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Insights into animal behaviour play an increasingly central role in species-

focused conservation practice. However, progress towards incorporating

behaviour into regional or global conservation strategies has been more lim-

ited, not least because standardized datasets of behavioural traits are

generally lacking at wider taxonomic or spatial scales. Here we make use

of the recent expansion of global datasets for birds to assess the prospects

for including behavioural traits in systematic conservation priority-setting

and monitoring programmes. Using International Union for Conservation

of Nature Red List classifications for more than 9500 bird species, we

show that the incidence of threat can vary substantially across different be-

havioural categories, and that some types of behaviour—including

particular foraging, mating and migration strategies—are significantly

more threatened than others. The link between behavioural traits and extinc-

tion risk is partly driven by correlations with well-established geographical

and ecological factors (e.g. range size, body mass, human population

pressure), but our models also reveal that behaviour modifies the effect of

these factors, helping to explain broad-scale patterns of extinction risk. Over-

all, these results suggest that a multi-species approach at the scale of

communities, continents and ecosystems can be used to identify and moni-

tor threatened behaviours, and to flag up cases of latent extinction risk,

where threatened status may currently be underestimated. Our findings

also highlight the importance of comprehensive standardized descriptive

data for ecological and behavioural traits, and point the way towards

deeper integration of behaviour into quantitative conservation assessments.

This article is part of the theme issue ‘Linking behaviour to dynamics

of populations and communities: application of novel approaches in

behavioural ecology to conservation’.
1. Introduction
Conservation biologists and behavioural ecologists have repeatedly called for

closer links between their respective fields on the grounds that behavioural

insights can contribute significantly to the success of conservation action

[1–5]. However, this cross-disciplinary integration has progressed slowly, in

part because the methods and central questions of behavioural ecology do

not align closely with the needs of conservation practitioners [4]. For example,

much of behavioural ecology focuses at the level of the individual, and

identifies selective mechanisms acting on genes or organisms, whereas conser-

vation typically operates at the level of populations [6]. This misalignment is

perhaps most pronounced at macroecological scales where global analyses

are playing a vital role in conservation science and policy (e.g. [7]) but generally

include only the most basic behavioural information.

One reason for the low profile of behaviour in comprehensive broad-scale

analyses is because it is difficult and costly to measure standardized behaviour-

al traits across species, space and time [8]. The major contributions of
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Figure 1. Extrinsic and intrinsic factors associated with extinction risk or conservation status at global scales. Extrinsic factors include anthropogenic threats to species
and the biogeographic and environmental context; intrinsic factors include population and ecological niche dimensions. This diagram summarizes the types of traits
that are either available or desirable when constructing models of conservation risk at macroecological (continental or global) scales; numerous additional factors
may impinge on conservation assessments in particular clades or species. Red/bold text indicates datasets currently available for all species in well studied groups
like birds. Availability of data is currently biased towards environmental, biogeographic and population attributes, whereas data tend to be unavailable, uncertain or
sparse for most ecological variables, and absent for behavioural variables. (Online version in colour.)
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behavioural research to conservation have dealt with factors

such as individual movements, sensory ecology, animal per-

sonality or cultures, and the extent to which they mediate

various kinds of human pressures, including disturbance,

habitat loss and hunting [4,9]. The key behavioural metrics

under this framework are context-dependent, highly plastic

both within and between individuals, and typically estimated

through detailed observation and experimentation. They are

often inappropriate for quantitative assessments at the

wider level of communities or ecosystems because they are

(i) only available for a small fraction of species, and (ii) not

readily incorporated into species-level analyses. For instance,

the case-dependent intricacies of how behaviour influences

effective population size (Ne) are useful to conservation [8],

but we are decades away from having these data available

for comprehensive global studies.

Global or regional conservation assessments are largely

restricted to comprehensive species-level datasets accessible

at the relevant scale (figure 1). Most macroecological analyses

have therefore tested whether species conservation status is

predicted by human impacts, biogeographic factors such as

latitude or range size, and environmental factors such as cli-

mate or habitat [10–15], or reversed the process to predict the

conservation status of poorly known species [16,17]. Using

freely available geographical information system layers, these

socio-economic, biogeographic and environmental variables

can be extracted for specimen localities or geographical range

polygons, which in some vertebrate groups are reasonably
accurate. The other main components of macro-scale assess-

ments have been demographic factors, including population

size and density, and rates of population decline, all of which

are theoretically related to extinction risk [15,17]. In general,

only crude population estimates are included in global-scale

analyses because very few attempts have been made to quantify

population sizes and trends across entire global ranges [18,19].

Previous studies have shown that both extrinsic biogeographic

and demographic factors are correlated with extinction risk,

leading to their widespread inclusion in regional and

international conservation status assessments.

Perhaps the most influential global assessment is the Inter-

national Union for Conservation of Nature (IUCN) Red List

[20], an indicator of biodiversity status and change linked to

international convention targets [21]. The conservation status

categories systematically generated by the Red Listing process

are enshrined in legislation and widely used in macroecological

research [22]. Previous assessments of predictors of Red List

status have generally focused on standard biogeographic or

climatic variables, without delving far into behavioural or eco-

logical factors. Indeed, the only ecological and behavioural

traits incorporated into most global models of conservation

risk are body mass, diet and habitat preferences [7,14,15]. To

convert these variables into species-level traits, body mass is

typically averaged from small numbers of published estimates,

while diet and habitat are classified into broad categories on the

basis of published descriptions in secondary literature [23]. By

contrast, many other behavioural or ecological variables have
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not been comprehensively estimated at global scales and are

often difficult to convert into species-level traits (figure 1).

The most relevant behavioural traits to conservation

assessment include those that mediate sensitivity to habitat

loss, fragmentation, and climate change [4]. Factors relating

to dispersal behaviour are particularly pertinent because

they impinge on the ability of species to cross unsuitable

habitat and thus maintain interconnected metapopulations

after habitat fragmentation [24]. Dispersal-related traits may

also regulate the ability of species to track shifting geographi-

cal ranges in response to climate change [25,26], and predict

susceptibility to threats like wind farms [27]. In addition,

behavioural dimensions of species interactions may be

important determinants of responses to a variety of threats.

For example, studies focused at the level of species pairs or

communities find evidence that interspecific competition

leads to population declines or local extinction following

habitat loss and fragmentation [28,29], while reproductive

interference may threaten populations of closely related

species interacting or hybridizing when climate-driven

range shifts lead to secondary contact [4,30]. However,

while standardized estimates of dispersal ability and inter-

specific competition are available for restricted samples of

species, they are not readily available at macroecological

scales, except in the form of extremely coarse categories

(e.g. whether an organism can fly or not; [15]).

Other variables potentially relevant to conservation status

can be placed on a continuum from primarily ecological to

primarily behavioural (figure 1). At the ecological end are

aspects such as microhabitat preferences, while other factors

such as foraging mode, migration, sexual selection, territorial-

ity, reproductive strategy and nesting behaviour have an

increasingly behavioural dimension. Previous research

suggests that species sensitivity to land-use or climate

change can be related to microhabitat (e.g. in the form of ver-

tical stratum of vegetation), foraging behaviour (e.g.

gregarious foraging), and reproductive strategy (e.g. breeding

system) [31,32]. Similarly, territorial strategy is linked to

species sensitivity to habitat fragmentation [33], suggesting

that elevated interspecific competition via behavioural mech-

anisms can increase threats associated with land-use and

climate change [29,34]. Until recently, such inferences were

based on relatively restricted species sampling, but this con-

straint is changing as the compilation and dissemination of

global trait datasets gathers pace.

To assess whether recent progress in data availability can

pave the way for behavioural perspectives to be explicitly

included in global conservation strategies, we compiled infor-

mation on a variety of ecological and behavioural traits for all

bird species, including estimates of sexual selection [35,36],

breeding system [37], foraging strategy [38,39], territorial be-

haviour [40], and nest placement [41]. We then ran

multivariate models to evaluate the extent to which behav-

iour predicts IUCN Red List status at macroecological scales

and in relation to a range of standard biogeographic and

environmental variables. Unlike many studies focused on

explaining variation in tolerance to human-induced environ-

mental changes [42,43], the aim is not to examine how

behaviour influences sensitivity to particular threats, particu-

larly as this would require a different analytical approach.

Instead, our goal is to assess the current landscape of behav-

ioural data availability and the prospects for more nuanced

conservation assessments and priority-setting.
2. Methods
(a) Data
We assembled data on species threat status from the 2016 Red

List [44] along with a range of potential drivers of variation in

status, including biogeographic, ecological and behavioural

traits, as well as the exposure of each species to human impacts.

Geographical range size is consistently identified as the strongest

predictor of threat status [14,16]. Although this is not surprising

given that two of the main Red List criteria (A and B) are partly

based on either Extent of Occurrence (EOO) or Area of Occu-

pancy (AOO), it is nonetheless important to include range size

when modelling threat predictors and their correlates. We esti-

mated range size (EOO) for each species based on maps of

species breeding distributions [45]. Human population pressure

is also known to influence extinction risk [12,46,47]. To quantify

the exposure of species to human impacts, we first extracted

polygon range maps onto an equal area grid (resolution of

110 km � 18 at the equator) and used this grid to sample

human population density, human appropriation of net primary

productivity (HANPP) and night-time light intensity, an indi-

cator of urbanization and development. We calculated the

mean value of each metric, averaged across all grid cells overlapping

with each species range.

We collated data on a selection of ecological traits, including

mean species body mass (g), habitat type, diet and island dwell-

ing, all of which have been linked to extinction risk

[10,11,13,14,16]. We extracted body mass from Wilman et al.
[23]. Using literature to score habitat use, we assigned species

to broad habitat categories (coastal, terrestrial, freshwater, sea)

according to the predominant habitat used across their geo-

graphical distribution. We assigned species to one of 10 dietary

categories: aquatic animals, aquatic plants, terrestrial invert-

ebrates, terrestrial vertebrates, terrestrial carrion, nectar, seeds,

fruit, other terrestrial plant matter (e.g. leaves), and omnivore,

based on the dominant resource present in their diet (see the

electronic supplementary material). Data on proportional

resource use were first obtained from Wilman et al. [23], and

then modified and updated based on comprehensive literature

searches. Our dietary classification differs from Wilman et al.
[23] in that we subdivided each animal or plant-based resource

type into separate aquatic and terrestrial categories (see [39]).

This helps us to avoid highly heterogenous categories such as

invertivores, which spans a wide variety of species from insecti-

vorous warblers to squid-eating albatrosses and crustacean-

eating flamingos [23]. Our approach separates warblers (diet:

‘terrestrial invertebrates’) into a different category from alba-

trosses and flamingos (diet: ‘aquatic animals’). Using the

geographical range polygons described above, we classified

species as island dwelling if more than 25% of their geographical

range occurred on small islands (landmass ,2000 km2). Further

details of data compilation methods are given in the electronic

supplementary material.

To assess the association between IUCN threat status and key

behavioural traits, we assembled data on foraging strategy, nest

placement, breeding system, mating behaviour, the mean

clutch size of broods, territoriality and migratory behaviour

(figure 2). Following the method described by Felice et al. [39],

we used literature searches to assign species to one of eight fora-

ging strategies (‘aerial screen’, ‘bark glean’, ‘aerial sally’,

‘arboreal glean’, ‘ground forage’, ‘aquatic plunge’, ‘aquatic sur-

face’ and ‘aquatic dive’). We classified each species according

to the predominant behavioural strategy used to acquire

resources, and assigned species using multiple foraging strat-

egies as generalists (i.e. nine categories in total, see the

electronic supplementary material). Nest placement was scored

into a simple three-way system: ground, elevated or cavity (see

[41] for details). We used a binary score of breeding system
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based on a published classification of cooperative and noncoo-

perative breeders [37]. Mating behaviour was scored as strict

monogamy, monogamy with infrequent (less than 5% males)

polygyny, monogamy with frequent (5–20% males) polygyny,

and polygamy (greater than 20% males and females). These cat-

egories are based on the index of sexual selection developed by

Dale et al. [35]. Clutch size data was based on Jetz et al. [48].

Using data from Tobias et al. [40], we assigned all species to

three categories according to the degree of territoriality:

‘strong’ (territories maintained throughout year), ‘weak’ (weak

or seasonal territoriality, including species with broadly overlap-

ping home ranges or habitually joining mixed species flocks),

and ‘none’ (never territorial or at most defending very small

areas around nest sites). Finally, we assigned the migratory be-

haviour of species as either sedentary, partially migratory

(minority of population migrates long distance or most individ-

uals migrate short distances) and migratory (majority of

population undertakes long-distance migration) [40].

Most variables were available for the vast majority (i.e.

greater than 99%) of species but the identity of species with miss-

ing values differed across variables. For categorical predictors,

we imputed missing values using the modal class for each

genus, if the genus contained at least two species and the

modal class was present across at least 75% of species. If these

conditions were not met, we used the same criteria to impute

missing values at the family level. After removing all species

with any missing values, our final dataset included n ¼ 9658

species.
(b) Statistical analysis
To model the effects of each predictor variable on extinction risk,

we treated threat as a binary variable (0, 1) according to the

IUCN Red List categories. All species listed as Vulnerable,
Endangered, Critically Endangered, Extinct (including Extinct

in the Wild) were classified as Threatened; the remainder (Near

Threatened, Least Concern and Data Deficient) were classified

as non-Threatened. We modelled threat using a generalized

linear mixed effects model in the R package ‘lme4’ [49]. We

implemented a binomial error structure and included taxonomic

family as a random effect to control for the phylogenetic non-

independence of species when identifying predictors of threat.

To ensure our results were robust to way random effects were

modelled, we repeated our main analysis using a phylogenetic

generalized mixed model using the R package ‘phylolm’ [50].

We assessed collinearity between predictor variables by first

estimating Pearson correlation coefficients between each pair of

continuous variables. We used a threshold of 0.7 as an indicator

of potential collinearity. On this basis we excluded HANPP from

our analysis because it was strongly correlated with human

population density (0.74), which is a standard predictor of extinc-

tion risk used in many previous studies. In order to deal with

possible associations among categorical predictors we used gen-

eralized variance inflation factors (GVIF) accounting for the

number of degrees of freedom associated with each predictor.

A GVIF value of 5 or 10 is commonly used as a threshold to

remove collinear predictors [51]. GVIF values for each predictor

were always less than two and so all other predictors were

retained in our analysis (electronic supplementary material,

table S1). Predictor variables exhibiting right skew were log

transformed prior to analysis.

In contrast to previous assessments of the predictors of

extinction risk in birds (e.g. [14]), we are particularly interested

in how behaviour and its covariation with other putative drivers

of extinction risk alter the incidence of threat. First, to assess the

overall association between each predictor and threat, we ran a

series of single predictor (i.e. univariate) models. Second, we

fitted a full multivariate model including all predictor variables.
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Figure 3. The relative contribution of anthropogenic, ecological and behavioural predictors to explaining (a) threat across all birds (n ¼ 9658) and (b) level of threat
(i.e. Vulnerable versus Endangered, Critically Endangered or Extinct) among threatened species (n ¼ 1251). The contribution of each predictor is quantified as the
difference in AIC between the full model and a model excluding each variable. Predictors are shaded according to variable type. The dashed line indicates a
difference of two AIC units indicating strong support for predictor inclusion.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20190012

5

We assessed the contribution of each predictor by removing, and

then reinserting, each term from the model and calculating the

change in the Akaike information criterion (DAIC). Third, to

assess the overall effect of behaviour, we ran a model including

all ecological predictors along with metrics of human exposure

and range size, but excluding all behavioural traits. Finally, to

examine how behaviour may mediate the effects of other extinc-

tion drivers, we tested for significant interactions between each

behavioural trait and each of the core predictors of threat ident-

ified in our full model (range size, body size and human

population density). We first added and then removed each indi-

vidual interaction term from our full model to identify those

contributing to a significant improvement in model fit

(DAIC . 2). We then included all of the significant interaction

terms in the full model and performed stepwise model simplifi-

cation, removing those interaction terms resulting in the smallest

change in model support. We stopped when the removal of any

interaction term resulted in a DAIC . 2.

To examine how the definition of threat may influence the

predictors of extinction risk, we repeated our analysis consider-

ing only threatened species (n ¼ 1251), predicting lower (0

(Vulnerable)) or higher (1 (Endangered, Critically Endangered,

Extinct)) levels of threat. Given that range size was included as

a predictor in our model, we also repeated our analysis removing

the 321 species that were listed as threatened owing to small or

declining geographical range sizes (i.e. criteria B). To assess

how the predictors of threat may change across broad habitat

types, we repeated analyses on different subsets of our data

including all species (n ¼ 9658), terrestrial species (n ¼ 8495)

and aquatic (n ¼ 767) species. We excluded habitat type as a pre-

dictor when fitting models to terrestrial and aquatic species. In

addition, we excluded diet and mating behaviour when fitting

models to threatened and aquatic species, respectively, because

models including these terms failed to converge.
3. Results
(a) Overall predictors of threat in birds
Our results identified a number of core predictors of threat

status that align closely with previous assessments indicting

that variation in threat across all birds arises as a combination

of geography, ecology and human impacts (figure 3).
Specifically, the strongest predictor of threat status is geo-

graphical range size, with additional strong effects of body

mass, island dwelling and the mean human population den-

sity across the species geographical range, a metric of

exposure to human impact. In both univariate and multi-

variate models, the incidence of threat decreases with

geographical range size (figure 4a) and increases with body

size (figure 4b; electronic supplementary material, table S2).

When tested in isolation, the incidence of threat is higher

on islands. However, in the full multivariate model account-

ing for other factors including range size, this effect is

reversed, with a lower incidence of threat on islands

(figure 4d; electronic supplementary material, table S2). We

note that this counterintuitive pattern of a lower risk of

threat among island dwelling species when accounting for

their smaller geographical range size has previously been

reported [52]. Similarly, in a univariate model, we found

that threat decreases with human population density, but

this switches to a positive effect after accounting for variation

in geographical range size in the full multivariate model

(figure 4c; electronic supplementary material, table S2). In

contrast to the positive effect of human population density

on threat, threat was only weakly and inconsistently related

to night light density (figure 3; electronic supplementary

material, table S2). Finally, while there was no consistent

relationship between habitat type and threat, we found sig-

nificant variation in the likelihood of threat across dietary

categories, with the highest threat among scavengers, aquatic

predators and vertivores compared to invertivores and pri-

mary consumers (i.e. frugivores, granivores, nectarivores

and herbivores) (figure 4e).

In addition to these established predictors, we also ident-

ified a significant effect of behaviour on extinction risk

(figure 3). Although the improvement in explanatory power

is modest (marginal R2 [53] excluding versus including

behaviour ¼ 0.48 versus 0.51 respectively), a full multivariate

model including all predictors is significantly better sup-

ported than a model excluding behavioural traits (DAIC ¼

60). All of these key results relating to the core predictors of

threat and the role behaviour were robust to the exclusion

of species listed as threatened on the basis of small or
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Figure 4. The influence of behaviour on levels of threat across the world’s birds (n ¼ 9658). (a) Effects of range size mediated by clutch size, (b) effects of body
size mediated by migratory behaviour, (c) effects of human population density mediated by foraging behaviour, (d ) island dwelling, (e) diet, ( f ) foraging behaviour,
(g) mating behaviour, (h) breeding system, (i) migratory behaviour, ( j ) territoriality, (k) nest placement, and (l ) clutch size. Results are from a generalized linear
mixed effects model including all predictor variables and family as a random effect. Clutch size is a continuous variable but is here shown as a binary trait (small or
large clutch size) to illustrate the interaction with range size (a). Bars indicate the 95% prediction interval. (Online version in colour.)
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declining range size and when modelling the non-

independence of species on the basis phylogenetic

relatedness rather than taxonomy (electronic supplementary

material, table S2 and figures S1 and S2).
(b) The effects of behavioural traits on threat
The strongest behavioural predictor of threat in birds was

migratory behaviour (figure 3), whereby long-distance
migration confers a higher risk of threat (figure 4i). We

note that, in a univariate model, long distance migrants are

significantly less threatened than partial migrants or seden-

tary species (figure 3c; electronic supplementary material,

table S2). This contrasting finding arises because on average

migrants have larger breeding ranges than sedentary species

(electronic supplementary material, figure S3a). Thus, while

our multivariate model shows that migratory behaviour pro-

motes threat, migrants are nonetheless less likely to be
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threatened overall because of their large geographical ranges.

In addition, we found that the effect of migratory behaviour

is also mediated by body size. Specifically, threat increases

more rapidly with body size among sedentary compared to

partially migratory species (figure 4b). Another key predictor

was clutch size, which was inversely related to the incidence

of threat. Although not supported as a main effect in the full

multivariate model (figure 3), we detected a significant inter-

action between clutch size and range size, indicating that

large clutch size increases threat among species with

restricted geographical distributions but reduces threat

among large-ranged species (figure 4a).

In contrast to migratory behaviour, some behavioural

traits were unrelated to threat, regardless of whether they

were considered in isolation or in the full multivariate

model. In particular, we found no support for an effect of

nest placement (figure 4k) or breeding system (figure 4h) in

our models (figure 2). In other cases, threat exhibited signifi-

cant associations with behaviour, but with effects that varied

depending on whether we accounted for other putative dri-

vers of extinction risk (electronic supplementary material,

table S2). When tested in isolation, weakly territorial species

are less likely to be threatened than non-territorial species but

this effect of territoriality is not supported in the full multi-

variate model accounting for other predictors of threat

(figures 2 and 4j ). Conversely, when tested in isolation, we

found no effect of mating behaviour on threat (figure 3b; elec-

tronic supplementary material, table S2), while in the full

multivariate model, the likelihood of threat is significantly

higher among polygamous than monogamous species

(figures 2 and 4g). This suggests that polygamy may enhance

the risk of extinction but that its effects are masked because of

covariation with other factors that decrease threat. Indeed,

polygamous species have smaller body size on average than

monogamous species, potentially explaining why the effect

of mating behaviour is only evident in a multivariate model

including body size (electronic supplementary material,

figure S3b).

Models including or excluding foraging behaviour

received almost equal support (figure 2), but an effect of fora-

ging behaviour was nevertheless statistically significant

(electronic supplementary material, table S2). The incidence

of threat is relatively high in species using aquatic plunging

and diving behaviours. In addition, while threatened status

is currently low among bark gleaning and aerial screening

birds, our models show that these foraging strategies may

nevertheless promote threat (figure 4f ). By contrast, our

models show that threat is lower among foraging generalists

suggesting that behavioural niche breadth may buffer species

from extinction (figure 4f ). In addition to these main effects,

we found that threat generally increases with human popu-

lation density but that within some foraging strategies this

relationship was weak or even reversed (figure 4c),

suggesting that foraging behaviour may mediate the effects

of exposure to higher human population density.

(c) Behavioural predictors across different threat levels
and environments

Our results suggest that the role of behaviour in predicting

threat varies across different thresholds of extinction risk in

birds (figure 3). In particular, we found that while migratory

behaviour is a core predictor of whether species are
threatened or not, it does not predict the level of threat (i.e.

whether a species is Vulnerable versus Endangered, Critically

endangered or Extinct). As a result, a model excluding all be-

havioural traits is more strongly supported than a full model

incorporating all predictors (electronic supplementary

material, table S2). The only behavioural trait that is strongly

supported as a predictor of threat level is foraging behaviour

(figure 2). Finally, we found that the core predictors of threat

and the effects of behaviour varied depending on the environ-

ment (electronic supplementary material, figure S1). As with

our overall analysis, our models highlighted the primary role

of migratory behaviour and weaker effects of foraging and

mating behaviour among terrestrial species (electronic sup-

plementary material, figure S4). This is expected given that

the majority of all birds are terrestrial. By contrast, foraging

strategy was the only behaviour significantly associated with

threatened status of aquatic species (electronic supplementary

material, figure S5), which was instead primarily driven by

range size, human exposure and island dwelling (electronic

supplementary material, figure S1).

4. Discussion
We have shown that global-scale ecological and behavioural

datasets predict variation in IUCN Red List status of birds.

Some behavioural traits were only significant predictors when

behaviour was analysed independently (e.g. territoriality),

becoming non-significant when other core predictors of threat

were included in the model. Conversely, other behavioural

traits (e.g. mating behaviour) were not significant predictors

when tested in isolation, and their effect was only evident

when accounting for correlations with factors such as body

size, geographical range size and human impacts. These find-

ings are consistent with previous reports that most ecological

and behavioural traits have relatively weak associations with

conservation status when incorporated into regional or global

models as a species-level trait [7,14,15]. However, although

we find little evidence that the recent expansion of behavioural

datasets can revolutionize conservation strategies at these wider

scales, our results nonetheless show that behavioural traits act

as modifiers that can improve explanatory power in conserva-

tion assessments, and thus presumably in other predictive

exercises (e.g. range shift modelling).

The traits with strongest influence on conservation status

were foraging strategy and migration. Although migratory

species are less threatened overall than sedentary species,

this trend is driven by the larger breeding range size of

migratory species and, having accounted for this, we found

the migratory behaviour promotes extinction risk. This is

expected because migrants are sensitive to human pressures

not only in their breeding distribution but also along their

migratory routes and in their wintering range [54]. We also

show that this effect of migration interacts with body size

to determine threat. Specifically, threat increases with body

size more rapidly among sedentary compared to partially

migratory species, perhaps indicating that poorly dispersing

large bodied species are particularly at risk. In the case of

foraging, we found that significant relationships between be-

haviour and conservation status were mainly driven by a

subset of strategies. For example, bird species foraging by

diving or plunging from air to water are highly threatened

and these strategies appear to promote extinction risk.

Other foraging strategies that appear to promote threat
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include aerial screening and bark gleaning but the level of

threat is currently lower in these categories. One possibility

is that species using these foraging strategies have been less

exposed to human pressure but this seems unlikely given

that we found little or no effect of human population density

on threat in these groups (figure 4c). A more likely expla-

nation, therefore, is that there are other as yet unknown

traits associated with these foraging strategies that reduce

sensitivity. A number of other species-level behaviours,

including variation in breeding system, territoriality, and

nest placement, had little predictive power in explaining vari-

ation in IUCN Red List status regardless of how they were

entered into models. This does not necessarily indicate that

such factors are unimportant to conservation, as it is well

known that they play a role in some contexts (e.g. nest

design and placement has important implications for

predation risk in modified landscapes; [55]). However, our

models show that these effects are relatively minor and

often overwhelmed by other non-behavioural factors at

global scales.

Behaviour has proved difficult to integrate into global

conservation assessment frameworks, including the IUCN

Red List criteria. Our results do not point to any straightfor-

ward method of achieving this integration, at least in birds.

However, the accuracy of Red List assessments might be

improved by using life history and behaviour to scale terms

in the criteria which are difficult to assess or define, such as

‘number of mature individuals’, ‘future rate of decline’ and

‘severe fragmentation’ [20]. These factors are typically

judged with a considerable degree of inference (see [18,19]).

The IUCN Red List Guidelines [56] on how to assess par-

ameters such as these could usefully be augmented with

further guidance in relation to ecological and behavioural fac-

tors such as mating systems, sex ratios, reproductive rate and

predation pressure, dispersal ability, gap-crossing ability and

ecological specialism. Moreover, for Red List assessors con-

sidering what constitutes ‘severe fragmentation’, future

versions of the criteria may be improved with guidelines on

how best to account for dispersal ability, gap-crossing ability

and ecological specialism.
(a) Challenges
Previous case studies have highlighted the many vital

contributions behavioural insights can offer conservation,

including more broadly when identifying behavioural factors

that predict tolerance to environmental change [42,43]. How-

ever, our findings highlight the key challenge of applying

behavioural data over larger spatial and taxonomic scales,

namely that behavioural traits can have a major influence

in particular species or contexts, yet only reduced effect in

global analyses. This occurs for two main reasons. First, be-

havioural traits are often highly flexible, varying within and

between individuals and over time, according to factors

such as age, season and context. This makes them relatively

difficult to estimate by averaging across entire species or

populations. Second, behaviour is often not consistently or

independently associated with extinction risk in the same

way as, for example, low population size, small geographical

range and slow reproductive output [13,14].

This point can be illustrated by year-round territoriality, a

system of resource defence most widespread in tropical birds

[40]. Intense year-round territorial behaviour can increase the
risk of extinction in some contexts, such as mountaintop

species driven to extinction through costly agonistic inter-

actions with lower elevation replacements moving upslope

in response to climatic warming [34,57]. The costs of territori-

ality are asymmetric, producing both lower-elevation

winners and upper-elevation losers. Moreover, the pattern

of non-overlapping elevational ranges for highly territorial

species holds largely true for some species pairs and localities

[58], but not others [59], particularly in lowland systems

where species do not tend to occupy rare climatic niches or

to share parapatric range boundaries with close ecological

competitors. Given that the relationship between territoriality

and extinction risk is bidirectional and context-dependent, it

makes sense that we find no overall link between territoriality

and IUCN Red List status.

An important viewpoint to bear in mind is that the

models presented here treat behaviour as an independent

species-level trait whereas the influence of behaviour is

often dependent on inter-relationships among species. Stay-

ing with the example of territoriality, the key factor is not

so much whether a particular species aggressively defends

territories year-round, but whether it directly competes

with a closely related taxon that does the same. Thus,

future versions of global models or associated conservation

assessments should consider scoring behavioural interactions

rather than behaviour per se. Advancing towards this goal is

particularly urgent given that species interactions are sensitive

to environmental effects. Both climate and land-use change can

potentially influence the behaviour of multiple interacting

species, as well as their phenology, physiology and relative

abundance, and we ideally need to quantify a range of behav-

ioural interactions and responses to understand how

environmental changes affect interaction-based ecosystems

[60,61]. Again, the key challenge is that the role of behaviour

in heterotrophic systems can be complex and highly flexible

[62], creating difficulties for multi-species models. Nonetheless,

we may improve predictions by incorporating behaviour in

more sophisticated ways using interaction-based models, start-

ing at local scales and expanding to larger scale ecological

networks when data become available.

A related point is that, although we have largely focused

on how particular behaviours may influence extinction risk,

such factors may yet prove to be less important than behav-

ioural flexibility itself [63]. Individual organisms with the

ability to modify their behaviour through adaptability (i.e.

plasticity) may be better able to survive when confronted

with novel environmental conditions and selection pressures

imposed by anthropogenic change. Defining and developing

general indices of behavioural flexibility and innovation

remains a challenge [64], but may nevertheless be broadly pre-

dictable by morphometric traits that are increasingly available

at large scales [65]. For instance, differences in relative brain

size across species is positively associated with rates of behav-

ioural innovation in birds, an effect that may explain the

apparently greater success of large brained species in coloniz-

ing and persisting in more unpredictable environments

[66,67], including cities, the most highly altered of human

environments (i.e. the ‘cognitive buffer’ hypothesis) [43].
(b) Opportunities
Although they extend the number of behavioural traits com-

piled across a major global radiation, our analyses are limited
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by the patchy availability of trait datasets and thus remain

highly incomplete (figure 1). A major omission is dispersal

behaviour, which we only include as a simple score of

migration. Dispersal has long been considered relevant to

the conservation of fragmented populations and the

optimum design of reserve networks [2]. However, despite

the likely importance of dispersal to understanding biodiver-

sity responses to habitat loss and fragmentation, most

broad-scale models (e.g. [68,69]) lack estimates of dispersal

behaviour simply because they are generally not available

as a standardized organismal trait at macroecological scales.

This problem may be addressed by the fast-moving field of

movement ecology, with global positioning system trackers

and loggers deployed over increasing numbers of species

[70], and data compilation accelerated by new satellite track-

ing systems, such as ICARUS (https://icarusinitiative.org).

Given that it could take decades for these technological inno-

vations to generate comprehensive dispersal estimates across

major taxonomic groups, one potential stopgap solution is to

use morphometric indices of dispersal or flight ability. Dis-

persal indices, such as hand-wing index in birds, can be

estimated by measuring museum specimens to provide a

fuller picture of spatial ecology and movement behaviour

across multiple species in macroecological analyses (e.g.

[71]) and comparative studies of anthropogenic threats (e.g.

[27]). Such indices, along with further missing data on factors

such as reproductive rate and sensitivity to disturbance

(figure 1) should be compiled and applied to conservation

assessments at global scales.

Another area where behavioural indices may prove useful

is ecological forecasting. At present, dispersal is usually

ignored in global range shift models, or only included on

the basis of crude metrics, such as geographical range size

(e.g. [72]). Similarly, species interactions are difficult to quan-

tify and, while most range shift forecasting models

acknowledge the limitation, they are generally not included

in analyses. Future models should explore the possibility of

estimating the strength of species interactions using either

pairwise morphometric trait divergence or scores of territor-

ial behaviour, both of which have been shown to limit

geographical range overlap in pairs of avian sister species

[58,73]. Theoretically, suites of behavioural traits and associ-

ated morphometric indices can be incorporated into species

distribution modelling in much the same way proposed for

detailed physiological traits [74].

The associations we detect between behaviour and conser-

vation status (figure 3) suggest that future research could use

similar techniques to identify ‘threatened behaviours’ or suites

of behaviours. Using global analyses to look beyond species

conservation and instead to identify behaviours that are rare

or declining might be a useful step towards targeting conser-

vation action towards maintaining behavioural trait

diversity. Similarly, the completion of rich behavioural trait

datasets for entire taxonomic groups would pave the way

towards multi-dimensional community-based analyses of
behavioural diversity (BD) metrics, adopting methods from

the functional diversity literature [75,76]. Setting strategic con-

servation priorities based on rare behaviours or BD may have

important implications for ecosystem function, particularly

when focusing on behavioural traits linked to key ecological

processes, such as trophic interactions (pollination, seed disper-

sal, etc.). In addition, there are opportunities for including

behaviours in models designed to pinpoint likely future shifts

in conservation status by estimating latent extinction risk [77].

The way these models work is to predict threat status for any

taxon based on a wide range of attributes and then compare

predictions with their observed threat status, thus flagging up

any species currently ‘flying under the radar’ (i.e. probably

more threated, and thus a higher conservation priority, than

indicated by their current conservation status).
5. Conclusion
Over recent years, there have been repeated calls for behav-

ioural ecologists to increase their focus on conservation, not

least because their study organisms are being driven to

extinction by anthropogenic change [3]. Previous authors

have suggested that bridging the gulf between these fields

might be achieved by applying the experimental or mechan-

istic approaches predominant in behavioural ecology to

conservation research [78], or else returning to more descrip-

tive forms of behavioural ecology potentially relevant to

conservation [6]. However, neither of these approaches are

exactly suited to the needs of global conservation assessments

which call for simple standardized classifications of basic be-

havioural traits at ambitious scales, including natural history

observations and morphometric measurements. Our analyses

show how global behavioural classifications are now within

reach for some major taxa, highlighting the need for contin-

ued sampling of basic descriptive information for massive

samples of species and pointing the way forward to a

deeper integration of the resultant datasets into conservation

assessments at the scale of clades, communities and

ecosystems.
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