
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Nord TS, Petersen ØW,
Hendrikse H. 2019 Stochastic subspace
identification of modal parameters during
ice–structure interaction. Phil. Trans. R. Soc. A
377: 20190030.
http://dx.doi.org/10.1098/rsta.2019.0030

Accepted: 8 June 2019

One contribution of 14 to a theme issue
‘Environmental loading of heritage structures’.

Subject Areas:
structural engineering, civil engineering,
mechanical engineering, ocean engineering

Keywords:
ice–structure interaction, system
identification, subspace methods,
uncertainty quantification

Author for correspondence:
Torodd S. Nord
e-mail: torodd.nord@ntnu.no

†Present address: Department of Civil and
Environmental Engineering, Faculty of
Engineering Science, NTNU, Høgskoleringen
7a, 7491 Trondheim, Norway.

Stochastic subspace
identification of modal
parameters during
ice–structure interaction
Torodd S. Nord1,†, Øyvind W. Petersen2 and

Hayo Hendrikse3

1Sustainable Arctic Marine and Coastal Technology (SAMCoT),
Centre for Research-based Innovation (CRI), Norwegian University
of Science and Technology, Trondheim, Norway
2Department of Structural Engineering, Norwegian University of
Science and Technology, Trondheim, Norway
3Delft University of Technology, Delft, The Netherlands

TSN, 0000-0003-3971-9357; HH, 0000-0003-2252-4625

Identifying the modal parameters of structures
located in ice-infested waters may be challenging
due to the interaction between the ice and structure.
In this study, both simulated data from a state-
of-the-art ice–structure interaction model and
measured data of ice–structure interaction were
both used in conjunction with a covariance-driven
stochastic subspace identification method to identify
the modal parameters and their corresponding
variances. The variances can be used to assign
confidence to the identified eigenfrequencies, and
effectively eliminate the eigenfrequencies with
large variances. This enables a comparison between
the identified eigenfrequencies for different ice
conditions. Simulated data were used to assess the
accuracy of the identified modal parameters during
ice–structure interactions, and they were further used
to guide the choice of parameters for the subspace
identification when applied to measured data. The
measured data consisted of 150 recordings of ice
actions against the Norströmsgrund lighthouse in
the Northern Baltic Sea. The results were sorted into
groups defined by the observed ice conditions and
governing ice failure mechanisms during the ice–
structure interaction. The identified eigenfrequencies
varied within each individual group and between the
groups. Based on identified modal parameters, we

2019 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0030&domain=pdf&date_stamp=2019-08-19
http://dx.doi.org/10.1098/rsta/377/2155
mailto:torodd.nord@ntnu.no
http://orcid.org/0000-0003-3971-9357
http://orcid.org/0000-0003-2252-4625


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190030

...............................................................

suggested which eigenmodes play an active role in the interaction processes at the ice–
structure interface and discussed the possible sources of errors.

This article is part of the theme issue ‘Environmental loading of heritage structures’.

1. Introduction
The understanding of ice–structure interaction originates from observations and measurements
of various ice features interacting with structures such as lighthouses, bridge piers and offshore
structures. The monitoring of structural responses on platforms in Cook Inlet, Alaska, began
more than 50 years ago [1]. It was soon discovered that ice forces varied depending on
the ice conditions, and, therefore, the measurements of the structural response were often
supplemented with measurements of physical and mechanical properties of the ice [2]. Despite
the measurement complexity and cost, several full-scale monitoring campaigns in (sub-)Arctic
areas were conducted in the past, many of which involved lighthouse structures [3,4]. Drifting
ice against a structure may result in various modes of ice–structure interaction. Some of these
are violent with ice forces and structural responses that represent a threat against the structural
integrity, whereas other modes pose no concern at all. These modes depend on both the structure
and the ice. Structures with sloped walls at the ice–structure interface typically promote a
flexural type of ice failure, while vertically sided structures typically promote crushing failure.
Thus, sloped-walled structures are subject to significantly lower ice forces than vertically sided
structures, but they often incur a higher construction expense [5].

Ice forces on offshore structures have been debated for decades. Design engineers still find
it challenging to determine consistent load estimates pertaining to the expected ice conditions.
A study by Timco & Croasdale [6] demonstrated the difficulties in the year 2006 when they
invited international experts to calculate the ice forces under some selected scenarios of a structure
interacting with first-year level ice, first-year ridge and multi-year ice floes. Considerable scatter
was presented for the different cases, up to a factor of 11 between the lowest and highest load
estimates for a conical structure subject to level ice. Lighthouses are no exception in terms of
the challenges faced in the design of offshore structures in ice-infested waters. After revisiting
69 lighthouses in the St Lawrence Waterway, Danys [7] found that many old lighthouses with
design pressures in the range of 0.55–0.76 MPa were damaged, whereas structures with design
pressures in the range 2.0–2.8 MPa were undamaged. A few lighthouses in the Baltic Sea, which
had design loads in the latter range, were also damaged due to ice actions [5]. Many of the
lighthouses were built with vertical walls at the ice–structure interface, allowing a greater risk
for structural damage. In particular, narrow structures with a low aspect ratio (diameter of the
structure at the waterline divided by the ice thickness) were noted to be vulnerable to damage,
due to excessively low design pressures suggested by the standards [5,8]. Consequently, recent
guidelines for the design of Arctic offshore structures were modified to account for the high ice
pressures at low aspect ratios.

To this end, sensors and measurement techniques were developed to handle the harsh Arctic
environment as lighthouses and oil platforms were instrumented. The aim was to mitigate ice
forces on offshore structures. It was soon discovered that the structural integrity was threatened
not only by the high ice forces, but also the severe ice-induced vibrations (IIVs) that followed
from the dynamic ice actions [1]. IIV represents a threat in the form of low-cycle fatigue and
illness of people exposed to the vibrations, and in a few cases, it was the primary cause of
structural damage [1,4,9]. Although phenomenological models exist to predict IIV, i.e. as reported
in [10,11], the origin of the vibrations is still under debate [12], and the ice conditions in which
IIV occurs are still not entirely known. Single events of IIV can also pose a threat to the structural
integrity. The most critical and famous IIV episode occurred in the Beaufort sea in 1986, when the
90 × 90 m wide oil platform Molikpaq encountered a multi-year ice floe [13], resulting in
liquefaction of the soil foundation. As platforms have been deployed in ice-choked waters in
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regions such as Cook Inlet, Alaska, USA, and Bohai Sea, China, for decades, their remaining
lifetimes decrease, making structural health monitoring (SHM) increasingly relevant.

On the massive Confederation Bridge, monitoring programmes were employed for assessing
ice loads and SHM [14–16]. Simulated damage in conjunction with response measurements
under different ambient loadings that included ice loads were used to evaluate the possibility
for damage detection. On that particular structure, ice actions were considered as part of the
environmental variability of modal parameters. The Confederation Bridge is a massive structure,
and smaller structures may experience a higher influence of ice actions on the modal parameters.
A limited number of studies have addressed the changes in modal parameters caused by different
types of ice conditions and ice failure mechanisms; however, some experimental [17,18] and
simulation studies [19] have indicated that added mass and damping may occur. It is, thus,
unknown to what extent the size of the structure relative to the severity of the ice conditions
causes system changes, e.g. changes in the eigenfrequency, damping and mode shapes, or
the introduction of nonlinearities. It is also unknown for which ice conditions the true modal
properties can be identified and when the underlying assumptions of the applied algorithms are
violated the most.

Even though many arctic offshore structures are located in vulnerable areas where a structural
failure may have fatal consequences for the environment, it is still unknown whether vibration-
based SHM is feasible during the ice-covered months. This is relevant not only for hydrocarbon
exploitation, but also for advancing the development of offshore wind power in cold climates.
The null hypothesis is that the feasibility depends on the severity of the ice actions relative to
the size of the structure, which was partly exploited in [20]. An automatic routine was applied to
identify eigenfrequencies for data records considering various modes of ice–structure interaction
occurring on the Norströmsgrund lighthouse. The identified frequencies were spread and only
few time records rendered similar identified frequencies. The origin of both the bias errors and
variance errors in the estimated modal parameters when using the covariance-driven reference-
based stochastic subspace identification routine (SSI-cov/ref) was addressed [21]. It was shown
how the bias error could partly be removed, whereas the variance error could only be estimated.
A computationally efficient implementation was presented in [22], which is exploited in this
study as a means to investigate the variability in the identified modal parameters for different
ice conditions. The remaining paper is structured as follows: §2 explains some fundamentals of
ice–structure interaction and ice forces on vertically sided structures; §3 presents a summary of
the SSI-cov/ref algorithm used to identify the modal parameters; §4 presents the identified modal
parameters and their uncertainties for simulated cases of ice–structure interaction; §5 presents
the identified modal parameters and the corresponding uncertainties for 150 recordings of ice–
structure interaction on the Norströmsgrund lighthouse; and finally, the concluding remarks are
presented in §6.

2. Modes of ice–structure interaction
Several types of ice–structure interactions against vertically sided structures are considered in
this study, and they are illustrated in figure 1. Readers are recommended to refer to [23] for an
overview of the mechanics of ice–structure interaction and [24] for descriptions of the observed
failure types against the Norströmsgrund lighthouse. Continuous brittle crushing (figure 1a) is
governed by the non-simultaneous occurrence of so-called high-pressure zones across the ice–
structure interface. The interaction process ongoing at the ice–structure interface also involves
the occurrence of many modifications of the ice material, such as recrystallization and microcrack
developments [23,25]. The bending type of flexural failure is often initiated by the development
of a circumferential crack followed by radial cracks (figure 1b). Splitting failures (figure 1c) are
usually observed when the interacting ice sheet has a low lateral confinement. The buckling type
(figure 1d) of flexural failure is governed by a build-up of curvature in the ice sheet. Winds and
waves as well as ice management can generate fields of broken ice (figure 1e) that cause small
impacts from floes of various sizes onto the walls of the structure. The floes split and pass around
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Figure 1. Types of failure modes of ice–structure interaction (from Nord et al. [20]).

the structure, while the wind and wave actions contribute significantly to the total force. The
last interaction type considered in this study is creep, in which the ice floe rests against the
structure. For simplicity, no distinction is made between limit force, when the driving forces
are too low to generate any of the failure mechanisms mentioned above, and limit-stress creep
deformation. Among these modes, ice crushing and creep exert the highest forces on the structure.
The frequency contents of the ice forces vary substantially not only between the individual failure
types but also within the same type of failure with different environmental parameters, see e.g.
[20,26]. As ice forces cannot be described as Gaussian white noise, the following sections describe
the assessment of the influence of violating the stochastic white noise input assumption for the
SSI-cov/ref.

3. Estimation of modal parameters and their uncertainty

(a) Systemmodel
Consider the linear time-invariant system described by a discrete time state–space model

xk+1 = Axk + Buk (3.1)

and
yk = Cxk + Duk + ek, (3.2)

where xk ∈ R
n is the state vector, uk ∈ R

m is the input vector, yk ∈ R
r is the measurement vector and

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n and D ∈ R

r×m are the system matrices. Here, n is the model order
and r is the number of sensors. The measurements yk are corrupted with the measurement error ek
which is modelled as a white noise random process. The white noise random process is also used
to model the input uk, which is unknown for many practical applications, and the state–space
model is thus reduced to

xk+1 = Axk + wk (3.3)

and
yk = Cxk + vk, (3.4)

where wk = Buk and vk = Duk + ek are the process and output noise, respectively.
We aim to identify matrices A and C from which the modal frequencies, damping and mode

shapes can be obtained. The eigenvalues and eigenvectors of the system in equations (3.3) and
(3.4) become

(A − λiI)φi = 0 (3.5)

and
ϕi = Cφi, (3.6)

from which the continuous time eigenvalues μ, eigenfrequencies fi and damping coefficients ξi
(in % of critical) can be obtained as follows:

μi = ln λi

T
, fi = |μi|

2π
, ξi = −100

�(μi)
|μi|

, (3.7)

where T is the sampling period.



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190030

...............................................................

(b) Stochastic subspace identification algorithm
In the following two sections, the covariance-driven SSI-cov/ref and the data-driven unweighted
principal component (UPC) SSI algorithm are briefly introduced; but for thorough explanations,
see [27]. Let r be the number of sensors, r0 be the number of reference sensors, and p and q be
the parameters chosen such that pr ≥ qr0 ≥ n, where n is the model order. The algorithm uses
the output data to build a subspace matrix Hp+1,q ∈ R

(p+1)r×qr0 which (for a sufficient number of
samples) may be decomposed as

Hp+1,q = Op+1Zq, (3.8)

where Op+1 =
[
CT (CA)T . . . (CAp)

T
]T

is the observability matrix and matrix Zq depends on
the chosen subspace identification algorithm. The observability matrix Op+1 is constructed from
a singular value decomposition (SVD) of the subspace matrix Hp+1,q, which is further truncated
at a user-defined model order n

Hp+1,q =
[
U1 U0

] [Σ1 0
0 Σ0

][
VT

1
VT

0

]
(3.9)

and

Op+1 = U1Σ1
1/2. (3.10)

The C matrix can be directly extracted from the first block of r rows of the observability matrix
Op+1, while the A matrix can be obtained from a least-squares solution of

O↑
p+1A = O↓

p+1, (3.11)

where

O↑
p+1 =

⎡
⎢⎢⎢⎢⎣

C
CA

...
CAp−1

⎤
⎥⎥⎥⎥⎦ , O↓

p+1 =

⎡
⎢⎢⎢⎢⎣

CA
CA2

...
CAp

⎤
⎥⎥⎥⎥⎦ .

(c) Estimate of the subspace matrix
‘Future’ and ‘past’ output data matrices are assembled from a total number of N + p + q samples
as follows:

Y+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Yq+1 Yq+2
... YN+q

Yq+2 Yq+3
... YN+q+1

...
...

...
...

Yq+p+1 Yq+p+2
... YN+q+p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Y− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yq
(ref) Y(ref)

q+1

... Y(ref)
N+q−1

Y(ref)
q−1 Y(ref)

q
... Y(ref)

N+q−2
...

...
...

...

Y(ref)
1 Y(ref)

2

... Y(ref )
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.12)

where Yk
(ref) ∈ R

r0 contains the reference sensor data. These data matrices are further normalized
with respect to their numbers of columns, such that

Ỹ+ = 1√
N

Y+, Ỹ− = 1√
N

Y−. (3.13)

From the data matrices, the covariance-driven subspace matrix is defined

H̃cov = Ỹ+(Ỹ−)T, (3.14)

while in the data-driven case, the subspace matrix is defined:

H̃dat = Ỹ+(Ỹ−)T(Ỹ−(Ỹ−)T)†Ỹ−. (3.15)
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Alternatively, the data-driven subspace matrix can be estimated from the thin LQ
decomposition [

Ỹ−

Ỹ+

]
=
[

R11 0
R21 R22

][
Q1
Q2

]
, (3.16)

from which H̃dat = R21Q1, where R21 ∈ R
(p+1)r×qr0 and Q1 ∈ R

qr0×N . Note that because of the
orthogonal properties of Q1, the observability matrix is estimated directly from R21 in the
implementation.

(d) Covariance estimate of the subspace matrix
Statistical uncertainty in the identified modal parameters may occur due to, e.g., non-white
excitation of the system, a finite number of data samples, non-stationarity etc. which leads to
variance errors in the modal parameters. In what follows, the covariance computation of the
modal parameters is based upon an underlying covariance-driven SSI algorithm and propagation
of first-order perturbations from the data to the modal parameters [21]. Full-scale validations
of the method were presented in [28], while our study applies a computationally efficient
implementation [22]. Reviews of existing methods for covariance estimation of identified modal
parameters are presented in [28] and [29].

In the covariance-driven SSI, the covariance of the subspace matrix were calculated by first
splitting Ỹ+ and Ỹ− into nb blocks

Ỹ+ =
√

N√
Nb

[
Ỹ+

1 . . . Ỹ+
nb

]
, Ỹ− =

√
N√
Nb

[
Ỹ−

1 . . . Ỹ−
nb

]
, (3.17)

where for simplicity, Nb · nb = N; subsequently, the blocks were normalized according to the block
length. From each data block in equation (3.17), the subspace matrix estimate H̃cov

j is built with

H̃cov
j = Ỹ+

j (Ỹ−
j )T. (3.18)

and its covariance estimate Σ̂H̃cov reads as

Σ̂H̃cov = N
nb(nb − 1)

nb∑
j=1

(vec(H̃cov
j ) − vec(H̃cov))(vec(H̃cov

j ) − vec(H̃cov))T. (3.19)

(e) Covariance estimate of the modal parameters
The principle of the method is to propagate the covariance of the subspace matrix, ΣH, to the
modal parameters through first-order perturbations. First-order perturbations of the subspace
matrix H are first propagated to the system matrices A and C as follows:

[
vec(ΔA)
vec(ΔC)

]
= JAC,Hvec(ΔH), (3.20)

where JAC,H is the sensitivity matrix according to the definitions given in [21,28,30]. The
covariance of the vectorized system matrices, ΣA,C, can be defined as

ΣA,C
def= cov

([
vec(ΔA)
vec(ΔC)

])
= JAC,HΣHJT

AC,H, (3.21)
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in which the covariance of the subspace matrix, ΣH, can be estimated by dividing the subspace
matrix into blocks as described in the previous section and in [22]. The perturbations of the modal
parameters can be described as functions of the vectorized system matrices as follows:

Δfi = Jfi,Avec(ΔA), Δξi = Jξi,Avec(ΔA), Δϕi = Jϕi,AC

[
vec(ΔA)
vec(ΔC)

]
, (3.22)

where the sensitivities Jfi,A, Jξi,A and Jϕi,AC are defined per mode i. Finally, the covariances of the
modal parameters are obtained as

cov

([
fi
ξi

]
,

[
fj
ξj

])
=
[

Jfi,A 01,rn

Jξi,A 01,rn

]
ΣAC

[
Jfj,A 01,rn

Jξj,A 01,rn

]T

cov

([
�(ϕi)
�(ϕi)

]
,

[
�(ϕj)
�(ϕj)

])
=
[
�(Jϕi,A,C)
�(Jϕi,A,C)

]
ΣAC

[
�(Jϕj,A,C)
�(Jϕj,A,C)

]T

. (3.23)

In this study, the implementation is performed in accordance with algorithm 4 presented in
[22] which yields fast computations when multiple model orders are considered.

4. Modal parameter identification using simulated data of dynamic
ice–structure interactions

Since ice forces have been measured by means of both inverse techniques and installations of
force panels at the ice–structure interface, some knowledge exists concerning their appearance
in time and frequency domains. The continuous brittle crushing process, which is one of
the interaction types decisive for design loads, is described as a random process [31]. Non-
simultaneous contact across the interface between the ice and structure that changes in space
and time causes local pressures to vary across the interface [32]. This means that the force varies
randomly superimposed to a mean level. The structure, in some cases, slows down the drifting
ice floe(s), thereby influences the driving force(s); therefore, the mean level is seldom constant.
The slow-varying processes of ice forces are also influenced by uneven ice thickness, stochastic
variation of ice strength, and delayed elastic and viscous properties of the ice, in addition to the
intermittent occurrences of other failure processes; all of these may contribute to a non-white
forcing onto the structure.

In this study, a phenomenological ice–structure interaction model [19,33] is used to investigate
the effect of variation in ice conditions on the identified modal parameters and their uncertainties.
A Matlab implementation of the model, including a single degree-of-freedom structural
representation in the modal domain, is available from Mendeley data [34]. The ice model is
coupled to the modal characteristics of the Norströmsgrund lighthouse, extracted from the
finite-element software Abaqus CAE.

The Norströmsgrund lighthouse (figure 2) is a gravity-based concrete structure located in the
Gulf of Bothnia, Sweden. The lighthouse was constructed in 1971 and designed to withstand ice
loads of 2.2 MN m−1. Below the mean water level, the main structure and foundation caisson
are filled with sand. Eight concrete bulkheads stiffen the foundation frame, and a 0.7 m thick
concrete foundation plate rests on a top layer of cement-grouted crushed stones and a lower
layer of morainic soil. The wall thickness varies between 0.2 m at the top and 1.4 m at the mean
water level. Service personnel visiting Norströmsgrund late in the winter of 1972 observed heavy
vibrations due to ice actions. In 1973, thin cracks were detected in the most strained area of the
superstructure walls close to the ground floor. Despite that the cracks pervaded through the wall
and moisture intrusion was observed, it was concluded that the structural integrity remained
intact [9].

The finite-element model, modelled with quadrilateral finite membrane-strain shell elements
with reduced integration (S4R), is displayed in figures 2 and 3. The structural dimensions and
material properties are obtained from [35] and an elaborate description of the model can be found
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Figure 2. Illustration, picture and finite-element model of the Norströmsgrund lighthouse (from Nord et al. [26]). (Online
version in colour.)

mode 1 (2)
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mode 3 (4)
3.920 Hz

mode 5 (6)
5.516 Hz

mode 7 (8)
10.162 Hz

y

z

x

Figure 3. Mode shapes and corresponding natural frequencies of the finite-element model (from Nord et al. [26]). (Online
version in colour.)

in [26]. Because the structure is near axisymmetric, structural modes occur in pairs with almost
identical frequencies. Mode shape 1 (and 2) is governed by tilt of both the foundation caisson and
tower substructure (tower below + 16.5 m), while the superstructure deflects in the tilt direction.
For mode shape 3 (4), both the tower caisson and tower substructure displace in the opposite
direction to the superstructure deflection. Mode shape 5 (6) has the same tilt of both the caisson
and tower substructure as for mode shape 1, whereas the superstructure deflects in the opposite
direction to the substructure tilt direction. In mode shape 7 (8), the foundation caisson tilts in the
opposite direction to the tower substructure.

The forces are treated as concentrated loads acting on a linear time-invariant structure that is
represented by selected vibration eigenmodes

z̈(t) + Γż(t) + Ω2z(t) = ΦTSpp(z, ż, t). (4.1)

Here, z(t) ∈ R
nm is the vector of modal coordinates, and nm = 24 is the number of eigenmodes

used to assemble the model. The ice force, p(z, ż, t) ∈ R
np , is specified to act on the desired location
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Figure 4. Simulated force time histories during interaction with slow-varying (a) and fast-varying (b) ice conditions. (Online
version in colour.)

Table 1. Modal properties of simulation model.

mode 1 (2) mode 3 (4) mode 5 (6) mode 7 (8)

fi (Hz) 2.465 3.920 5.516 10.162
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξi (%) 2.000 2.005 2.367 3.642
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‘Force N–S’ in figure 2 through the force influence matrix Sp ∈ R
nDOF×np , where np is the number

of force time histories and nDOF is the number of degrees of freedom.
Γ ∈ R

nm×nm is the diagonal damping matrix populated on the diagonal with the terms 2ξjωj,
where ωj and ξj represent the natural frequency in radians per second and damping ratio
corresponding to eigenmode j, respectively. Ω ∈ R

nm×nm is a diagonal matrix containing the
natural frequencies ωj, and Φ ∈ R

nDOF×nm is a matrix collecting the mass-normalized mode shapes.
Rayleigh damping is assigned to the model with 2% in modes 1 and 2, increasing up to 20%
in mode 24. The lowest four eigenfrequencies and corresponding damping ratios of the finite-
element model are given in table 1, with the corresponding mode shapes displayed in figure 3.
The axisymmetry of the model leads to mode pairs in the orthogonal directions, with each pair
assigned identical damping values.

Two time series, each of 600 s, were simulated using the ice model. The mean ice thickness and
ice velocity were assumed to be 1 m and 0.1 m s−1, respectively. Time-dependent parameters in
the ice model were used to generate time series with different ice conditions, herein categorized
as slow-varying and fast-varying ice conditions (figure 4). Though the ice model is in essence
nonlinear and dependent on the structural motion, the nonlinearity is considered insignificant
at the high ice velocities considered in this work. Under these conditions, the time between
contact and failure of a single ice element is short and consequently the motion of the structure is
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Figure 5. Stabilization diagrams for (a) slow-varying ice conditions and (b) fast-varying ice conditions. (Online version in
colour.)

insignificant compared to the deformation of the ice element. At low ice-drift velocities, strongly
nonlinear interactions commonly referred to as intermittent crushing and frequency lock-in,
become prevalent and the presented approach is no longer applicable.

Four measurements of accelerations extracted at locations specified in figure 2 were used
for the subspace identification (SSI-cov/ref), and throughout the paper, the number of reference
sensors is set equal to the total number of sensors r = r0 = 4. This involved the same number of
sensors with the same locations as installed on the lighthouse in the winters of years 2001–2003.

For comparison, a white noise force with an amplitude 0.3294 × 106 N was applied to the same
model and with accelerations extracted at the same locations as for the ice–structure interaction
simulations. In the simulations, the system matrices A,B,C,D in equations (3.1) and (3.2) were
assembled from the same modally reduced order finite-element model as described above, with
forces acting in the same nodes and the sensors located at the same nodes. Section 2a in [26]
describes in depth how the modal properties of the structure are used to assemble the system
matrices A,B,C,D.

Recordings of 59 000 sample points were added 5% Gaussian white noise. The sampling
frequency was 100 Hz, the number of blockrows was set as 100 and the number of blocks for
the covariance of the subspace matrix, nb, was set as 60.

Tolerance deviances to frequency, damping and MAC-values, as well as the normalized
standard deviation of the frequency, σ̂ωi/ωi, were added into the stabilization diagram. A pole
at order n was considered stable if the deviances in frequency, damping and normalized standard
deviation of the frequency between a pole at order n and n − 1 were less than 0.01, 0.05 and
0.05, respectively, and corresponding MAC-values exceeded 0.95. A routine was used to pick
eigenmodes automatically from the stabilization diagrams. The poles were first sorted with
increasing corresponding absolute values, and a user-defined frequency slack value, Sf , defined
the range from which the poles were collected. From the eigenvectors of the poles in that range,
MAC-values were calculated between all eigenvectors, and a reference eigenmode was selected
as the pole that rendered the highest sum of MAC-values. The MAC-values between the reference
eigenmode and the eigenvectors of the remaining poles in that frequency range (defined by Sf )
must lie within a user-defined MAC-slack, SMAC to be further considered. The third acceptance
criterion checked whether the poles that fulfilled the MAC-slack also fulfilled a damping slack,
Sζ . Finally, the selected eigenmode contained the mean values of the frequency, damping, mode
shape and their corresponding variances. Sf , Sζ and SMAC were chosen to be 0.02, 0.3 and 0.5,
respectively.

The stabilization diagrams in figure 5 show the first four identified eigenmodes, with the
square root of the identified variance (standard deviation), ±σ̂ω, added to each pole in the
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Table 2. Identified modal parameters (using SSI-cov/ref), standard deviations and absolute errors.

identified eigenmodes
white noise fi ±
σ̂fi (Hz)/(error(Hz))

slow-varying ice
conditions fi ±
σ̂fi (Hz)/(error(Hz))

fast-varying ice
conditions fi ±
σ̂fi (Hz)/(error(Hz))

mode 1 2.465± 0.004/(0.000) 2.454± 0.005/(0.011) 2.462± 0.005/(0.003)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 2 3.923± 0.010/(0.003) 3.925± 0.027/(0.005) 3.909± 0.021/(0.011)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 3 5.517± 0.051/(0.001) 5.527± 0.057/(0.011) 5.505± 0.068/(0.011)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 4 10.148± 0.134/(0.014) 10.173± 0.121/(0.011) 10.140± 0.072/(0.022)

white noise
ξi ± σ̂ξi (%)/(error%)

slow-varying ice
conditions
ξi ± σ̂ξi (%)/(error%)

fast-varying ice
conditions
ξi ± σ̂ξi (%)/(error%)

mode 1 2.149± 0.193/(0.149) 1.627± 0.215/(0.373) 1.804± 0.211/(0.196)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 2 1.793± 0.266/(0.212) 2.239± 0.653/(0.391) 2.070± 0.619/(0.065)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 3 2.623± 0.726/(0.256) 2.092± 0.837/(0.275) 2.188± 0.867/(0.178)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 4 3.840± 0.961/(0.198) 3.438± 0.975/(0.204) 3.566± 0.635/(0.075)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diagram. Both the slow and fast-varying ice conditions rendered clear columns of stable poles,
and the differences were noticeable mainly in the variance estimates. Table 2 presents the
automatically selected eigenmodes’ frequency, damping and corresponding standard deviations
alongside with the absolute error between the identified and model frequencies. The results
obtained from the time series of ice–structure interaction were compared with the results obtained
from the time series with Gaussian white noise as the input. As expected, the Gaussian white noise
input yielded more accurate frequency estimates than both the ice–structure interaction scenarios,
while the fast-varying ice conditions appeared to render damping as accurate as in the case of the
Gaussian white noise.

Since simulations with the ice model were computationally expensive, it was not feasible to
check whether the point estimate of variances of the identified frequency and damping coincided
with the sample statistics for multiple simulations. Instead, sample statistics were generated using
Monte Carlo simulations as follows.

Continuous brittle crushing ice forces, pi,m(t), were generated by realization of a typical ice
force spectrum from the Norströmsgrund lighthouse, Λpi(ω), which was discretized using Δω =
0.01 rad s−1

pi,m(t) =
√

2ΔωRe

( N∑
k=1

√
Λpi(ωk)ei(ωkt+αlk)

)
, (4.2)

where αlk is the phase angle modelled as uniformly random between 0 and 2π .
The ice forces were first obtained with a sampling frequency of 1660 Hz and further resampled

down to 100 Hz (figure 6). The simulated acceleration time series was thereafter generated by
using equations (3.1) and (3.2) by applying the ice force pi,m(t) onto the ice-action point (cf.
figure 2). In the simulations, the system matrices A,B,C,D were assembled from the same modally
reduced order finite-element model as described previously. In total, 250 acceleration time series
were simulated using ice forces.

Five per cent Gaussian white measurement noise was added to the four acceleration signals,
and all the settings for the SSI-cov/ref were identical to those in the abovementioned examples.
For each identification, the first automatically identified eigenmodes in the frequency range
0–12 Hz with their corresponding damping and variances were stored. For the sake of further
illustrations and result presentation, the standard deviations were calculated from the variances.
Two hundred and fifty simulated time series with Gaussian white noise input with an amplitude
of 0.3294 × 106 N was used for comparison. The collection of identified frequencies during
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Figure 6. Ice force spectrum used for Monte Carlo simulations. (Online version in colour.)
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Figure 7. Identified frequencies and their uncertainties for each simulation with (a) ice–structure interaction and (b) Gaussian
white noise input. Each simulation contained N= 59 000 sample points.

the ice–structure interactions shows the presence of spurious modes, spread out from the
true eigenfrequency, most with larger standard deviations (figure 7). For simulations of ice–
structure interactions, the sample standard deviations for the identified frequencies and damping
(σfi and σξi ) did not correspond to the mean values of the identified standard deviations ( ˆ̄σfi

and ˆ̄σξi , table 3), a result which is significantly influenced by four spurious frequencies below
2 Hz (figure 7a). In the case of the simulations with Gaussian white noise, the sample standard
deviations corresponded well with the identified standard deviations.

Until now, the simulated time series had a long duration. In the following section, we describe
the analysis of the effects of having a short duration of time series and of resampling down
to 30 Hz. The short duration resembles the nature of rapidly changing ice conditions, which
vary by site. Because we aim to assess the identification of modal parameters for different ice
conditions, the duration constraint is inevitable. Figure 7 shows that the variances of the identified
frequencies for spurious modes were larger than those for the true eigenmodes; therefore, a
tolerance value of the normalized standard deviation that could eliminate spurious modes and
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Figure 8. Identified frequencies and their uncertainties for each simulationwith (a) ice–structure interaction and (b) Gaussian
white noise input. Each simulation contained N= 17 800 sample points.

Table 3. Natural frequencies and damping ratios of the first identified eigenmode. μfi and μξi , mean values over 250
simulations; ˆ̄σfi and ˆ̄σξi , mean of the estimated standard deviations;σfi andσξi , sample standard deviation.

mode μfi (Hz) ˆ̄σfi σfi μξi (%) ˆ̄σξi σξi

mode 1 (ice–structure
interaction)

2.459 1.153 × 10−2 1.202 × 10−1 1.530 8.096 × 10−1 4.288 × 10−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 1 (white noise
input)

2.465 4.999 × 10−3 4.857 × 10−3 2.047 2.152 × 10−1 1.977 × 10−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 1 (ice–structure
interaction) short
time series

2.433 2.317 × 10−2 5.887 × 10−2 1.859 1.864 4.035 × 10−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode 1 (white noise
input) short time
series

2.464 1.598 × 10−2 4.577 × 10−3 2.004 7.992 × 10−1 1.977 × 10−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

retain true eigenmodes was attempted to be determined. Each simulation had 17 800 sample
points and 5% noise was added to each acceleration signal. The number of blockrows, number
of blocks for the calculation of the variance of the subspace matrix, nb, and tolerance value
for the stabilization criterion, σ̂ωi/ωi, were changed to 30, 20 and 0.03, respectively. All other
settings remained as described above. Figure 8 displays the identified eigenfrequencies and their
estimated standard deviations for both simulations with ice–structure interaction and Gaussian
white noise input. It was noted that some spurious modes remained in the identifications, some
of them with standard deviations in frequency nearly as low as the standard deviations of
true eigenfrequencies. Therefore, reducing the tolerance value, σ̂ωi/ωi, further suppressed the
correctly identified eigenfrequencies alongside the spurious frequencies. The eigenfrequencies
were reasonably well identified during ice–structure interaction, whereas the ensemble statistics
in table 3 (bottom two rows) show that neither the identified damping nor the mean of the
estimated standard deviations, ˆ̄σfi and ˆ̄σξi , matched with the sample standard deviations σfi
and σξi . These discrepancies may be explained by both the violation of stationary white noise
excitation and the chosen slack values for the automatic mode selection routine.
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5. Modal parameter identification using measured data of ice–structure
interactions

(a) Measurements of ice–structure interaction at Norströmsgrund lighthouse
At the Norströmsgrund lighthouse (figure 9), the structural responses, ice forces, ice thicknesses,
air temperatures, wind speeds, wind directions and ice conditions during the winter seasons from
1999 to 2003 were monitored in the measurement projects LOLEIF (LOw LEvel Ice Forces) [36] and
STRICE (STRuctures in ICE) [24]. Nine panels were installed at the mean water level to measure
the ice forces [36], covering the outer perimeter from 0° (north) to 162°. Four acceleration channels
(Shaevitz SB) and four inclinometer channels (Schaevitz DC inclinometer series and Applied
Geomechanics biaxial Model 716-2A) measured the structural accelerations in the north–south
and east–west directions, and the tilts about the same directions, respectively. The accelerometers
were located close to the ice-action point at an elevation of +16.5 m and close to the top at an
elevation of +37.1 m. A summary of the STRICE project and earlier measurement campaigns can
be found in Bjerkås [37].

(b) Data selection
Extensive efforts were devoted to the selection of data for this study, as several criteria were
required to be fulfilled; a similar selection was used in [20], although minor modifications were
adopted in the present study. The sampling frequency had a minimum value of 30 Hz, video
footage was available to define the type of failure and the ice failure was governed by one of
the aforementioned failure modes for a minimum of 10 min. The individual data files contained
time series of various lengths, and they were selected by operators to capture specific types
of interactions. Often, one data file had several events of interaction that fulfilled the criteria
above, and each of these events is hereon referred to as a recording. In total, 150 recordings
with lengths of 10 min were selected and further used in this study; of these, the number of
recordings pertaining to continuous crushing, flexural, splitting, ice floe, and creep failures were
79, 30, 14, 8 and 19, respectively. Examples of acceleration signals during continuous crushing and
flexural failures are displayed in figure 10. For these examples, the continuous crushing excites
the modes with lower eigenfrequencies stronger than the flexural failure does (figure 10b,d).
An important disadvantage with the STRICE dataset was that data were stored with different
sampling frequencies depending on the level of dynamic response of the lighthouse. If the
vibrations were significant, the original data were resampled down and stored at 100 Hz, whereas
if less dynamic ice action was present, data were resampled and stored at 30 Hz. For the purpose
of this study, regardless of which sampling frequency the data were stored at, all accelerations
were resampled to 30 Hz.

(c) Modal parameters and their uncertainty
The measured data were used in conjunction with the automatic routine for identifying
the modal parameters and their uncertainties. The automatic routine involved recordings of
17 800 sample points, sampling frequency of 30 Hz and the same input values as for the
simulated examples in figure 8. The identified eigenfrequencies and corresponding standard
deviations are shown in figure 11a. A collection of points forms horizontal branches, indicating
the eigenfrequencies at approximately 2.9, 5.0, 7.5 and 10.2 Hz. A scatter of points with
somewhat higher standard deviations is displayed between these horizontal lines. Assuming
that these are not true eigenfrequencies of the lighthouse, another attempt is made to
eliminate these by lowering the tolerance value σ̂ωi/ωi for the stabilization criterion, now set
as 0.01. The horizontal branches are more pronounced as much of the scatter is successfully
eliminated via the tolerance value (figure 11b), and another branch becomes apparent at
approximately 12.4 Hz.
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(a) (b) (c)

Figure 9. The Norströmsgrund lighthouse during ice action: (a) rubble formation after ice interaction (photo by courtesy of
Basile Bonnemaire); (b) crushing ice failure and (c) splitting ice failure. (Online version in colour.)
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Figure 10. Accelerations measured during: crushing failure (a,b) and flexural failure (c,d).
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Figure 11. Identified frequencies and their uncertainties for each recording with two different tolerance values for the
stabilization criterion: (a) tolerance criterion (σ̂ωi/ωi)< 0.03 and (b) tolerance criterion (σ̂ωi/ωi)< 0.01.

Figure 12 displays the identified damping obtained from the poles used to extract the
eigenfrequencies in figure 11b. Large variations can be observed between the identified damping
at frequencies corresponding to eigenmodes 1 and 5 (approx. 2.9 Hz and 12.4 Hz, respectively)
and the damping identified for the other eigenmodes (at 5.0, 7.5 and 10.2 Hz, respectively). The
eigenmodes 1 and 5 have significantly higher damping than the other eigenmodes. A possible
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Figure 12. Identified damping for all recordings (tolerance criterion (σ̂ωi/ωi)< 0.01).
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Figure 13. Frequencies identified from the automatically selected poles for different regimes of ice–structure interaction:
(a) crushing failure, (b) flexural failure, (c) splitting failure, (d) creep and (e) floe ice.

explanation for this observation may be that eigenmodes 1 and 5 play a more active role in
the interaction between the ice and structure than the other eigenmodes do. Similar scatters can
commonly be observed for wind-sensitive bridges, for which it is well established that the modal
damping varies with the wind velocity [38]. High damping was also estimated during laboratory
model-scale ice–structure interaction, where damping as high as 13% was identified during
ice crushing [18]. Another hypothesis considers the data quality, which may be inadequate for
damping estimates for low excitation amplitudes. However, these hypotheses require verification
with higher quality data.

Since the recordings were categorized according to the governing interaction mode, it was
possible to investigate differences between the identified quantities for different interaction
modes. The two interaction modes, crushing and flexural failure, excited the most frequencies
(figure 13). When the ice rested against the structure (creep, figure 13), higher eigenmodes at 5.0,
7.5 and 10.2 Hz were excited for most recordings, whereas no eigenfrequencies were identified at
around the first eigenmode at 2.9 Hz, and only a few were identified in the vicinity of 12.4 Hz.
These observations support the hypothesis that the eigenmodes at 2.9 and 12.4 Hz participate
in the interaction process at the ice–structure interface, thereby causing higher damping. It is
also suggested that eigenmodes 2, 3 and 4 are less affected by both the interaction process at the
ice–structure interface and the support provided from the ice resting against the structure.

The horizontal branches formed by frequencies in figures 11 and 13 indicate the
eigenfrequencies. These branches barely resemble straight lines. Laboratory experiments of IIVs
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show that the frequency content of the structural response could be dominated by different
modes of the structure depending on the ice velocity [39]. In full scale, the ice velocity near a
structure may change in a matter of seconds, thereby influencing the governing failure mode and
thus the structural response [40]. The observed variability in the results may also be explained
by the differences in the ice thickness, ice-drift direction, mechanical properties of the ice, air
temperature, ice rubble accumulation at the structure or other metocean conditions that in turn
cause differences in the structural behaviour.

The numerical simulations were limited to a specific mode of interaction, namely continuous
brittle crushing. In the full-scale measurements, it is important to note that even if a failure
mode governed the process for each recording, other failure mechanisms were often involved
in the process. For instance, some local crushing often took place during interactions governed
by flexural failure, and even for short time sequences, the interactions were entirely governed
by crushing failure. This led to a non-stationary force and response, possibly contributing to the
observed scatter in the experimental results. Presently, models for predicting dynamic response
in such mixed-mode scenarios are limited to the combination of ice crushing and buckling [41].

Even though the structure is almost symmetric, there may be differences in the modes
depending on the direction of excitation. The recordings ranging from 23 to 30 in figure 13b
display identified frequencies that resemble straight lines. For all these recordings, the interaction
was governed by flexural failures, the ice-drift direction was from south to south–southwest and
the air temperature was warmer than −2°C.

Attempts were made to test whether the data were inaccurate at low vibration amplitudes by
sorting out the recorded events with the highest standard deviations of the acceleration; however,
no clear indication was found. Similar results were also obtained using the UPC algorithm instead
of the SSI-cov/ref. It is, however, a fact that this is an imperfect axisymmetric problem with
asymmetric mass distribution at the waterline caused by the heavy force panels and varying mass
distribution due to ice rubble. Further, an unknown extent of nonlinearity is involved and the
system identification is handled with only a few sensors. An attempt was also made to investigate
whether the first eigenmode had preferred mode shape alignments in the horizontal plane. Only
vague indications of the preferred directions were found, but the results highly depend on the
slack values for the automated selection of modes, and such analysis lies beyond the scope of this
study. Owing to the few sensor locations, the identified mode shapes and their variances were also
not considered in this study. By using a hierarchy clustering method as described in [42], similar
results as shown in figure 11b were obtained when low importance was assigned to the weights
for the MAC-values and clusters with few poles were discarded. It must also be noted that the
identified eigenfrequencies indicate that the FE model contained modelling errors. Updating the
model would benefit numerical simulations in the future, but it does not influence the conclusions
of this study.

Nord et al. [40] studied 61 events of frequency lock-in vibrations of the Norströmsgrund
lighthouse. This is a mode of vibrations caused by crushing failure under certain conditions; lock-
in vibrations have been a topic of research during the past 50 years [43] and still represent a
popular research topic. The vibrations’ signature is an amplified periodic response near one of
the eigenfrequencies of the structure. For the 61 frequency lock-in events analysed, the governing
frequency of vibrations was 2.3 Hz, more than 20% lower than the suggested eigenfrequency
found in this study at 2.9 Hz, which is somewhat more than that reported for channel markers
in the Baltic Sea [44].

6. Conclusion
Simulated and measured recordings of a structure subjected to ice actions were used to assess the
possibility to identify consistent modal parameters during ice–structure interaction and consistent
system changes with observed ice conditions.

The combined use of ice–structure interaction simulations and identification of variances
alongside modal parameters rendered insight into how the identified modal parameters were
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influenced by the presence of ice. The simulations guided the choice of tolerance values for
the stabilization criterion, in turn rendering some consistent estimates of eigenfrequencies for
different ice conditions with measured data.

Even though the eigenfrequency often varied between each data recording, some consistency
was noted between the ice failure mode and identified frequencies. The lowest eigenfrequency at
approximately 2.9 Hz was identified in all interaction modes except in the case of creep, i.e. when
the ice was resting against the structure. This eigenmode, as well as another mode at 12.4 Hz,
exhibited significantly higher damping than the other eigenmodes, and these eigenmodes were
mostly identified during crushing and flexural ice failures. It is therefore suggested that these
modes were influenced by the interaction process at the ice–structure interface. Since eigenmodes
at 5.0, 7.5 and 10.2 Hz were identified also during creep and had for all cases significantly lower
damping, it is suggested that these higher modes were less influenced by the interaction process.
For the sake of SHM, identifying eigenmodes insensitive to the interaction process significantly
reduces the environmental variability and may turn out useful in selecting damage-sensitive
features.

The variability in the results may be explained by the violation of the underlying assumptions
used to derive the applied identification routine, the structural complexity and limited sensor
data of uncertain quality.
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