manufacturing technique in drug 

formulation, tissue repair and regeneration, and medical devices and disease models because 

of the demand for customized medical and pharmaceutical products [1]. Currently, 3D 

printing technologies can be divided into four major categories, namely vat 

photopolymerization-based printing, powder-based printing, droplet-based printing, and 

extrusion-based printing [2]. Vat photopolymerization-based printing technologies such as 

stereolithography (SLA), direct light processing (DLP), and continuous liquid interface 

production (CLIP) use photosensitive polymers exposed to light with a specific wavelength 

for solidification [3, 4]. The powder-based printing technologies, such as selective laser 

sintering (SLS), direct metal laser sintering (DMLS), selective laser melting (SLM), and 

electron beam melting (EBM), utilize localized heating to fuse the materials [5]. In droplet-

based printing technologies such as multijet modeling (MJM), laser-induced forward 

transfer (LIFT), and wax deposition modeling (WDM) liquid droplets are ejected onto a 

substrate to form a layer-by-layer construct [6–8]. Compared to the above three printing 

technologies, the extrusion-based printing is the most popular method in biomedicine for 

3D-printed scaffolds, especially for cell-laden 3D constructs, because a wide range of 

printable materials are available and easy to use [9]. The extrusion-based printing 

technologies including fused deposition modeling (FDM) and direct ink writing (WID) can 

extrude printable materials with/without cells from a nozzle and deposit filaments layer-by-

layer on a platform to form a 3D construct [10, 11].

The printable materials for tissue repair and regeneration are required to have adequate 

printability, sufficient mechanical strength, strong interfacial strength, and desirable 

biocompatibility. However, it remains challenging to obtain ideal printable biomaterials. 

Thus, it is very important to develop new printable biomaterials for 3D-printed constructs in 

tissue repair and regeneration. The biocompatible and biodegradable hydrogel inks are 

generally flowable liquids that can be easily extruded and rapidly solidified, using chemical 

or physical stimulations to maintain their shapes. They can also provide favorable 

environments for various cells that mimic the extracellular matrix (ECM), such as high water 

content, porous structure, and tunable mechanical properties and degradation. Most 

importantly, these hydrogel inks are capable of directly loading living cells and bioactive 

molecules [12–14]. Thus, they are highly attractive and promising biomaterials for 3D 

printing, especially for extrusion-based printing with/without cell loading. Most hydrogels 

used in 3D printing are natural or synthetic polymer-based, such as gelatin [15], fibrin [16], 

hyaluronic acid (HA) [17, 18], alginate [19], poly(ethylene glycol) (PEG) [20, 21], and 

methacrylated gelatin (GelMA) [22, 23]. However, these conventional hydrogels are weak 

and brittle, which makes it difficult for them to mimic the biomechanics of soft and elastic 

tissues such as skin, tendon, cartilage, skeletal muscle, and blood vessels. For example, the 

cardiac muscle is highly elastic and can contract and relax to pump blood approximately 2.5 

billion times in a 70-year lifetime [24, 25]. Cartilage exhibits high toughness and low sliding 

friction and is shock-absorbent [26]. The elasticity of blood vessels is critical for the vessels 

to withstand the pulsatile pressure and propagation of pulse waves. It is difficult to mimic 

these properties using these weak and brittle hydrogels. Additionally, these fragile hydrogels 
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are not good for handling and cannot retain shape well during and after 3D printing. Hence, 

it is desirable to develop high-strength, elastic, and biomimetic hydrogels to mimic those 

soft and resilient tissues. Recently, several hydrogels with high strength and elasticity for 

extrusion printing have been developed. In this review, we summarize three main categories 

of high-strength elastic hydrogels (Fig. 1), including double-network (DN) hydrogels, 

nanocomposite hydrogels, and single-network (SN) hydrogels, with their applications to 

extrusion-based 3D printing in the biomedical field. Other strengthened hydrogels like slide 

ring gels [27] are not reviewed because they are not popular. Additionally, the approaches to 

improve the printability and biocompatibility of these high-strength elastic hydrogels are 

also discussed.

Double-network hydrogels

DN hydrogels possess interpenetrating polymer network (IPN) structures, which exhibit a 

significantly higher mechanical strength than the conventional single-network (SN) hydrogel 

from each component. They have been extensively investigated for biomedical applications 

(Fig. 1A) [28, 29]. Generally, one network is stiff and brittle, and hence it can be fractured to 

dissipate energy, and the other network is soft and ductile, and hence it can sustain large 

deformation. This combination endows the DN hydrogel with a high toughness [26, 30]. For 

example, the typical DN hydrogels synthesized from poly(2-acrylamido-2-

methylpropanesulfonic acid) (PAMPS; first network) and polyacrylamide (PAAm; second 

network) can reach a compressive fracture stress rate at 17.2 MPa, which is more than 20 

times higher than those of SN counterparts (PAMPS or PAAm SN hydrogels) [28]. However, 

this type of DN hydrogel lacks elasticity because of the permanent, irreversible rupture of 

the covalent bond in the first network [31, 32]. Various physical networks with reversible 

noncovalent associations (such as ionic crosslinking, hydrogen bonding, and hydrophobic 

interaction) have been introduced into DN hydrogels for energy dissipation to obtain highly 

elastic and high strength hydrogels [33–36].

The metal ions can coordinate with corresponding ligands to form reversible metal ion-

ligand interactions, which have been used as physical crosslinkers to prepare high strength 

and elastic DN hydrogels [33, 37–40]. Calcium ion (Ca2+) crosslinked alginate/PAAm DN 

hydrogels can be stretched more than 20 times their initial length and reach a fracture energy 

of up to 9,000 J/m2 [33]. Inspired by the Ca-alginate/PAAm strategy, tough aluminum ion 

(Al3+) crosslinked alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogels and 

lanthanide ion (Ln3+) crosslinked alginate/PAAm hydrogels were also developed [35, 36]. 

Additionally, a DN protein hydrogel composed of a covalently cross-linkable protein (CCP)-

based elastic network and a zinc ion (Zn2+) crosslinked protein-based dissipating network 

possessed high strength, toughness, and stretchability [39]. The addition of a Zn2+ 

crosslinked protein resulted in maximal increase in tensile stress of approximately two 

orders of magnitude and a 14-fold increase in breaking strain compared to the CCP alone.

The hydrogen bonding interaction is also commonly involved in strengthening hydrogels 

because it is relatively stable in an aqueous environment, and its dissociation energy is low. 

But the association strength of multiple hydrogen bonds in the microdomains between 

polymer chains may be equivalent to a covalent bond [41]. A polyvinyl alcohol (PVA)/
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PAAm DN hydrogel was strong and tough because one of its two networks is from PVA 

crystallites induced by hydrogen bonds, which can reversibly undergo association/

dissociation and dissipate energy. This reversible network enhanced the toughness and self-

recovery property of the hydrogel [42]. Hydrogen bonds are also widespread in natural 

macromolecules, which have been used to prepare tough and elastic DN hydrogels [34, 43, 

44]. An agar/PAAm DN hydrogel was synthesized through a healing-cooling-

photopolymerization process. The agar with a thermoreversible sol-gel transition induced by 

hydrogen bonding served as the first network, and a photopolymerized PAAm was the 

second network [34]. The resulting agar/PAAm hydrogel had a high mechanical strength and 

an excellent shape-recovery property. The compression strength of the agar/PAAm DN 

hydrogel (38 MPa) was 10 times and 633 times higher than that of the PAAm hydrogel (3.8 

MPa) and the agar hydrogel (0.06 MPa), respectively. Furthermore, the tensile strength (1.0 

MPa) and toughness (9 MJ/m3) of the DN hydrogel were approximately 3.3 times and 4.7 

times higher than those of the PAAm hydrogel (0.3 MPa andl.9 MJ/m3), respectively.

Incorporating hydrophobic interactions can also increase the mechanical strength of the 

hydrogel [31, 45, 46]. A series of poly(dodecyl glyceryl itaconate) (PDGI)/PAAm hydrogels 

exhibited a markedly enhanced mechanical strength from 38 kPa (pure PAAm hydrogel) to 

600 kPa (PDGI/PAAm bilayer hydrogel) because of the lipid-like PDGI mobile bilayers and 

their reversible hydrophobic interactions [31, 46]. The supramolecular guest-host (GH) 

assembly between a host cavity (e.g., cyclodextrin) and a guest molecule that is 

predominantly formed by hydrophobic interactions has also been utilized to develop a self-

recoverable network for energy dissipation in the DN hydrogel system [35, 47].

Dynamic covalent bonds, such as imine, hydrazone, and the Diels–Alder click reaction, are 

significantly stronger than the physical networks described above, and they are also 

reversible [36, 48–52]. Hydrazine-modified elastin-like protein and aldehyde-modified HA 

were combined to form a DN hydrogel through the thermal assembly of the elastin-like 

protein and dynamic covalent hydrazone bonds between hydrazine and aldehyde [36]. This 

dual-crosslinked hydrogel demonstrated apparent shear-thinning and self-recovery 

properties. Its mechanical stiffness was approximately 1000 times higher than that of a pure 

HA hydrogel. Another DN hydrogel was designed by combining a Diels–Alder 

cycloaddition with a hydrophobic/hydrophilic interaction of Pluronic F127 [48]. which also 

showed improved mechanical and inherent self-healing properties.

The DN hydrogels with a high elasticity and mechanical strength have demonstrated their 

ability to be printed into complex 3D constructs (Table 1) [40, 53–57]. For example, a Fe3+ 

crosslinked sodium alginate/poly(acrylamide-co-acrylic acid) DN hydrogel with high 

toughness and strength and self-recovery was effectively 3D printed by optimizing the 

viscosity of the ink [40]. The combination increased the tensile strength and toughness of the 

hydrogel from 0.1 MPa and 1.05 MJ/m3 to 3.24 MPa and 25.10 MJ/m3, respectively. A 

hydrogel based on double networks of a dynamic hydrazone bonding interaction and a 

covalent photo-crosslinking (thiol and norbornene) network formed a 3D construct through 

extrusion printing. It had self-recovery and enhanced mechanical properties [54]. To further 

improve the rheological properties of the hydrogel inks for extrusion printing, some 

nanoscale materials such as nanoclay, cellulose nanocrystals, and graphene oxide were 
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incorporated [55–57]. A highly stretchable and tough PEGDA/alginate hydrogel was 

prepared by both photo-crosslinking and Ca2+ crosslinking. It had a fracture toughness of 

approximately 1500 J/m2, which was more than 7 times higher than that of a pure PEGDA 

hydrogel [55]. The nanoclay was then added as a rheology modifier for 3D printing. The 

PEGDA/alginate/nanoclay hydrogel ink was printed into various complex 3D constructs, 

which could be cellularized by infiltrating cells/collagen solution into the pores of the 3D 

printed PEGDA/alginate/nanoclay mesh with cell viability at 95% during 7 days of culture 

(Fig. 2). A sodium alginate/PAAm DN hydrogel filled with amino-graphene oxide (aGO) 

showed high mechanical strength, favorable toughness, thixotropic property, and 3D printing 

processability, where the aGO acted not only as a rheology modifier but also as a physical 

co-crosslinker to strengthen the alginate/PAAm DN hydrogel [57]. The aGO/alginate/PAAm 

hydrogel achieved a compressive stress and tensile strength of 33.2 MPa and 862.7 kPa, 

which were 47.4 and 35.2 times higher than those of the PAAm SN hydrogel, respectively, 

and 2.7 and 4.0 times higher than those of the alginate/PAAm DN hydrogel, respectively.

Nanocomposite hydrogels

In the past decades, nanocomposite hydrogels have become known as a new class of 

hydrogels that incorporates nanoscale materials into hydrated polymeric hydrogel s to 

improve their mechanical performance (Fig. 1B). A series of nanomaterials such as 

inorganic, polymeric, and metal/metal oxide nanomaterials have been physically blended or 

covalently conjugated with the polymeric network to generate nanocomposite hydrogels 

[58].

Inorganic nanomaterials include carbon-based nanomaterials (e.g., carbon nanotubes (CNT), 

graphene, graphene oxide (GO), C60, and nanodiamonds), and ceramic nanoparticles (e.g., 

hydroxyapatite, silica, silicate, calcium phosphate, and bioactive glass) [59–61]. Carbon-

based nanomaterials can not only strengthen the mechanical properties of the hydrogel but 

also offer it additional electroactive and optical functions. A family of CNT-GelMA hybrid 

hydrogels were designed for cardiac tissue engineering and bioactuators [62]. The addition 

of 0 to 5 mg/mL of CNT in GelMA led to an increase in electrical conductivity and 

increased the compressive modulus from 10 to 32 kPa. This CNT-GelMA nanocomposite 

hydrogel seeded with rat cardiomyocytes showed an increased spontaneous and synchronous 

beating rate (3 times higher than that of the cardiomyocytes-seeded GelMA hydrogel), a 

partial cell alignment, and well-developed F-actin cross-striations. Although physically 

blending the nanoparticles into a hydrogel is straightforward for processability and 

manipulation [63], the covalent bindings between polymer chains and nanoparticles can 

further transfer the applied force within the entire network, thus largely enhancing the 

mechanical strength and toughness of the hydrogel [58, 64]. “Grafting-to” approaches 

(reactions between the functional groups of polymers and GO) and “grafting-from” methods 

(such as atom transfer radical polymerization (ATRP), and free radical polymerization 

(FRP), and in situ Ziegler-Natta polymerization) have been used to graft polymer chains 

onto GO to achieve GO nanocomposite hydrogels with enhanced mechanical properties [65–

68]. On the other hand, most inorganic ceramic nanoparticles contain some minerals that 

naturally exist in the human body and can provide biofunctions to promote in vivo tissue 

growth. Hydroxyapatite nanoparticles were incorporated into a PEG hydrogel to form a 
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tough and elastomeric nanocomposite hydrogel, which supported osteoblast cell adhesion 

[69]. The addition of the hydroxyapatite nanoparticles to the PEG hydrogel resulted in a 

maximal 10-fold increase in toughness, an 8-fold increase in fracture strength, and a 3-fold 

increase in tensile modulus compared to the PEG hydrogel alone. Nanoclay such as 

Laponite (a synthetic silicate) has been used to improve the mechanical and rheological 

properties of a hydrogel due to the strong surface interactions between polymers and silicate 

nanoparticles. These interactions result in a physical crosslinking of polymer chains by 

silicate sheets, which allows the polymer chains to reversibly absorb and desorb on the 

nanosilicate surfaces and also makes the nanocomposite hydrogel become stronger and 

markedly shear-thinned [58, 70–72]. The ultimate stresses of Laponite/poly(ethylene oxide) 

(PEO) nanocomposite hydrogels increased from ~25 to ~40 MPa when the Laponite 

concentration was varied from 40% to 70%, and the nanocomposite hydrogel supported the 

growth and osteogenic differentiation of human mesenchymal stem cells [73].

Polymeric nanomaterials, especially dendritic polymers (dendrimers and hyperbranched 

polymers), were also used to reinforce polymeric hydrogels. Polyamidoamine (PAMAM) 

dendritic nanoparticles were incorporated into a collagen hydrogel to improve its mechanical 

stiffness and cell proliferation [74]. Additionally, these dendritic polymer-based composite 

hydrogels could be combined with controlled drug release functions [75, 76].

Metallic or metal oxide nanomaterials such as gold (Au), silver (Ag), iron oxide, titanium, 

and alumina can be combined with hydrogels to obtain nanocomposite hydrogels [77]. 

These metal/metal oxide nanocomposite hydrogels can not only possess enhanced 

mechanical properties but also exhibit additional functions such as conductivity, magnetic 

properties, or antimicrobial properties. A golden nanowire/alginate nanocomposite hydrogel 

demonstrated improved mechanical properties. Its electroactivity enhanced the electrical 

communications between adjacent cardiac cells and promoted the synchronous contraction 

of seeded cardiomyocytes with electrical stimulation [78]. The addition of Ag nanoparticles 

into an alginate/poly(vinyl alcohol) (PVA)/poly(N-vinyl-2-pyrrolidone) (PVP) hydrogel 

increased its compressive stiffness up to 115.2 kPa compared to PVA hydrogels (64.9 kPa) 

and Ag/alginate/PVA hydrogels (79.4 kPa), with an antimicrobial function against 

Escherichia coli [79].

Some nanomaterial-reinforced hydrogels were employed to be 3D printed (Table 1) [80–86]. 

A GelMA/nanosilicate hydrogel exhibited a 4-fold increase in compressive modulus and a 

10-fold increase in compressive stress when the nanosilicate content levels reached 2%, 

compared to the GelMA hydrogel alone (Fig. 3) [84]. This GelMA/nanosilicate hydrogel 

supported the viability of encapsulated preosteoblasts with 4 days of culture and were 3D 

printed into precisely designed scaffolds. In addition, a porous osteochondral scaffold was 

3D printed from a combination of poly(ethylene glycol) diacrylate (PEGDA), 

nanocrystalline hydroxyapatite, and PLGA nanospheres encapsulated with chondrogenic 

transforming growth factor-β1 (TGF-β1). The hydroxyapatite nanocrystals provided 

mechanical reinforcement, nanotexturization, and osteoconductivity [85]. This 3D-printed 

nanocomposite scaffold also supported human bone marrow-derived mesenchymal stem cell 

adhesion and growth, as well as osteochondral differentiation in vitro. A PEGDA/cellulose 

nanocrystal (CNC) hydrogel was also 3D printed into complex architectures, in which the 
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CNC from abaca plants provided the desirable strength and toughness for 3D-printable 

hydrogels [86]. The addition of 0.3 wt% CNC to the PEG hydrogel led to a two-fold 

increase in tensile strength (from 0.6±0.2 (PEG hydrogel alone) to 1.2±0.3 MPa) and a four-

fold increase in fracture energy (from 6±3 (PEG hydrogel alone) to 25±14 mJ) compared to 

the PEG hydrogel alone.

Single-network hydrogels

Compared with the DN and nanocomposite hydrogels, the SN hydrogel is more easily 

handled during printing because only a single polymer and a single stimulation for 

crosslinking are involved, which greatly simplifies the hydrogel-precursor preparation and 

gelation process. Most of the current SN hydrogels still possess two crosslinking network 

mechanisms although they use a single polymer component (Fig. 1C). One crosslinking 

network is an irreversible covalent crosslinking formed by the main polymer chains to 

provide a mechanical stable structure. The other network is a reversible covalent/

noncovalent interaction formed by segments or side groups/branches of the main polymer 

chains for energy dissipation to obtain elastic and high strength hydrogels. These various 

dynamic covalent/noncovalent associations include hydrophobic interactions, hydrogen 

bonding, ionic crosslinking, and hydrazone bonds [54, 87–90]. A high-strength and elastic 

SN hydrogel was prepared from the photopolymerization of oligo(trimethylene carbonate)-

poly(ethylene glycol)-oligo(trimethylene carbonate) (OTMC-PEG-OTMC) diacrylate, in 

which the OTMC blocks enabled the fracture stress and toughness to increase from 3.3±1.0 

MPa and 130.2±45.4 kJ/m3 (PEG hydrogel alone) to 5.2±1.3 MPa and 215.3±46.4 kJ/m3, 

respectively [87]. Its mechanical strength and elasticity were attributed to the hydrophobic 

interactions between OTMC moieties in the polymer chains, which could dissipate energy 

when force/stress was applied to the network. Similarly, our group designed a highly elastic, 

photo-crosslinked polycaprolactone-poly(ethylene glycol)-polycaprolactone (PCL-PEG-

PCL) diacrylate (PEG-PCL-DA) hydrogel [88], where the hydrophobic interactions between 

the PCL segments could dissipate energy, thus endowing the hydrogel with elasticity. The 

PEG-PCL-DA (PEG-PCL(24k)-DA) at a concentration of 40% had a tensile strength of 

34.5±2.5 kPa, which was 8.2 times higher than that of PEG-DA at the same concentration 

(4.2±1.2 kPa). The irreversible deformation of PEG-PCL(24K)-DA (~20%) was only half 

that of PEG-DA (~45%), indicating the greatly enhanced elasticity of the PEG-PCL-DA 

hydrogel compared to the PEG-DA. A dual-amide structure in each monomer can further 

amplify the hydrogen bonding between polymer chains, thus greatly enhancing the 

mechanical properties of the hydrogel. A photo-crosslinked, high-strength, and self-healable 

SN hydrogel synthesized from a monomer of N-acryloyl glycinamide (NAGA) with two 

amides showed a tensile strength of 160 kPa-1.1 MPa, an elongation at break of 600–1400%, 

and a Young’s modulus of 50–150 kPa[89]. A dual-crosslinked SN hydrogel, 

poly(acrylamide-co-acrylic acid) (poly(AAm-co-AAc)) with an ion Fe3+ addition exhibited 

high strength, toughness, and good self-recovery. In this hydrogel, the polymerization 

between AAc and AAm formed a covalent crosslinking network, and the interaction 

between Fe3+ and the AAc carboxyl groups produced the other ion-crosslinking network 

[90]. The Fe3+ crosslinking network resulted in a dramatic increase in tensile strength and 

toughness from 100 kPa and 0.4±0.06 MJ/m3 (poly(AAm-co-AAc) hydrogel alone) to 5.9 
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MPa and 27.8±1.01 MJ/m3 (poly(AAm-co-AAc) hydrogel/Fe3+), respectively. In some 

cases, a high-strength SN hydrogel can even be obtained using only a single dynamic 

crosslinking network. For example, high shear-thinning and self-recovery properties of the 

hydrogel were realized only through dynamic covalent bonds (hydrazone bonds) between 

hydrazide-modified HA and aldehyde-modified HA [54].

The SN hydrogels have been proved to be 3D printable (Table 1). The PEG-PCL-DA 

hydrogel was printed with various human cells with a cell viability of more than 83% after 7 

days of culture and was also able to be printed into complex patterns (Fig. 4) [88]. A series 

of methacrylated HA (MeHA)-based SN hydrogels with supramolecular interactions were 

prepared using a single stimulation of photo-crosslinking with dual networks, including one 

photo-crosslinking network from MeHA, and one network from a GH assembly between β-

cyclodextrin (β-CD) and adamantane (Ad) moieties on the MeHA polymer chains [91]. 

These SN hydrogels were printed into multilayer constructs and maintained stable for a 

month of incubation in PBS at 37 °C without a significant reduction in compressive modulus 

(from 20.8±2.0 to 16.7±1.9 kPa after 30 days, when the concentrations of MeHA-Ad and 

MeHA-β-CD were both 7.5%). Notably, some HA-based SN hydrogels with single dynamic 

crosslinking could also be printed due to their good shear-thinning properties [54, 92].

Methods to improve the elastic hydrogel printability and biocompatibility

Ideal hydrogel inks for extrusion-based 3D printing should meet the following requirements: 

(i) the inks should have good printability to enable a 3D structure with shape integrity and 

fidelity; (ii) the hydrogels can provide sufficient mechanical strength to support the printed 

structure after deposition; (iii) the interfacial strength between the printed layers should be 

high enough to prevent delamination; and (iv) the hydrogel components, reactions, and 

printing parameters should be safe for loaded cells and bioactive molecules [54, 93, 94].

Many studies have investigated how altering the components, concentrations, and printing 

parameters of hydrogel inks affects their printability [95–97]. For example, the printability 

of twelve commonly used hydrogels, such as collagen, chitosan, and alginate, were 

systematically evaluated [96]. It was found that the hydrogel inks with a high viscosity (e.g., 

chitosan, chitosan-collagen, and methylcellulose-hyaluronan) or inks with fast gelling 

properties (e.g., Extracel™ hydrogel, Extracel™ UV, and PEGDA) showed relatively high 

printing accuracy. A gelatin-based hydrogel was 3D printed with embryonic stem cells 

(ESCs) [95], and it was demonstrated that a higher gelatin concentration and a lower 

printing temperature resulted in a gelatin solution with a higher viscosity and better 

printability. Hence, increasing the viscosity and gelation rate of the hydrogel ink can 

improve its printability. A high viscosity can prevent the hydrogel inks from spreading out 

after deposition, and a fast gelling property can solidify the extruded hydrogel filaments 

quickly and preserve the printed shape [98, 99]. However, during printing, an increase in the 

viscosity of the ink causes increase in shear stress, the major cause of cell damage in 

extrusion-based cell printing [15, 100]. Additionally, highly viscous hydrogel ink may also 

cause handling and extrusion difficulties and fractured printing filaments, consequently 

compromising the printability of the ink [95, 96]. Thus, optimizing the viscosity of the 

hydrogel ink is one of the most crucial factors to be considered for the inks used for 
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extrusion-based 3D printing applications, especially for cell-laden extrusion-based 3D 

bioprinting. High shear-thinning hydrogel inks are appropriate candidates. Their viscosities 

decrease with increase in shear stress when pressure is applied to a nozzle, thereby 

facilitating their deposition. After the inks go through the nozzle, the shear stress is 

removed, and the viscosity of the ink increases rapidly to retain its printed shape [101, 102]. 

Reversible interactions between polymer chains in the hydrogels can not only provide 

desirable mechanical properties but also enhance shear-thinning to improve gel printability, 

as discussed above. For example, GH-assembled hydrogels have desirable shear-thinning 

properties because the GH interaction can be disrupted by shear stress during 3D printing 

and recover immediately after extrusion, which has been proved to limit ink collapse upon 

printing and result in thinner printed filament [91, 92, 103]. Nanoclays incorporated into 

hydrogel inks also improve their shear-thinning properties, as these polymer chains can 

reversibly absorb and desorb on the nanoclay surfaces under shear stress [55, 83]. 

Additionally, the dynamic hydrazone bonds can also enable ink shear-thinning during 

extrusion and maintain a high shape fidelity [54]. Thus, introduction of multiple reversible 

interactions into the hydrogel ink system is a promising way to improve the printability of 

the hydrogel ink and increase its mechanical strength and elasticity.

3D bioprinting advances tissue-engineered product manufacturing by depositing live cells, 

inks, and bioactive molecules layer-by-layer to form the desired cellularized constructs with 

specific structures [15]. However, it is challenging to maintain cells with high viability and 

functionality inside hydrogel inks during/after printing [104]. The biological requirements 

for hydrogel inks mainly include cytocompatibility and bioactivity [105]. For 

cytocompatibility, the ink and its degradation products should be nontoxic to cells in vitro 
and not cause any immunological response to the host in vivo. Most high-strength elastic 

hydrogels based on natural/synthetic polymers (such as PEG, PEO, HA, and GelMA) 

possess good cytocompatibility [36, 55, 62, 73]. Shear stress might be one of the main 

factors for cellular damage induced during the bioprinting process [15]. Altering the 

properties of the hydrogel inks or printing parameters, such as by increasing ink viscosity 

and extrusion speed or decreasing the nozzle diameter, can result in a shear stress increase, 

which would cause cell damage. However, the high viscosity of the ink is beneficial for 

shape fidelity as discussed above, and a nozzle with a small diameter can enhance the 

printing resolution. Both factors contribute to a high printing quality. Thus, there exists a 

balance between ink printability and cell viability. Some studies have evaluated ink 

properties and optimized printing parameters to achieve both good printability and high cell 

viability [95, 100, 106–109]. These studies demonstrated that the cell survival rate after 

printing is closely tied to the viscosity of the hydrogel ink and the shear stress produced 

during printing. Thus, improving the ink shear-thinning behavior and cell survival rate must 

be simultaneously considered. Additionally, the crosslinking methods are another important 

factor that cannot be neglected for cell survival. For photo-crosslinking, photo-initiators and 

light irradiation (such as UV) can induce toxicity to kill and damage cells during the printing 

process. Thus, selecting biocompatible chemicals and a safe light wavelength (such as 

visible light) and reducing the irradiation time would improve cell survival. Furthermore, 

incorporating bioactive molecules (e.g., hydroxyapatite and bioactive peptide) into the 

hydrogel is a feasible and simple way to greatly enhance the bioactivity of 3D-printed 
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hydrogels [82, 85, 91, 110, 111]. An alginate-bone formation peptide-1 (BFP-1) SN 

hydrogel was prepared by covalently conjugating the BFP-1, a 15-amino acid peptide 

derived from bone morphogenetic protein-7 (BMP-7), to alginate and then processed into a 

porous scaffold under Ca2+ crosslinking using printing [111]. This 3D-printed alignate-

BFP-1 scaffold supported the growth of human adipose-derived stem cells and promoted 

bone regeneration in a rabbit calvarial defect model. Because of the friendly environment of 

the hydrogel, the incorporated bioactive molecules could maximally maintain their 

bioactivity, which was not necessarily a significant concern. However, such molecule 

introduction may change the mechanical properties and shear-thinning behavior of the 

hydrogel, which must be optimized before printing.

Some of the high-strength elastic hydrogel inks have been printed into 3D constructs and 

then cultured with cells in vitro [55, 85, 91]. However, only a few were directly printed with 

live cells in the inks [88, 93]. A PEG-PCL-DA hydrogel was directly printed with various 

human cells and showed more than 80% cell survival after printing and 7 days of cell culture 

[88]. An alginate/methylcellulose DN hydrogel was printed with mouse fibroblast L929 cells 

and exhibited high cell viability (more than 95%) after 5 days of culture [93]. Some 3D-

printed high strength and elastic hydrogels, such as PNAGA/nanoclay, collagen/

hydroxyapatite, and alignate-BFP-1 hydrogels, have been used for bone regeneration in rat 

and rabbit bone defect models [83, 110, 111]. However, it is rarely reported that the 3D-

printed hydrogels were evaluated for mechanically active soft tissue repair in animal models, 

which may be attributed to the low mechanical strength and brittleness of the hydrogels. The 

cell-laden printed hydrogels and their in vivo functional evaluations were rarely seen 

compared to the solid polymer-printed scaffolds. It is expected that the development of high 

strength and elastic hydrogels will provide new opportunities to bridge such gaps.

Summary and future perspectives

Many studies aim to improve the strength and elasticity of the hydrogel materials to broaden 

their applications in 3D printing and tissue engineering. Compared to the natural or synthetic 

hydrogel systems that are fragile and weak, these new high strength and elastic hydrogels 

should have tremendous potential for biomedical applications, especially in constructing soft 

and elastic tissues such as skin, skeletal muscle, and blood vessels. The strategies for 

designing high strength and elastic hydrogels are to introduce multiple covalent/noncovalent 

interactions not limited to two networks into the hydrogel system. These general principles 

of hydrogel development also need to be further investigated.

To improve the printability of these high strength hydrogels, various nanoscale additives can 

be incorporated into the hydrogel to enable the shear-thinning behaviors suitable for 

extrusion-based 3D printing. These interactions can also increase the mechanical properties 

of the hydrogels and maintain the desired 3D shapes. Another consideration is the 

biocompatibility and bioactivity of the hydrogels. Selecting biocompatible material-based 

hydrogel systems (such as gelatin and PEG) and incorporating bioactive molecules into the 

hydrogel are reasonable and feasible solutions because these materials and methodologies 

have been extensively investigated and often used in research and clinics. However, 

improving the printability and printing parameters (such as speed, nozzle size, and pressure) 
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of the inks to maximally maintain cell survival remains a challenge for cell printing, which 

requires further optimization of these factors and development of new printing techniques to 

solve such problems.

Despite substantial progress, the availability of new types of high strength and elastic 

hydrogels remains limited. In addition, these elastic hydrogels need to be further evaluated 

for 3D printing and tissue repair use, and there are few in vivo studies evaluating their 

performance. In the future, through a deeper understanding of the general principles of 

elasticity and strengthening of the hydrogels, new chemical and physical structures are 

expected to be designed to produce a new generation of high strength and elastic hydrogels 

for 3D printing, including cell printing. The current elastic hydrogel systems can also be 

further optimized and modified to improve their bioprintability and performance in vitro and 

in vivo and broaden their biomedical applications in tissue repair and regeneration.
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AAc Acrylic acid

AAm Acrylamide

Ad Adamantane

AMPS 2-Acrylamido-2-methylpropanesulfonic acid

ATRP Atom transfer radical polymerization

BFP-1 Bone formation peptide-1

BMP-1 Bone morphogenetic protein-7

CNT Carbon nanotubes

CNC Cellulose nanocrystal

CD Cyclodextrin

CLIP Continuous liquid interface production

DGI Dodecyl glyceryl itaconate

DN Double network

DLP Direct light processing

DMLS Direct metal laser sintering

EBM Electron beam melting
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ELP Elastin-like protein

ECM Extracellular matrix

FRP Free radical polymerization

FDM Fused deposition modeling

GH Guest-host

GO Graphene oxide

GelMA Methacrylated gelatin

HA Hyaluronic acid

IPN Interpenetrating polymer network

LIFT Laser-induced forward transfer

MeHA Methacrylated hyaluronic acid

MJM Multijet modeling

NAGA N-Acryloyl glycinamide

NIPAM N-Isopropylacrylamide

PAMAM -Polyamidoamine

PCL Polycaprolactone

PVA Poly(vinyl alcohol)

PVP Poly(N-vinyl-2-pyrrolidone)

PEG Poly(ethylene glycol)

PEO Poly(ethylene oxide)

PEGDA Poly(ethylene glycol) diacrylate

SLA Stereolithography

SLS Selective laser sintering

SLM Selective laser melting

SN Single network

TMC Trimethylene carbonate

WDW Wax deposition modeling

WID Direct ink writing
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Statement of significance

Biocompatible and biodegradable hydrogels are highly attractive in 3D printing because 

of their desirable printability and friendly environment for loading bioactive molecules 

and living cells. The development of high strength and elastic hydrogels changes the 

conventional impression of weak and brittle hydrogels and provides new opportunities 

and inspirations for 3D printing and biomedical applications. In this review, we analyzed 

the hydrogel reinforcement mechanisms, summarized recent progresses in developing 

high strength and elastic hydrogels for 3D printing, and discussed the strategies to 

improve the printability and biocompatibility of the hydrogel inks.
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Fig. 1. 
A schematic illustration of high-strength and elastic hydrogels with three major reinforcing 

mechanisms: (A) a double-network hydrogel consisting of two polymer components-based 

networks, (B) a nanocomposite hydrogel consisting of nanomaterials and one polymer 

network, and (C) a single-network hydrogel consisting of a single polymer component 

network with additional reversible interactions.
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Fig. 2. 
A double-network hydrogel from PEGDA and alginate. (A) Illustration of the PEGDA/

alginate DN hydrogel with covalently (UV irradiation) and ionically (Ca2+) crosslinked 

networks. (B) 3D-printed samples with PEGDA/alginate/nanoclay hydrogel. The nanoclay 

addition is to improve the shear-thinning behavior. (C) A mesh printed with the PEGDA/

alginate/nanoclay hydrogel. (D) Live-dead staining and (E) viability of host human 

embryonic kidney (HEK) cells in a collagen hydrogel infused into the 3D-printed mesh. (F) 

Stretchability of a printed bilayer mesh from PEGDA/alginate/nanoclay hydrogel. (G) 

Compression and recovery of a printed pyramid. Reprinted with permission from [55]. 

Copyright 2015 Wiley-VCH.
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Fig. 3. 
A nanocomposite hydrogel from GelMA and nanosilicate. (A) Schematic preparation of the 

GelMA/nanosilicate hydrogels through covalently crosslinking with UV exposure. (B) 

Preosteoblast survival after encapsulation in the nanocomposite hydrogels was shown by 

live/dead staining. (C) 3D printed constructs from the GelMA/nanosilicate hydrogel showed 

desirable size and shape stability. Adapted with permission from [84]. Copyright 2015 

American Chemical Society.
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Fig. 4. 
A single-network elastic hydrogel from a triblock copolymer of PEG-PCL-DA. (A) The 

preparation of elastic PEG-PCL-DA SN hydrogel by covalently crosslinking under visible 

light. (B) The hydrogel can be compressed and twisted, and then recovered. (C-D) Cell 

viability of 3 different human cells in 10% elastic PEG-PCL(24K)-DA hydrogel through 7 

days of culture. (Scale bars = 500 μm). (E) Effect of shear stress on cell viability evaluated 

immediately after printing. (F) Complex patterns were printed using different needle sizes. 

Reproduced with permission from [88]. Copyright 2018 American Chemical Society.
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Table 1.

Summary of high-strength and elastic hydrogels for 3D printing

Double-network hydrogel

Hydrogel components Reinforcing factors # Application References

Alginate/Poly(acrylamide-co-acrylic 
acid) Ionic crosslinking

-* [40]

κ-Carrageenan/PAAm Ionic crosslinking Strain sensor [53]

HA-Aldehyde/HA-Hydrazide/
Norbornene-HA Hydrazone bond - [54]

Alginate/PEGDA/Nanoclay Ionic crosslinking - [55]

Alginate/Gelatin/Cellulose 
nanocrystals Ionic crosslinking

- [56]

Alginate/PAAm/amino-GO Ionic crosslinking - [57]

Nanocomposite hydrogel

PNIPAM/GO/Laponite Laponite/GO - [80]

HA/Gelatin/Au nanoparticles/ Au nanoparticles - [81]

Alginate/nanocellulose Nanocellulose Wound dressing [82]

PNAGA/Nanoclay Nanoclay Bone regeneration [83]

GelMA/Nanosilicate Nanosilicate Bone tissue 
engineering [84]

PEGDA/PLGA nanosphere/
Nanocrystalline hydroxyapatite

Nanocrystalline 
hydroxyapatite

Osteochondral tissue 
repair [85]

PEGDA/Cellulose nanocrystal Cellulose nanocrystal - [86]

Single-network hydrogel
PEG-PCL-DA Hydrophobic interactions - [88]

β-CD-MeHA/Ad-MeHA Guest-host interaction - [91]

*
No specific application is mentioned in the reference.

Acta Biomater. Author manuscript; available in PMC 2020 September 01.


	Abstract
	Introduction
	Double-network hydrogels
	Nanocomposite hydrogels
	Single-network hydrogels
	Methods to improve the elastic hydrogel printability and biocompatibility
	Summary and future perspectives
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1.

