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Abstract
Systemic inflammation is a marker of poor prognosis preoperatively present in
around 20%-40% of colorectal cancer patients. The hallmarks of systemic
inflammation include an increased production of proinflammatory cytokines and
acute phase proteins that enter the circulation. While the low-level systemic
inflammation is often clinically silent, its consequences are many and may
ultimately lead to chronic cancer-associated wasting, cachexia. In this review, we
discuss the pathogenesis of cancer-related systemic inflammation, explore the
role of systemic inflammation in promoting cancer growth, escaping antitumor
defense, and shifting metabolic pathways, and how these changes are related to
less favorable outcome.

Key words: Colorectal cancer; Inflammation; Prognosis; Cytokine; Chemokine; C-reactive
protein; Glasgow prognostic score; Cachexia; Metastasis
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Core tip: Increasing evidence indicates that systemic inflammation has wide-ranging
effects on colorectal cancer (CRC) pathogenesis, spanning from supporting primary
tumor growth by promoting tumor cell proliferation to helping angiogenesis by
enhancing the availability of pro-angiogenic molecules, to suppressing anti-tumor
immunity by recruiting anti-inflammatory cell types, and to shaping pre-metastatic
niches to promote subsequent metastasis. Systemic inflammatory biomarkers, such as
circulating acute phase proteins, cytokines, exosomes, and leukocytes, may help to
classify CRC patients into useful prognostic categories. However, further larger-scale
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studies are needed to determine optimal marker combinations for selecting patients to
receive specific treatments.
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INTRODUCTION
Interactions  between  tumor  and  host  are  important  regulators  of  tumor
progression[1-3]. These interactions are mediated by a complex network of cytokines,
chemokines, growth factors, and matrix remodeling enzymes[4], reaching beyond the
local tumor microenvironment and evoking systemic responses[1,5] that have an effect
on the course of the disease[6]. Therefore, cancer progression is not only determined by
factors  intrinsic  for  the  tumor,  but  is  largely  directed  by  multifaceted  systemic
processes[5].

Colorectal cancer (CRC) is the third most common cancer in the Western World,
and the second most common cause of cancer deaths[7]. Systemic inflammation is most
common in poorly differentiated and advanced CRC[8,9], but despite that it is also an
independent indicator of less favorable outcome in CRC [10,11]  and associated with
shorter survival[6,12,13]. In the case of resectable disease, 21%–41% of CRC patients have
increased serum levels of  acute phase proteins such as CRP (C-reactive protein),
indicating a systemic inflammatory response to the tumor[8,9,14].

Cancer-associated systemic inflammation is characterized by numerous alterations
in many organ systems distant from the site or sites of inflammation. Activation of
systemic  inflammatory  response  in  the  liver  results  in  a  rapid  increase  in  the
production of acute phase proteins, such as CRP[15].  Many disabling symptoms of
cancer patients, such as fever, anemia, fatigue and loss of appetite can be attributed to
the presence of systemic inflammation, and finally, metabolic changes such as loss of
muscle  and negative  nitrogen balance  manifest  in  cachexia,  a  cancer-associated
wasting syndrome[16].

Many markers of systemic inflammation are based on counts, ratios, or scores of
circulating white cells or acute phase proteins, such as neutrophil/lymphocyte ratio
(NLR) and Modified Glasgow Prognostic score (mGPS), a measure based on elevated
serum CRP level and decreased serum albumin level[17], but more recent studies have
also evaluated the significance of alterations in circulating cytokine, chemokine, and
growth factor milieu[18-20],  platelet  transcriptome[21],  or  the composition of  tumor-
derived extracellular vesicles[22]. Released by tumor cells or non-neoplastic cells in
tumor-elicited  host  reaction,  IL6  (interleukin-6)  is  one  of  the  most  important
mediators of systemic effects of inflammation, such as the production of acute phase
proteins in the liver[15] and in cancer cachexia[16].

In  this  review,  we  aim to  provide  an  overview of  the  factors  contributing  to
systemic  inflammatory responses  in  CRC,  of  their  downstream processes  in  the
responding tissues, as well as of the prognostic significance of systemic inflammatory
markers in CRC.

LITERATURE SEARCH
A literature search using PubMed was conducted to identify articles relevant to the
topic, using search terms: (“colorectal cancer” or “colon cancer” or “rectal cancer” or
“colorectal  neoplasia”)  and  (“systemic  inflammation”  or  “CRP”  or  “Glasgow
Prognostic Score” or “interleukin” or “chemokine” or “IL6” or “cytokine” or “CXCL*”
or “CCL*” or “cachexia” or “inflammation” or “premetastatic niche”). The last search
update was performed in March 2019. The titles and abstracts of the studies were
screened for studies relevant to the review topic. Additional relevant publications
were identified from the bibliographies of the included studies. Finally, this review
was based on 196 publications identified during the search.

WJG https://www.wjgnet.com August 21, 2019 Volume 25 Issue 31

Tuomisto AE et al. Systemic inflammation in colorectal cancer

4384



FACTORS UNDERLYING SYSTEMIC INFLAMMATION IN
CRC
The hallmarks of  systemic inflammation in cancer  patients  include an increased
production of proinflammatory cytokines and acute phase proteins that enter the
circulation.  Indeed,  many  proteins  regulating  the  function  of  immune  cells,  or
produced in large quantities by immune cells or in inflammatory conditions, have
been reported to show altered serum levels in CRC patients compared to controls
(Table 1). For example, when evaluating serum profiles of 13 cytokines, chemokines,
and growth factors in 116 CRC patients and 86 healthy controls, it was found that
serum levels  of  five of  these proteins showed statistically significant  alterations,
including increased serum IL6, IL7, CXCL8 (IL8), and PDGFB levels, and decreased
serum CCL2 levels[18].  Increased serum IL6 and CXCL8 levels  in CRC have been
reported in many studies, also summarized in two recent meta-analyses[23,24]. Further
highlighting the  presence of  systemic  inflammatory markers  in  the  sera  of  CRC
patients, in a systematic review and meta-analysis of diagnostic and prognostic serum
biomarkers of CRC[25], several of the most frequently reported diagnostic markers,
such  as  CRP,  VEGFA,  and  TIMP1,  were  related  to  the  systemic  inflammatory
response.

The  factors  driving  the  systemic  inflammatory  response  in  CRC  patients  are
complex  and  thereby  not  clear,  but  they  are  related  to  the  interaction  between
neoplastic  cells  and  the  surrounding  tumor  microenvironment  involving  in-
flammatory cells, fibroblasts, extracellular matrix, and vasculature[5]. While tumor
cells can variably express different cytokines and chemokines[26], immune cells and
fibroblasts are capable of producing many of these factors at much higher levels[27-29].

Tumor cells produce inflammatory mediators
Cancer cells express highly variable amounts of different cytokines, chemokines, and
growth factors in vitro[26,30].  These include IL6,  CCL2,  CXCL8, CSF1 (macrophage
colony-stimulating  factor,  M-CSF),  and  CSF2  (granulocyte-macrophage  colony-
stimulating factor, GM-CSF) (Table 2).  These molecules contribute to a variety of
functions related to systemic inflammation and cancer progression. For example, IL6,
a seminal proinflammatory cytokine, regulates the acute phase response through the
induction of acute phase proteins in hepatocytes and the differentiation of monocytes
to macrophages[31],  whereas CCL2 is essential for the recruitment of bone marrow
derived monocytes into peripheral organs and tumors[32].  CXCL8 is an important
proinflammatory  chemokine,  recruiting  granulocytes  but  also  promoting
angiogenesis[33]. Both CSF1 and CSF2 stimulate the proliferation, differentiation, and
survival of monocytes and macrophages, but while CSF1 is involved in M2-like anti-
inflammatory  macrophage  polarization,  CSF2  contributes  to  M1-like  pro-
inflammatory macrophage polarization[34].

Tumor-derived extracellular vesicles have recently gained more and more interest
as  potential  regulators  of  tumor  cell-immune  cell  interactions[35,36].  They  are  a
heterogeneous group of lipid bilayer-delimited particles released by tumor cells in the
tumor microenvironment and into the circulation[35,36]. They have been implicated in a
variety  of  functions  in  tumor progression,  such as  contributing to  angiogenesis,
vascular leakiness, regulation of immune responses, and reprogramming of stromal
recipient cells in subsequent metastatic areas[35,36]. Based on their size and contents,
they can be divided into subcategories, such as microvesicles, exosomes, ectosomes,
and oncosomes.

The contents of tumor-derived extracellular vesicles can be highly variable. For
example, they have been reported to contain immunosuppressive proteins such as
TGFB[37,38], protease enzymes such as MMP9[38], and growth factors such as IGF1[38].
Moreover,  nucleic  acids  (micro  RNAs,  miRNAs;  and  long  non-coding  RNAs,
lncRNAs)  can  be  found  in  tumor-derived  extracellular  vesicles,  and  these  can
contribute  to  tumor  cell  and  stromal  cell  proliferation  and  apoptosis,  and  the
regulation of immune responses against the tumor[35,36]. For example, exosome-carried
miR-21,  miR-29a,  and miR-222-3p have been associated with immunoregulatory
functions in various tumor types[39]. However, current knowledge of miRNAs in the
regulation of immune reactions is limited, and further investigation is required to
show  more  clearly  the  significance  of  exosome-carried  mRNAs  in  systemic
inflammatory reactions, relative to other factors[35].

Tumor-infiltrating immune cells produce inflammatory mediators
CRCs are infiltrated by a heterogeneous population of immune and inflammatory
cells, including proinflammatory cells, such as CD8+ cytotoxic T cells, type 1 CD4+

helper T cells (Th1 cells), NK cells, and M1 macrophages, anti-inflammatory cells such
as regulatory T cells (Treg), type 2 helper T cells (Th2 cells), M2 macrophages, and
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Table 1  Some systemic inflammatory markers showing altered circulating levels in colorectal cancer patients

Marker Function Detection method Samples Ref.

Acute phase proteins

CRP (C-reactive
protein)

↑ Acute phase protein ELISA serum Gunter et al[157]

HP (haptoglobin) ↑ Hemoglobin-binding
acute phase protein

ELISA serum Sun et al[158]

Ferritin ↓ Protein that stores iron meta-analysis serum Feng et al[159]

Cytokines and chemokines

IL6 ↑ Proinflammatory
cytokine

meta-analysis serum Xu et al[23]

IL7 ↑ Cytokine involved in
lymphocyte maturation

Multiplex magnetic
bead assay

serum Kantola et al[18]

IL17A ↑ Proinflammatory
cytokine

meta-analysis serum Yan et al[160]

IL22 ↑ Cytokine contributing to
tissue homeostasis

meta-analysis serum Yan et al[160]

IL23 ↑ Proinflammatory
cytokine

meta-analysis serum Yan et al[160]

CCL2 ↓ Recruitment of
monocytes and
macrophages

Multiplex magnetic
bead assay

serum Kantola et al[18]

CXCL5 ↑ Recruitment of
neutrophils

ELISA serum Kawamura et al[161]

CXCL8 (IL8) ↑ Recruitment of
neutrophils

meta-analysis serum Jin et al[24]

CXCL10 ↑ Recruitment of T cells
and NK cells

ELISA serum Toiyama et el [162]

CXCL16 ↑ Recruitment of T cells
and NK cells

ELISA serum Matsushita et al[163]

SPP1 (secreted
phosphoprotein 1)

↑ Leukocyte chemotaxis streptavidin–biotin
sandwich assay

serum Werner et al[164]

Protease enzymes and their inhibitors

MMP8 ↑ Protease enzyme also
cleaving cytokines

immunofluorometric
assay

serum Väyrynen et al[165]

MMP9 Degradation of
extracellular matrix and
regulation of neutrophil
action

ELISA serum Wilson et al[166]

TIMP1 ↑ Inhibitor of
metalloproteinases

meta-analysis serum Meng et al[167]

Growth factors and their inhibitors

ANGPTL2 ↑ Growth factor
contributing to the
regulation of
inflammation and
angiogenesis

ELISA serum Toiyama et al[168]

ESM1 ↑ Secreted angiogenic
factor

ELISA serum Jiang et al[169]

PDGFB ↑ Proliferation of
mesenchymal cells

Multiplex magnetic
bead assay

serum Kantola et al[18]

VEGFA ↑ Vascular growth factor ELISA serum George et el[196]

VEGFC ↑ Vascular growth factor ELISA serum Wang et al[170]

Markers of metabolism

glucose (fasting) ↑ Energy source G6PD serum Ferroni et al[171]

HbA1c Oxygen carrier HPLC Analyzer serum Ferroni et al[171]

insulin (fasting) ↑ Regulator of metabolism ELISA serum Ferroni et al[171]

ECM/endothelium-derived signaling proteins

Endostatin ↑ Angiogenesis inhibitor ELISA serum Kantola et al[173]

POSTN (periostin) ↑ ECM protein ELISA serum Ben et al[174]

VASTATIN ↑ Collagen VIII derived
matrikine

ELISA serum Willumsen et al[172]
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VCAM-1 (soluble) ↑ Multifunctional ELISA serum Toiyama et el[175]

Other signaling molecules

DAND5 ↑ BMP inhibitor ELISA serum Miao et al[176]

LRP (leptin) ↓ Regulator of metabolism ELISA serum Kumor et al[177]

Resistin ↑ Regulator of metabolism ELISA serum Kumor et al[177]

ECM: Extracellular matrix; G6PD: Hexokinase/glucose-6-phosphate dehydrogenase.

myeloid  derived  suppressor  cells  (MDSCs).  Other  cells  include  B  lymphocytes,
plasma  cells,  neutrophils,  eosinophils  and  mast  cells  that  co-operate  with  both
immunoenhancing  and  immunosuppressing  cells[40,41].  In  contrast  to  systemic
inflammatory response,  which is  associated with adverse outcome[12],  an intense
immune cell infiltrate, evaluated using hematoxylin and eosin stained sections[42-45] or
by immunohistochemistry using antibodies to specific immune cell markers[46-50], has
frequently been associated with improved survival in CRC, independent of tumor
stage  or  other  prognostic  parameters.  This  has  been  attributed  to  the  ability  of
immune cells to recognize transformed malignant cells and restrict tumor growth
(immunosurveillance hypothesis)[3,51]. However, some types of immune cells such as
Th17 cells, characterized by their production of IL17, a proinflammatory cytokine,
have been associated with poor survival[52].

Immune cells are considered an important source of cytokines, chemokines, and
growth factors in tumor microenvironment (Table 3), but a few recent studies have
shown an inverse correlation or lack of correlation between local immune response
and systemic inflammation.  A recent  study evaluated the relationships between
serum levels of 13 cytokines and the densities of eight types of tumor-infiltrating
immune cells (CD3+, CD8+, and FOXP3+ T cells, CD68+ macrophages, CD1a+ dendritic
cells, CD83+ dendritic cells, ELANE+ neutrophils, and tryptase+ mast cells) in a cohort
of 147 stage I–IV CRC patients. In that study, serum cytokines and tumor-infiltrating
immune cells in CRC represented entities with high intra-group correlations but
relatively weak positive inter-group correlations.  High macrophage density was
associated with increased serum CCL4 levels (which could reflect CCL4 production
by macrophages or recruitment of CCR5+ macrophages in tumors as a response to
CCL4) and high densities of CD3+ and CD8+ T cells were associated with increased
serum IL12 levels (which indicates that systemic IL-12 levels may contribute to or
reflect tumor-associated Th1 response). Yet another study reported a trend towards an
inverse relationship between local  inflammation and systemic inflammation in a
cohort of stage II colon cancer patients[53].

The reasons underlying the relative weakness of the observed associations between
tumor immune cell densities and serum levels of inflammatory markers are unclear.
However, more precise definition of immune cell categories may be needed to show
more  closely  defined associations  with  circulating inflammatory  mediators.  For
example, general macrophage markers, such as CD68, do not adequately reflect the
phenotypic diversity of macrophages, which can produce copious amounts of various
cytokines depending on their polarization status (Figure 1)[28,54]. Also other immune
cells, including T helper cells[55], B cells[56], neutrophils[57,58], produce different types and
quantities of cytokines and chemokines related to the type of their activation. Based
on this, for example, neutrophil categorization into proinflammatory N1 and anti-
inflammatory N2 subsets has been suggested[59], but it is not as well established as T
helper cell classification (Th1, Th2, Th17, Treg) or macrophage classification (M1 and
M2)[60].

Cancer-associated fibroblasts produce inflammatory mediators
Cancer-associated fibroblasts (CAFs) contribute to proliferative signaling, invasion
and  metastasis,  angiogenesis,  and  inflammatory  reactions[1,27].  Cancer  cells  and
fibroblasts may form a reciprocal positive feedback loop where tumor cells release
growth factors activating fibroblasts and, in return, fibroblasts secrete growth factors,
such as IGF1, which stimulate the proliferation of cancer cells. Recently, such an IGF1-
dependent  feedback loop,  promoting disease  progression,  was  demonstrated in
radiotherapy-activated CAFs in CRC mouse model and human CRC samples[61].

CAFs also produce several factors contributing to tumor inflammatory reactions
(Table 4). For example, two recent studies indicated that stromal fibroblasts are an
important source of IL6 in CRC[29,62]. Nagasaki et al[29] found that stromal fibroblasts
had higher IL6 production than tumor cells, and that colon cancer cells enhanced IL6
production by isolated stromal fibroblasts. Moreover, in a xenograft mouse model,
anti-IL6R antibody targeting stromal tissue showed greater anti-tumor activity than
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Table 2  Examples of inflammatory mediators reported to be expressed by colorectal cancer cells

Inflammatory mediator Function Detection method Samples Ref.

IL6 Proinflammatory cytokine IHC, RT-PCR FFPE CRC specimens Zeng et al[178]

CSF1 Proliferation, differentiation,
and survival of monocytes,
macrophages, and bone
marrow progenitor cells;
polarization of pro-tumor M2
macrophages

IHC FFPE CRC specimens Nebiker et al[179]

CSF2 Proliferation, differentiation,
and survival of monocytes,
macrophages, granulocytes
and bone marrow progenitor
cells, polarization of anti-
tumor M1 macrophages

IHC FFPE CRC specimens Nebiker et al[179]

CCL2 Recruitment of monocytes
and macrophages

IHC, WB CRC cell lines, FFPE CRC
specimens

Hu et al[180]

CXCL1 Recruitment of neutrophils IHC FFPE CRC specimens Oladipo et al[181]

CXCL8 Recruitment of neutrophils IHC, IF, WB CRC cell lines, FFPE CRC
specimens

Xiao et al[30]

CXCL8 Recruitment of neutrophils IHC FFPE CRC specimens Oladipo et al[181]

CXCL10 Recruitment of T cells and
NK cells

IHC, RT-PCR CRC cell lines, FFPE CRC
specimens

Jiang et al[182]

CXCL12 Recruitment of lymphocytes
and endothelial progenitor
cells

IHC FFPE CRC specimens Akishima-Fukasawa et al[183]

VEGFA Angiogenesis IHC FFPE CRC specimens Tuomisto et al[184]

CRC: Colorectal cancer; FFPE: Formalin-fixed paraffin-embedded; IHC: Immunohistochemistry; IF: Immunofluorescence; RT-PCR: Real-time polymerase
chain reaction; WB: Western blot.

anti-IL6R  antibody  targeting  xenografted  cancer  cells.  Huynh  et  al [62]  also
demonstrated that CAFs are a major source of IL6 in human CRC samples, and found
that IL6 production was associated with tumor promoting Th17 immune response. De
Boeck et  al[63]  performed secretome profiling of  CAFs isolated from human CRC
samples,  and found that in these experimental conditions, CAFs represent a rich
source  of  cytokines,  chemokines,  proteases,  and growth factors,  such as  CXCL8
involved in neutrophil recruitment, CCL5 involved in T cell recruitment, VEGFA
involved in angiogenesis, and various matrix metalloproteinases (MMPs) (Table 4).
MMPs play  an  important  role  in  extracellular  matrix  remodeling  during  tumor
invasion, but can also contribute to inflammatory regulation by, for example, cleaving
chemokines and cytokines[64,65].

TGFB signaling is a central immunosuppressive pathway in CRC progression[66,67].
Recently,  Hawinkels  et  al[68]  demonstrated  a  positive  feedback  loop,  where  the
interaction of tumor cells with resident fibroblasts results in hyperactivated TGFB
signaling in both cell types. In vitro, the treatment of CAFs with TGFB increased their
expression of  collagen-1,  PLAU (urokinase type plasminogen activator),  various
matrix  MMPs,  including  MMP2,  MMP3,  and MMP9,  tissue  inhibitors  of  matrix
metalloproteinases (TIMPs), and TGFB itself[68]. Collectively, these data support the
role of CAFs in the regulation of cancer associate inflammatory reactions.

The role of tumor necrosis in systemic inflammation
Necrosis,  an  uncontrolled  process  of  cell  death,  provokes  a  rapid  systemic
inflammatory response that is necessary for the removal of dead tissues from the body
by phagocytic cells like neutrophilic granulocytes and macrophages. Necrosis is also
prevalent and represents an indicator of less favorable outcome in colorectal, renal,
lung, and breast cancer[69-71]. Irreversible cell injury induces the systemic inflammatory
response, when dying cells release proinflammatory molecules into the extracellular
space,  and this is  further propagated when intracellular contents of  the cells  are
exposed[72].  In  trauma patients,  mitochondrional  damage-associated components
released to the circulation are able to elicit systemic inflammation[73]. Richards et al[74]

and  Guthrie  et  al[75]  found  that  increasing  amount  of  tumor  necrosis  in  CRC  is
associated with higher levels of markers of systemic inflammation, such as modified
Glasgow Prognostic  Score  (mGPS)  and serum IL6,  supporting the  role  of  tumor
necrosis in the induction of systemic inflammatory response. In addition, further
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Table 3  Examples of inflammatory mediators produced by different inflammatory cells

Cell type Inflammatory mediators Functions Ref.

M1 macrophage IL6, TNF, IL12A, IL12B, IL23A,
CXCL5, CXCL9, CXCL10, CXCL11,

Activation of inflammation Murray et al[178]

M2 macrophage IL10, CCL4, CCL13, CCL17, CCL18,
MMP1, TGFB1

Resolution of inflammation Murray et al[47]

Th1 lymphocyte IFNG, IL2 Activation of cytotoxic immune
response

Zhu et al[55]

Th2 lymphocyte IL4, IL5, IL10, IL13 Activation of humoral immune
response

Zhu et al[55]

Th17 lymphocyte IL17A, IL17F, IL21, IL22 Activation of neutrophils Zhu et al[55]

Treg lymphocyte TGFB Immunosuppression Zhu et al[55]

Plasma cell IL10, IL35. TNF, IL17A, CSF2 Both pro- and anti-inflammatory
mediators

Dang et al[156]

Neutrophil IL1A, IL1B, IL1RA, IL6, IL12 CXCL8,
CXCL9, CXCL10, CXCL11, CCL2,
CCL3, CCL4, TGFB1, VEGFA

Activation of inflammation;
depending on the type of
polarization, also anti-inflammatory
mediators are secreted

Tecchio et al[58]

Eosinophil IL1A, IL2, IL4, IL6, IL12, CXCL1,
CXCL8, CXCL10, CCL3, CCL5,
CCL11

Th2 type immune responses Davoine et al[185]

Myeloid derived suppressor cell IL10, TGFB Immunosuppression Bronte et al[87]

Mast cell IL4, IL5, IL6, TNF, CSF2 Th2 type immune responses Amin et al[186]

supporting the association between hypoxia and systemic inflammation, Bousquet et
al[76]  showed that hypoxic conditions are related to a reduction of reactive oxygen
species (ROS) production and increased damaged mitochondrial  DNA (mtDNA)
generation in vitro and that in rectal cancer patients with locally advanced disease, a
low  circulating  ROS  to  damaged  mtDNA  ratio  was  associated  with  systemic
inflammation. However, to our knowledge, the activation of systemic inflammation
by tumor necrosis has not been demonstrated in more experimental studies.

EFFECTS OF SYSTEMIC INFLAMMATION IN CRC
The effects of systemic inflammation span throughout the body; from primary tumors
to metastases, liver, bone marrow, gut, skeletal muscle, and other organs (Figure 2).
Recent  studies  have  shown  that  even  before  metastatic  disease,  the  systemic
inflammatory response promotes tumor progression by modifying the interactions
between neoplastic and non-neoplastic cells.  The concept of pre-metastatic niche
describes the process in which instead of being passive receivers of circulating tumor
cells, the tissues and organs of a future metastasis are actively modified before the
metastatic spread[77].

Liver
The liver participates in a large number of tasks, such as macronutrient metabolism,
blood volume regulation, detoxification of chemicals and several metabolites, and
regulation  of  immune responses[78].  The  liver  synthesizes  the  majority  of  serum
proteins, such as albumin, fibrinogen, clotting factors, transport proteins, complement
proteins, and lipoproteins. It maintains whole body homeostasis via metabolism of
carbohydrates, lipids, amino acids and vitamins, and it also functions as an immune
organ that mediates and regulates systemic and local innate and adaptive immunity.
Digestion and nutrient absorption in the gastrointestinal tract provide a constant
source of antigens (and a potential route for pathogens) that enter the body, and liver
sinusoids are thereby rich in antigen-presenting cells, NK cells and NKT-cells that
have  a  key  role  both  in  immunotolerance  and  in  the  immune  defense  against
pathogens. Liver mediates immunotolerance via complex interaction of hepatocytes,
liver nonparenchymal cells and immune cells[79].

One  of  the  best-known  mechanisms  of  the  liver  in  immunoregulation  is  the
production of acute-phase proteins in response to inflammation[15]. An acute-phase
protein has been defined as one whose plasma concentration increases (positive acute-
phase proteins) or decreases (negative acute-phase proteins) during inflammation.
Examples of positive acute-phase proteins include ceruloplasmin, CRP, haptoglobin,
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Figure 1

Figure 1  Phenotypic spectrum of macrophages. The illustration portrays the heterogeneity of immune cell main
categories in producing inflammatory mediators and growth factors based on their activation state. The image
illustrates the spectrum model of macrophage polarization based on the M1-M2 paradigm. Macrophage polarization
describes the type of macrophage activation at a given point in space and time[155]. The polarization can be viewed
as a continuum, with M1 (pro-inflammatory) and M2 (anti-inflammatory) as the extremes. The M1 and M2
designations are based on in vitro stimulation with either interferon gamma (M1) or interleukin 4 (M2) without
environmental influence[54]; in vivo, stimulation of macrophages with multiple cytokines may result in mixed
phenotypes. The image shows examples of transcription factors, cell surface molecules and inflammatory mediators
commonly associated with M1 and M2 polarization states. Similarly to macrophages, different activation states have
been associated with other immune cell types such as neutrophils[57,58], B cells[56], and plasma cells[156]. CCL: C-C
motif chemokine ligand; CD80: CD80 molecule; CD86: CD86 molecule; CXCL: C-X-C motif chemokine ligand;
GATA3: GATA binding protein 3; IL: Interleukin; IRF: Interferon regulatory factor; MHC II: Major histocompatibility
complex, type II; MMP1: Matrix metallopeptidase 1; MRC1; Mannose receptor C-type 1; pSTAT1: Phosphorylated
signal transducer and activator of transcription 1; STAB1: Stabilin 1; TGFB1: Transforming growth factor beta 1; TNF:
Tumor necrosis factor; VEGFA: Vascular endothelial growth factor A.

hepcidin,  and  SAA,  whereas  negative  acute-phase  proteins  include  albumin,
transferrin, transthyretin, and alpha-fetoprotein[15]. IL6 has been established as one of
the most important contributors to altered protein production in the liver during the
acute phase response. During response to infection, circulating IL6 levels quickly
increase, propagating inflammatory signaling throughout the body[80]. Notably, IL6 is
one of the cytokines showing the greatest increase in CRC patients relative to healthy
controls, and a further increase in metastatic disease compared to non-metastatic
disease[18].

IL6 also appears to be one of the main contributors to altered hepatic metabolism
during systemic inflammation. In a recent study, Flint et al[81] showed that, in a mouse
CRC  model,  tumor-induced  IL6  caused  systemic  metabolic  changes,  such  as
suppression of hepatic ketogenesis, which triggered marked glucocorticoid secretion
from the liver. In turn, this suppressed intratumoral immunity and caused failure of
anti-cancer immunotherapy. The IL6-ketogenesis suppression-glucocorticoid pathway
in the liver may represent one of the mechanisms by which immunosuppression in
tumor tissue, often observed in CRC patients with advanced cancer[40], is coupled with
changes in liver function and systemic metabolic changes.

Bone marrow
The immune system is governed by an appropriate balance of the lymphoid and
myeloid responses.  Hematopoietic  stem cells  (HSCs) reside in the bone marrow,
producing different  blood cell  lineages  in  an highly organized manner[82].  HSCs
respond rapidly to acute blood cell demand, such as injury or inflammation[83].  In
patients with solid cancers, hematopoiesis is abnormal, leading to altered composition
of hematopoietic progenitor cells, with myeloid-biased differentiation[84]. Accordingly,
the systemic inflammation in cancer patients is widely reflected in hematological
parameters, such as neutrophil-to-lymphocyte ratio, with neutrophil predominance
over  lymphocytes[85].  Together  with  CSF2,  and  CSF3,  IL6  is  among  the  leading
myelopoiesis-driving cytokines[86].

A prolonged demand for  myeloid cells  –  as  in  the case  of  a  severe  prolonged
infection – results in sustained myelopoiesis that is characterized by the emergence of
immature myeloid cells in the circulation and in peripheral tissues[87]. Many of these
cells have been reported to harbor immunosuppressive functions, and this group of
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Table 4  Examples of inflammatory mediators reported to be expressed by colorectal cancer associated fibroblasts

Inflammatory mediator Function Detection method Samples Ref.

IL6 Proinflammatory cytokine IF FFPE CRC specimens Nagasaki et al[29]

IL6 Proinflammatory cytokine LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

IL6 Proinflammatory cytokine ELISA CAFs isolated from human
CRC tissue

Zhang et al[187]

IL8 Proinflammatory cytokine ELISA CAFs isolated from human
CRC tissue

Zhang et al[187]

IL11 Anti-inflammatory cytokine qRT-PCR CAFs isolated from human
CRC tissue

Calon et al[188]

TGFB Immunosuppression,
inhibition of cytotoxic T cells
and Th1 cells

IHC, WB Cell culture (CRC cells,
fibroblasts)

Hawingkels et al[68]

CXCL5 Recruitment of neutrophils IHC, in situ hybridization FFPE CRC specimens Li et al[189]

CXCL8 Recruitment of neutrophils LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

CCL5 Recruitment of T cells LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

MMP1 ECM degradation LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

MMP2 ECM degradation LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

MMP3 ECM degradation LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

MMP9 ECM degradation LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

TIMP1 Inhibition of MMPs LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

TIMP1 Inhibition of MMPs IHC, in situ hybridization FFPE CRC specimens Joo et al[190]

TIMP2 Inhibition of MMPs LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

TIMP2 Inhibition of MMPs IHC, in situ hybridization FFPE CRC specimens Joo et al[190]

VEGFA Angiogenesis LC-MS/MS Cell culture (human cancer
associated fibroblasts)

De Boeck et al[63]

CRC: Colorectal cancer; ECM: Extracellular matrix; FFPE: Formalin fixed paraffin embedded; IHC: Immunohistochemistry; IF: Immunofluorescence; LC-
MS/MS: Liquid chromatography with tandem mass spectrometry; MMP: Matrix metalloproteinase; RT-PCR: Real-time polymerase chain reaction; WB:
Western blot.

myeloid  progenitor  cells  with  immunosuppressive  activity  has  been  named  as
myeloid  derived suppressor  cells  (MDSCs)[87,88].  In  the  peripheral  blood,  human
polymorphonuclear  MDSCs  are  CD11b+CD14-CD15+  and  monocytic  MDSCs  are
CD11b+CD14+CD15-HLADR-/low[87].  In addition to these gating criteria,  functional
suppression assays are required to precisely define MDSCs because of the overlap
between their phenotype with that of more mature monocytes and granulocytes[87].
Besides peripheral blood, the presence of cells with MDSC-like phenotype has been
reported in human CRC tissue[89].

The  mechanisms by which MDSCs mediate  immunosuppression and support
tumor  progression  are  complex  and  not  fully  understood[90].  However,  several
potential  key  pathways  include the  ARG1 pathway,  IDO1 pathway,  PD1/PDL1
pathway, and cytokine pathways (such as IL10 and IL6)[90,91] (Figure 3). L-arginine is
an amino acid that is consumed by T cells and many other immune cells. MDSCs are
characterized  by  high  production  of  ARG1,  which  metabolizes  L-arginine  to  L-
ornithine  and  urea,  resulting  in  L-arginine  depletion  and  thus  local  immune
suppression[92].  IDO1, expressed in a subset of MDSCs[87],  converts tryptophan to
kynurenine.  The  depletion  of  tryptophan  suppresses  activity  in  the  mTORC1
signaling pathway, leading to autophagy in T cells and immunosuppression[93]. PD1
and PDL1 form an inhibitory immune checkpoint mechanism restricting excessive T
cell activation[94]. The binding of PDL1, expressed on a subset of MDSCs[95], to PD1
causes T cell inhibition[96].

Besides myeloid immune cells,  such as granulocytes,  monocytes,  and MDSCs,
common myeloid progenitor cells  can differentiate into megakaryocytes and red
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Figure 2

Figure 2  Overview of the effects of systemic inflammation in colorectal cancer. The illustration portrays some of the molecules and phenomena considered
important in the pathogenesis of colorectal cancer associated systemic inflammation. Some markers showing increased circulating concentrations in colorectal cancer
patients are listed in the center. ALB: Albumin; CCL: C-C motif chemokine ligand; CXCL: C-X-C motif chemokine ligand; CRP: C-reactive protein; CSF: Colony
stimulating factor; FGF2: Fibroblast growth factor 2; Gln: Glutamine; HP: Haptoglobin; IL: Interleukin; MMP: Matrix metallopeptidase; OPN: Osteopontin; PDGF:
Platelet derived growth factor; SAA1: Serum amyloid A1; THPO: Thrombopoietin; TIMP1: TIMP metallopeptidase inhibitor 1; VEGFA: Vascular endothelial growth
factor A; VEGFC: Vascular endothelial growth factor C; vWF: von Willebrand factor

blood cells. However, instead of erythrocytosis (an increase in the number of red
blood cells in the blood), CRC patients frequently have anemia (a decrease in the
number of red blood cells or hemoglobin concentration), with a prevalence of 33%-
43% in resectable disease[97-99]. Colorectal tumors frequently bleed into the lumen[100],
explaining  the  iron  deficiency  associated  with  microcytic  anemia  in  a  subset  of
patients.  However,  systemic  inflammation  also  appears  to  be  one  of  the  main
determinants of low blood hemoglobin levels, and, in particular, normocytic anemia,
in CRC patients[97-99]. There are several collaborating mechanisms linking systemic
inflammation and anemia. First, hepcidin, an acute phase protein produced in the
liver,  limits  iron  absorption  from  small  intestine[101,102]  and  iron  availability  for
erythroid  cells [102].  Second,  pro-inflammatory  cytokines  directly  inhibit  the
proliferation of erythroid progenitor cells[103]. Third, proinflammatory cytokines also
inhibit  erythropoietin  synthesis  in  the  kidney,  resulting  in  decreased
erythropoiesis[104]. In addition to the main symptoms associated with anemia such as
fatigue, weakness, or shortness of breath, decreased availability of oxygen in anemic
cancer patients may contribute to systemic metabolic changes, such as alterations in
circulating and liver lipid levels, which have been shown to associate with hypoxia in
animal models[105].
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Figure 3

Figure 3  Overview of the potential pathways involved in the suppression of anti-tumor immunity by myeloid derived suppressor cells. ARG1: Arginase 1;
IDO1: Indoleamine 2,3-dioxygenase 1; IL10: Interleukin 10; MDSCs: Myeloid derived suppressor cells; PD1: Programmed cell death protein 1; PDL1: Programmed
death ligand 1; TGFB1: Transforming growth factor beta 1.

Platelets are anucleate cells generated in the bone marrow by the megakaryocyte.
They contribute to hemostasis but also to cancer pathogenesis by releasing growth
factors and cytokines[106]. Thrombocytosis (increased blood platelet count) is common
in  cancer  patients.  A  recent  prospective  cohort  study  in  the  United  Kingdom
investigated  1-year  cancer  incidence  in  40000  patients  aged  ≥  40  years  with
thrombocytosis[107].  In that cohort, 11.6% of males and 6.2% of females developed
cancer  in  1-year  follow-up,  with  CRC  and  lung  cancer  as  the  most  common
diagnoses[107]. The factors contributing to cancer-associated thrombocytosis include
CSF2, CSF3, FGF2 (fibroblast growth factor 2, basic fibroblast growth factor), IL6, and
THPO (thrombopoietin)[108]. In cancer patients with systemic inflammation, THPO
production in the liver is increased in response to IL6 and other cytokines, resulting in
increased platelet production[108,109].

Platelet granules contain a plethora of hemostatic factors (e.g., fibrinogen, VWF),
enzymes (e.g., MMP1, MMP2), growth factors (e.g., FGF2, PDGF, VEGF), chemokines
(e.g., CXCL8, CCL2, CCL3, CCL5), and cytokines (e.g., IL6, IL7), which are released on
platelet activation[110,111]. Reacting to the modified tumor vasculature, platelets can
release these factors in the tumor microenvironment, promoting tumor progression.
Although platelets lack nucleus, it has been demonstrated that the megakaryocyte
packs them with a protein translation machinery that includes ribosomes, initiation
and  termination  factors,  miRNAs,  and  template  messenger  RNAs  (mRNAs)[112].
Moreover,  recent studies have indicated that platelets are capable of exchanging
nucleic acids and proteins with tumor cells, leading to the concept of tumor-educated
platelets, i.e., platelets reflecting the properties of tumors and programmed to support
tumor growth[21,106]. Highlighting the alterations in platelet mRNA profile in cancer
patients, a recent study performed mRNA sequencing of 283 platelet samples and
found that  tumor-educated platelets  distinguished cancer  patients  from healthy
individuals  with 96% accuracy,  differentiated between six  primary tumor types,
including CRC, with 71% accuracy, and identified several genetic alterations found in
tumors, such as KRAS mutation[113].

Pre-metastatic niches
In CRC, metastasis is the major cause of death and the main target organ of metastasis
is the liver[114]. The understanding of the biological mechanisms of cancer metastasis is
still  limited.  During  the  past  few  decades,  it  has  been  established  that  before
metastasis, primary tumors can create a favorable microenvironment, a pre-metastatic
niche,  at  tissue  sites  for  subsequent  metastasis.  Among the  first  to  describe  the
phenomenon were Kaplan et al[115], who showed that in Lewis lung carcinoma and
melanoma mouse models, VEGFR1+ (vascular endothelial growth factor receptor 1)
bone marrow-derived progenitor cells homed to tumor-specific pre-metastatic sites
before the arrival of tumor cells,  supporting the subsequent metastasis.  The pre-
metastatic niches are composed of stromal components of the distant organs, bone
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marrow-derived cells including stromal cells and immunosuppressive immune cells,
and  tumor-derived  secreted  factors,  such  as  cytokines,  growth  factors,  and
extracellular  vesicles[5,116].  Liu  and  Cao  recently  proposed  that  six  hallmark
characteristics  of  pre-metastatic  niche  include  inflammation  supporting  a
proliferatory  microenvironment;  immunosuppression;  angiogenesis;  lymph-
angiogenesis; metabolic, stromal, and epigenetic reprogramming; and organotropism.

Several studies have demonstrated pre-metastatic niches in CRC mouse models.
Seubert et al[117] found that high systemic TIMP1 levels led to increased hepatic levels
of neutrophil chemokine CXCL12, resulting in recruitment of neutrophils to the liver.
Both inhibition of CXCL12-mediated neutrophil recruitment and systemic depletion
of  neutrophils  reduced  TIMP1-induced  increased  liver  susceptibility  towards
metastasis.  In  another  study,  Shao  et  al [118]  showed  that  CRC-derived  small
extracellular vesicles, also known as exosomes, are targeted to the liver where they
promote  the  formation  of  premetastatic  niche  and  CRC  metastasis.  Liver
macrophages,  Kupffer cells,  engulfed these exosomes and their cargo, leading to
Kupffer cell polarization toward proinflammatory phenotype and increased CSF3 and
IL6 expression. An inflammatory microenvironment was created and expression of
apoptosis  and  matrix  remodeling  related  genes  was  altered,  promoting  cancer
metastasis to the liver.

In a mouse model of pancreatic cancer, Lee et al[119] showed that IL6, produced by
tumor-adjacent non-cancerous fibroblasts, traveled to the liver and mediated STAT3
signaling in hepatocytes, resulting in the secretion of acute phase reactants serum
amyloid A1 and A2 (SAA proteins).  SAA proteins attracted immunosuppressive
myeloid cells to the liver, promoted hepatic stellate cell activation and production of
extracellular matrix, creating a metastasis-prone environment in the liver. This study
also reported enhanced hepatic SAA expression in CRC patients. All in all, more and
more  evidence  supports  the  role  of  systemic  inflammation  in  creating  a  tumor-
favoring environment in distant organs, enabling metastatic tumor cells to survive
after colonization.

Gut microbiome and systemic inflammation
The large bowel is the dwelling place for a vast set of commensal micro-organisms,
mainly  bacteria  and  fungi.  Collectively,  these  are  often  described  as  intestinal
microbiome or microbiota. Changes in the intestinal microbiota are observed in many
situations, including CRC and cachexia[120,121]. The interplay between microbiota and
the immune system has gained increasing interest, although our knowledge is still
very  limited.  Still,  recent  studies  have  shown that  the  gut  microbiota  is  able  to
modulate  patients’  responsiveness  to  PD1  and  CTLA4  blocking  immu-
notherapies[122,123].  Such findings give us a glimpse of the potential significance of
microbiota to its host.

In normal circumstances, intestinal bacteria are barred from entering the circulation
by  several  mechanisms,  collectively  known  as  the  intestinal  barrier.  Increased
permeability of the mucosa allows the entry of bacteria or bacterial components into
the  portal  circulation  and  subsequently,  the  liver,  where  they  elicit  a  succinct
response[124]. In mouse cancer models, strong correlation exists between circulating IL6
levels and intestinal permeability[121,125].  Animal models of colon cancer have also
indicated that areas adjacent to cancer present a disrupted barrier function[126,127], and
that systemic inflammation may induce endotoxemia often associated with cancer.
Besides bacteria or bacterial components, also bacterial metabolites such as short-
chain fatty acids (SCFAs) can modulate peripheral immune response.  SCFAs are
capable  of  shifting  the  effector  T  to  regulatory  T  cell  balance  by  facilitating  the
differentiation of regulatory T cells, and thereby limit the systemic inflammation [128].

Skeletal muscle, cancer cachexia, and amino acid metabolism
The international  consensus definition of  cachexia  is  an ongoing loss  of  skeletal
muscle mass – with or without loss of fat mass – that cannot be fully reversed by
conventional nutritional support and leads to progressive functional impairment[129].
Systemic inflammation is a key driving factor in cancer-associated cachexia[16]. In CRC
patients, the presence of systemic inflammation is associated with low skeletal muscle
mass[130,131]. Cachexia not only reduces patient’s quality of life and treatment response,
but it is also an indirect cause of death in about 20% of patients who eventually die of
cancer[16].

The ApcMin/+ mouse is a widely used animal model of CRC and CRC-associated
cachexia[132]. In this mouse line, the cachexia progression is associated with increased
plasma IL6 levels, and cachexia does not progress in the absence of IL6 despite the
presence  of  intestinal  and  colon  tumors [133].  However,  in  control  mice,  the
overexpression  of  IL6  does  not  induce  cachexia[133],  suggesting  that  IL6  is  an
indispensable but not sufficient factor in cancer cachexia pathogenesis.  Systemic
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inflammation in the absence of malignancy, such as in sepsis, is also able to induce
severe muscle wasting[134], verifying that active inflammatory reaction is an important
driver in muscle catabolism.

Active  immune  response  is  a  highly  energy-consuming  process[135,136].  Thus,
activation of systemic inflammation in cancer patients requires the utilization of
stored energy and nutrients, especially as anorexia is a common symptom in cancer
patients  with  advanced  disease.  A  recent  study   investigated  the  relationships
between systemic inflammatory markers and circulating levels of nine amino acids in
336 CRC patients and found that, of the studied factors, systemic inflammation was
the main determinant of low serum glutamine level in these patients[137]. Glutamine is
the most  abundant  amino acid in the body,  and circulating glutamine is  mainly
derived from skeletal muscle, functioning as an inter-organ carbon, nitrogen and
energy transporter to be utilized by rapidly dividing cells such as enterocytes and
lymphocytes[138]. In healthy humans, circulating glutamine is mainly consumed in the
gut  and  kidney[138].  Tumor  tissue  can  either  consume  or  produce  glutamine,
depending on tissue of origin and oncogene activation[139]. Patients with sepsis have
decreased  plasma  glutamine  levels [140]  resulting  from  increased  glutamine
consumption[141].  Mouse  studies  have  shown  that  tumor  induces  a  decrease  in
circulating  glutamine  levels,  stimulates  glutamine  release  and  decreases  the
glutamine content in skeletal  muscle[142].  Accordingly,  it  has been suggested that
altered interorgan glutamine homeostasis in cancer patients is an essential driver in
cachexia.

PROGNOSTIC SIGNIFICANCE OF SYSTEMIC
INFLAMMATION AND ASSOCIATED PARAMETERS IN CRC
The prognostic and predictive classification of CRC has mainly been based on tumor
stage[143,144].  However,  each  patient  and  tumor  is  unique[145],  and  a  more  exact
classification of the disease based on the features of the tumor and host could enable
more personalized treatments. Indeed, patient selection for anti-EGFR treatment for
metastatic CRC is currently based on RAS and BRAF mutation testing[146], and anti-
PD1 antibody treatment  has  been approved for  metastatic  CRC with  high-level
microsatellite instability or mismatch repair deficiency[147]. Considering the impact of
systemic inflammation in CRC progression, systemic inflammatory markers represent
potential additional prognostic and predictive parameters (Table 5).

Acute phase proteins, including CRP, albumin, and their composite mGPS (mGPS0:
serum CRP ≤ 10 mg/L and serum albumin ≥ 35 g/L or < 35 g/L; mGPS1: serum CRP
> 10 mg/L and serum albumin ≥ 35 g/L; mGPS2: serum CRP > 10 mg/L and serum
albumin  <  35  g/L),  are  among  the  best-studied  systemic  inflammation-based
prognostic  parameters  in  CRC[10].  Numerous  studies  have  reported  that  high
circulating  CRP levels,  low albumin  levels  and  high  mGPS are  associated  with
adverse patient outcome (Table 5). In addition, blood differential leukocyte count
parameters have well-established prognostic value in CRC. Myeloid cell proliferation,
associated  with  systemic  response  to  CRC,  leads  to  an  increase  in  circulating
neutrophil and monocyte counts, relative to lymphocytes, which has been associated
with  adverse  outcome[148,149].  Indices  based on relative  counts  of  these  cell  types
represent promising prognostic parameters. Preoperative anemia, reflecting systemic
inflammation  in  a  subset  of  patients,  has  also  been  associated  with  adverse
outcome[150].  Platelet  count  and  platelet-to-lymphocyte  ratio  can  also  provide
potentially clinically relevant prognostic information[151-153], with high platelet counts
associated with poor survival.  In  future,  more sophisticated analyses  of  platelet
composition and function, such as platelet RNA sequencing, may complement these
parameters to provide more nuanced information of the status of platelet activation
and education during systemic inflammation[21].

Several studies have indicated that circulating cytokine concentrations provide
prognostic information in CRC. Recently, using proximity extension assays, Birgisson
et  al[20]  analyzed  plasma  levels  of  92  oncology-related  proteins,  including  an
assemblage of cytokines, chemokines, and growth factors, in a cohort of 261 stage II-
IV CRC patients. Many of these molecules, including CSF1, CXCL10, CXCL9, HGF
(hepatocyte growth factor), IL6, osteoprotegerin, PGF (placental growth factor), and
VEGFA, were significantly associated with survival in univariable analysis, and of
these, osteoprotegerin was the best in predicting survival in multivariable survival
models[20]. Analyzing multiple markers in one sample may improve the prognostic
power relative to measuring the levels of a single marker. However, caution needs to
be employed when interpreting the results of such studies because of the well-known
risk of  multiple  hypothesis  testing,  necessitating confirmation of  the findings in
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Table 5  Selected systemic inflammation based prognostic markers in colorectal cancer

Marker Ref. Study design Study population Outcome, HR

Acute phase proteins

CRP Woo et al[191] Meta-analysis, 21 studies 3934 CRC patients, stage I-II OS, HR 2.04 (1.45–2.86); CSS,
HR 4.37 (2.63–7.27); DFS, HR
1.88 (0.97–3.67)

Albumin Gupta et al[192] Systematic review, 12 studies 3644 CRC patients, stage I-IV Low albumin associated with
worse survival (no meta-
analysis conducted)

Albumin Ghuman et al[193] Case-case study within a
prospective cohort study
(AMORIS)

4764 CRC patients, stage I-IV OS, HR 0.57 (0.29–1.14); CSS,
HR 0.36 (0.16–0.85)

mGPS Lu et al[194] Meta-analysis, 41 studies 9839 CRC patients, stage I-IV OS, HR 2.20 (1.88–2.57); CSS,
HR 1.86 (1.59–2.17)

HP (haptoglobin) Ghuman et al[193] Case-case study within a
prospective cohort study
(AMORIS)

4764 CRC patients, stage I-IV OS, HR 1.28 (1.08–1.51); CSS,
HR 1.17 (0.95–1.45)

Blood cell count parameters

Neutrophil-to-lymphocyte
ratio

Li et al[148] Meta-analysis, 16 studies 5897 CRC patients, stage I-IV OS, HR 1.66 (1.36–2.02); CSS,
HR 2.27 (1.75–2.96); DFS, HR
1.54, (1.18–2.02)

Lymphocyte-to-monocyte
ratio

Tan et al[149] Meta-analysis, 15 studies 11783 CRC patients, stage I-
IV

OS, HR 0.57 (0.52-0.62); CSS,
HR 0.55 (0.32-0.95); DFS, HR
0.77 (0.70-0.84)

Platelet count Rao et al[152] Meta-analysis, 9 studies 3413 CRC patients, stage I-IV OS, HR 2.11 (1.68-2.65); DFS,
HR 2.51 (1.84-3.43)

Platelet-to-lymphocyte ratio Tan et al[153] Meta-analysis, 15 studies 3991 CRC patients, stage I-IV OS, HR 1.53 (1.24–1.89), DFS,
HR 1.68 (1.07–2.62)

Anemia Wilson et al[150] Meta-analysis, 12 studies 3588 CRC patients, stage I-IV OS, HR 1.56 (1.30-1.88), DFS,
HR 1.34 (1.11-1.61)

Cytokines, chemokines, and their receptors

IL6 Xu et al[23] Meta-analysis, 10 studies 860 CRC patients, stage I-IV OS, HR 1.76 (1.42–2.19); DFS,
HR 2.97 (1.76–5.01)

TNFRSF11B
(Osteoprotegerin)

Birgisson et al[20] Prospective cohort study 261 stage II-IV CRC patients OS, HR 3.33

Protease enzymes and their inhibitors

TIMP1 Lee et al[195] Meta-analysis, 10 studies 1477 CRC patients, stage I-IV OS, HR 2.25 (1.56-3.25)

CRC: Colorectal cancer; CSS: Cancer-specific survival; DFS: Disease-free survival; HR: Hazard ratio; OS: Overall survival.

independent study populations. As indicated by a recent meta-analysis[154],  a few
multiple cytokine array studies have been conducted in CRC, but mainly in fairly
small populations, with varying markers and methods, making further larger scale
studies  necessary  to  draw  more  convincing  conclusion  about  the  prognostic
significance of the reported marker combinations.

During  the  past  decade,  increasing  effort  has  been  directed  towards  the
investigation  of  circulating  tumor-derived  extracellular  vesicles  as  potential
prognostic  and  diagnostic  biomarkers  in  CRC  and  other  tumors.  Based  on  this
approach, several promising results have been reported. For example, Liu et al[22]

recently  studied circulating exosomal  miRNA content  from 369  stage  I–IV CRC
patients.  They  found  that  exosomal  miR-27a  and  miR-130a  predicted  survival.
However, as for multiplex cytokine arrays, the selection of optimal combination of
markers as well as independent validation studies would be required to establish
circulating exosomal miRNA signatures as clinically relevant prognostic parameters
in CRC.

CONCLUSION
The  research  conducted  during  the  past  few  decades  indicates  that  systemic
inflammation has wide-ranging effects on CRC progression, including supporting
primary  tumor  invasion,  proliferation,  angiogenesis,  and  metastasis,  as  well  as
suppressing anti-tumor immunity. Several systemic inflammation-based prognostic
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parameters, such as neutrophil-lymphocyte ratio, modified Glasgow Prognostic Score,
and platelet-lymphocyte ratio, have been found to have impressive prognostic value
in  a  large  number  of  studies  and  are  widely  available  in  clinical  laboratories
worldwide. However, larger-scale multi-institutional studies of their predictive value
for the response to specific adjuvant therapies are needed. Moreover, these markers
only begin to scratch the surface of the potential of systemic inflammation-based
biomarkers in predicting patient survival. In future, additional tests, such as multiple
cytokine-chemokine-growth factor assays, analysis of tumor-derived extracellular
vesicles, and profiling of tumor-educated platelet transcriptome may translate into
improved  prognostic  and  predictive  parameters,  ultimately  enabling  accurate
identification of patients who might benefit from specific adjuvant therapies, as well
as into improved methods of non-invasive disease monitoring. Factors regulating the
formation of pre-metastatic  niches in CRC, suppression of anti-tumor immunity,
tumor-platelet interactions, and CRC-associated cachexia also represent potential
targets for drug development.
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