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Anthropogenically induced fragmentation constitutes a major threat to bio-

diversity. Presently, conservation research and actions focus predominantly

on fragmentation caused directly by physical transformation of the land-

scape (e.g. deforestation, agriculture, urbanization, roads, etc.). While there

is no doubt that landscape features play a key role in fragmenting popu-

lations or enhancing connectivity, fragmentation may also come about by

processes other than the transformation of the landscape and which may

not be readily visible. Such landscape-independent fragmentation (LIF)

usually comes about when anthropogenic disturbance alters the inter- and

intra-specific interactions among and within species. LIF and its drivers

have received little attention in the scientific literature and in the manage-

ment of wildlife populations. We discuss three major classes of LIF

processes and their relevance for the conservation and management of

species and habitats: (i) interspecific dispersal dependency, in which popu-

lations of species that rely on other species for transport and propagation

become fragmented as the transporting species declines; (ii) interspecific

avoidance induction, where species are excluded from habitats and corridors

owing to interspecific interactions resulting from anthropogenically induced

changes in community structure (e.g. exclusions by increased predation

pressure); and (iii) intraspecific behavioural divergence, where populations

become segregated owing to anthropogenically induced behavioural

differentiation among them.

This article is part of the theme issue ‘Linking behaviour to dynamics

of populations and communities: application of novel approaches in

behavioural ecology to conservation’.
1. Background
One of the primary threats to biodiversity in the Anthropocene is habitat

fragmentation [1,2]. Habitat fragmentation occurs when a continuous habitat

is divided into two or more fragments associated with a consequent reduction

in the total amount of area, as well as with changes to the habitat’s spatial con-

figuration [2–4]. Both processes may have devastating effects on animal

populations by limiting dispersal (e.g. [5]), limiting access to food and mates

(e.g. [6,7]), promoting Allee effects (e.g. [8,9]) and enhancing drift-related pro-

cesses (e.g. [10,11]). Consequently, there is a huge body of research on habitat

fragmentation, with some estimating that over 15% of ecological papers

between the years 2000–2016 have dealt with habitat fragmentation or its

inverse—habitat connectivity [12].

Habitat connectivity has been studied from two different perspectives [13].

The first, structural connectivity, refers to the physical configuration of the
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Figure 1. Population fragmentation can come about either owing to direct anthropogenic modifications to the landscape, or indirectly owing to the responses of
animals to anthropogenically driven alteration to the community structure or owing to anthropogenic selection on animal behaviour. We term these indirect drivers
landscape-independent fragmentation (LIF). Different LIF processes can interact and intensify other LIF processes, as well as interact and reduce the permeability of
the physical landscape to some species.
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landscape (such as the shape, size and location of landscape

features including physical barriers to movement; [14]). The

second, functional connectivity, refers to how the behaviour

of a dispersing individual is affected by landscape structure

and elements, as expressed by its movement patterns [13].

Historic work on landscape connectivity tended to focus on

structural connectivity. However, structural connectivity

metrics are often meaningless for conservation planning

when considered independently [13,15], and thus modern

conservation work either centres on functional connectivity,

or on the interactions between structural aspects of a land-

scape (such as vegetation type) and functional aspects of

movement behaviour [16,17]. Regardless of the differences

between the two approaches, both structural and functional

connectivity are regarded as landscape metrics in their

essence, derived directly from physical features of the area,

with functional connectivity assumed to describe the ease

at which animals can traverse some landscape type or feature

regardless of the internal state of the dispersing individual or

its motivation [17–19].

The field of population genetics has seen an even stronger

shift away from landscape-centred metrics. Traditionally, the

theory of ’isolation by distance’ (IBD) was used to describe

patterns in which genetic differentiation increases with geo-

graphical distance when dispersal among populations is

geographically restricted [20]. Indeed, there is a large body

of accumulated evidence showing IBD to be a common pattern

in nature [21,22]. However, geography represents only one

component that can potentially influence gene flow and popu-

lation connectivity [23–25], and the past decade has seen the

rise of the ’isolation by environment’ (IBE) concept that

describes a pattern in which genetic differentiation increases

with environmental differences, independent of geographical

distances [22,25,26]. However, IBE research tends to concen-

trate on describing patterns without investigating the

mechanisms that have generated these patterns [25].
While there is no doubt that landscape features play a key

role in fragmenting populations or enhancing connectivity,

fragmentation may also come about owing to processes not

directly linked to the landscape. Such landscape-independent

fragmentation (LIF) usually comes about when anthropogenic

disturbance alters the inter- and intra-specific interactions

among and within species. These altered interactions may

change the way some species perceive their environment or

use it, creating species-specific barriers that may be invisible

to the human eye. Such processes have so far received little

attention in the scientific literature and in the management of

wildlife populations. In this paper, we will highlight three

major classes of anthropogenically induced LIF processes: frag-

mentation resulting from interspecific dispersal dependency in

which the decline of species that serve as pollinators or seed

dispersers hinders the dispersal of the species that rely on

them; fragmentation by interspecific exclusion where species

avoid habitats and corridors owing to interspecific interactions

such as increased predation risk or competition; and fragmenta-

tion by intraspecific behavioural segregation where populations

become segregated owing to the effects of human-induced

selection on behavioural traits (figure 1).
2. Interspecific dispersal dependency
Many species rely on other species for their population

growth and propagation in space. Most notably, the majority

of flowering plant species rely on animals for the transfer of

male gametes to a receptive female plant, making pollination

one of the most critical ecosystem processes on our planet

[27,28]). Furthermore, many plants also rely on animals to

disperse their seeds. This process, termed zoochory, is extre-

mely common and can take many forms [29,30] such as

transferring the seed in the gut of the animal (endozoochory;

[31]), having the seed externally attached to a moving animal

(epizoochory; [29,32]), or having the seed intentionally
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carried away by an animal for later consumption (synzooch-

ory; e.g. [33]). Zoochory is a key process in forming,

structuring and maintaining plant communities [34].

Plants that rely on pollination or seed dispersal for

their propagation may, therefore, be affected by two types

of fragmentation processes. The first, and already well-

established process is landscape fragmentation that poses a

real threat to pollination and seed dispersal systems by

reducing the amount of resources available for pollinators

and seed dispersers and by altering their community compo-

sition [27,28,35,36]. For example, Lehouck et al. [37] found

that seed removal rates from intact forest patches were 3.5

higher on average than removal rates in fragmented patches,

and fragmentation has been found to alter the fine-scale

spatial genetic structure even for species that are wind-polli-

nated, owing to the prevention of secondary seed dispersal

by rodents [38]. Second, the crucial role that pollinators and

seed dispersers play in connecting between plants’ popu-

lations means that any substantial decrease in their

numbers, regardless of its cause, can greatly reduce connec-

tivity among plant populations. This fragmentation process,

which may be independent of any landscape features (e.g.

it may result from overexploitation or disease), is expected

to be especially pronounced in plants that specialize on a

specific pollinator or seed disperser [35,39].

Wild bees, for example, are essential pollinators of many

wild plants [28,40]. The global decline in bee populations

worldwide [41,42] is bound to directly affect plant popu-

lations, as indeed some studies have already shown [41,43].

Other examples include the local extinction of Arabian

oryx, Oryx leucoryx, in the beginning of the twentieth century.

The oryx is the main disperser of Acacia raddiana seeds—a

keystone species in the Negev Desert in Israel that provides

habitat and food to many species, especially during the dry

season. The disappearance of the oryx from the region has

been suggested to contribute to recent die-offs of acacia

stands, by extremely reducing the recruitment rate of new

trees [44]. Similarly, in Kibale National Park, Uganda, seed-

ling recruitment in forest patches where primates are

harvested or driven away were dramatically lower than in

patches with an intact frugivore community [45]. In some

cases, changes to the behaviour of the seed disperser may

be enough to drive fragmentation-inducing processes. For

example, the Malabar grey hornbill, Ocyceros griseus, is a

major seed disperser of white cedar, Dysoxylum malabaricum.

However, despite being able to carry the malabaricum’s seed

to distances of 10 km and more, in fragmented landscapes

in the Western Ghats, 95% of seed dispersal was within

200 m of the fruiting tree, probably owing to changes in the

movement patterns of the hornbills [46].

Fragmentation as a result of interspecific dispersal

dependency has the same negative impacts as ‘regular’ land-

scape fragmentation such as reduced genetic diversity,

increased sensitivity to Allee effects, and eventually extinc-

tion. However, in order to prevent interspecific dispersal

dependency fragmentation from occurring, we must strive

to conserve plant-pollinator and plant-seed disperser

interactions whenever possible, and put an emphasis on

specialist species, as these species are particularly vulnerable

to environmental changes. In addition, in some cases locally

extinct species can be reintroduced back into the ecosystem to

restore their historic ecosystem functions as pollinators and

seed-dispersers for local plant species [36,47].
3. Interspecific avoidance induction
Animal behaviour serves as a mediator between an

individual and its environment. Consequently, changes to

the environment are in many cases followed by behavioural

changes aimed at mitigating any ill-effects the environmental

changes may hold [48]. Fragmentation may occur when

anthropogenic activity results in changes to the community

structure (either directly or through cascading effects), and

specifically, in an increased presence of predators or compe-

titors owing to local overabundance, invasive aliens, or

shifts in diel activity patterns [49].

In addition to the physical landscape which includes fea-

tures such as mountains and valleys, running rivers and

forests, there is another landscape, mostly invisible to the

human eye; this is the ‘landscape of fear’ where the contours

of the map represent different levels of perceived risk owing

to interspecific aggressive interactions (mostly predation

[50]). Predation risk is of course closely related to topogra-

phical features of the landscape, but is also strongly

affected by many other factors such as the type of preda-

tor, the predator’s mode of attack and overall lethality,

the effectiveness of the prey’s antipredator behaviours,

etc. [50–53]. The landscape of fear shapes animals’ habitat

selection (e.g. European hares, Lepus europaeus, avoid riskier

habitats with low vegetation for up to 24 h following preda-

tor exposure [54]) and movements across the ’real’ landscape.

Fear may affect dispersal patterns [55,56] either by promoting

it (when the risk is high in the point of origin, e.g. [57,58]),

or by hindering it (e.g. [59,60]), and may also shape the

movement routes of migrating animals [61,62].

Anthropogenic disturbances can induce changes to

animals’ landscapes of fear, which in turn can influence

their movement patterns and cause populations to become

fragmented. For instance, human development is usually

accompanied by substantial changes to wildlife communities,

and in particular, with large shifts in the predators’ commu-

nity composition [63]. While many apex predators have been

forced away from human-dominated landscapes (either to

wilder areas, or to extinction), other predators thrive

around humans. For example, coyotes, Canis latrans, are

mesocarnivores that have been released from predation and

competition with the eradication of large carnivores in the

midwestern USA. As a result, their populations have

increased dramatically [64,65], with serious consequences to

their prey species. Jones et al. [65] demonstrated that coyotes’

occurrences have instigated changes to the distribution and

habitat use of various mammalian herbivores, causing

white-tailed deer, Odocoileus virginianus, to seek denser

forest cover, and squirrels (Sciurus spp.) and cottontails

(Sylvilagus floridanus) to increase their use of urban areas. In

Spain, the introduction of predators to the Ebro Delta

region resulted in differential breeding dispersal in local

Audouin’s gull (Ichthyaetus audouinii) colonies: experienced

breeders became more likely to leave the colony and younger

breeders were more likely to stay. This differential dispersal

modified the age structure in the colonies and reduced the

reproductive success of the entire population [66].

Fragmentation may also come about through temporal

changes to the landscape of fear. Human activity has a

strong influence on animals’ diel patterns, and animals

across the globe have been documented to shift their activity

period into the night in response to human disturbances [67].
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Although diel shifts are in many cases central to maintain

connectivity in species that avoid humans, the changes in

the temporal patterns of one species owing to anthropogenic

disturbance may cascade and impact the space-use patterns

of other species, fragmenting their population in the process.

For example, Shamoon et al. [49] used an array of camera-

traps to measure the spatial and temporal activity patterns

of five mammal species along a gradient of human activity

in a Mediterranean natural-agricultural landscape, where

the agricultural landscape is considered an ecological corri-

dor by the planning authorities. They found out that

human activity during the day in the agricultural fields

caused a shift in the activity of the golden jackal, Canis
aureus, to the night. The endangered mountain gazelle,

Gazella gazella, also shifted its activity patterns in the presence

of human disturbance, becoming much more active at night.

However, in the agricultural fields, the presence of human

activity during the day, and the resulting increased levels of

predator activity during the night have practically excluded

the gazelles from these areas, rendering them useless as

ecological corridors for this species [49,68].

Humans do not only modify animal-movement

behaviour by introducing predators into the landscape. In

many cases, humans themselves are regarded as the preda-

tors. While this is of course evident in areas that suffer

from high levels of hunting or poaching (e.g. [69]), some rec-

reational activities also modify animals’ landscapes of fear

and constrain their movements [70,71].

So far, this section has focused predominantly on the

effects of predation risk on animals’ movement patterns.

This is mainly owing to the fact that most known examples

of interspecific interactions that limit and shape movement

are centred on predator–prey interactions. However, other

processes of interspecific avoidance inductions exist. One of

these processes is interference competition. We know that

many species alter their movement and habitat choice beha-

viours in order to avoid superior competitors. For instance,

the presence of wolves limits the distribution and abundance

of coyotes by altering the coyotes’ dispersal rates [72], chee-

tahs actively move away from areas inhabited by lions and

hyenas [73], and arctic foxes avoid areas with red foxes,

thus being excluded from breeding in low altitude habitats

[74]. Thus, interference competition can lead to population

fragmentation through the same mechanism as predation

risk. Another interspecific process that has been getting

increased scientific attention recently is parasite avoidance

behaviour that may be similar in many respects to

anti-predatory behaviour. According to recent studies, the

’landscape of disgust’, which represents animals’ perceived

infection threats, may hinder and shape the movement of

individuals, the same way the landscape of fear does [75,76].

4. Intraspecific behavioural divergence
Anthropogenic disturbances exert human-induced selec-

tion [77,78]. Such anthropogenic selection can induce

fragmentation by reducing effective dispersal as a result of

behavioural barriers between populations. Because the type

and intensity of anthropogenic disturbance vary over space

and because this variation may be abrupt (e.g. a focal point

highly visited by tourists within a larger natural and rela-

tively pristine area), adjacent populations may be subject to

different selection pressures. The role of animal behaviour
as a mediator between the individual and its environment

means that responses to these different selective forces will

usually first be expressed via changes in individual behav-

iour which may, in turn, result in behavioural divergence

and inter-population breeding avoidance, eventually generat-

ing genetic neighbourhoods [79]. Commensalism in urban

environments, in particular, may drive such processes

where the urban populations of synanthropic species may

undergo local evolution favouring genotypes that are better

fit to urban environments (e.g. noise adaptations) and those

exhibiting increased dependence on anthropogenic resources

[80,81], while their conspecific outside the urban areas remain

relatively unchanged.

Bird singing dialects are a good example of how such pro-

cesses may be manifested: Danner et al. [82] found that females

of rufous-collared sparrows (Zonotrichia capensis) prefer to mate

with males singing natal dialects thereby driving reproductive

isolation. At the same time, several studies reported that urban

birds change their dialect to cope with the noisy environments

[83] and males responded more strongly to current than to his-

torical songs [84]. Such behavioural divergence between bird

populations can lead to genetic differentiation despite the fact

that no physical barrier separates them from one other.

Another phenomenon that may induce behavioural divergence

and generate LIF is habituation and the resulting dependence

of wildlife populations on human resources. In Israel, commen-

sal foxes have access to abundant resources and consequently

are characterized by high densities, smaller home-range size,

heavier offspring, and higher recruitment rates [85]. Although

individuals in these populations emigrate out into the natural

surroundings, they are unable to survive in the wild [86,87]

and with little evidence of any immigration, they appear to

be isolated from the fox populations in the surrounding matrix.

A similar example comes from Switzerland, where allelic

diversity and genetic differentiation were quantified between

urban and rural populations of red foxes, Vulpes vulpes,

around Zurich [88]. The researchers found that the urban

fox populations, which at the time of the test were approxi-

mately 15 years old, were differentiated genetically from

nearby rural populations. The observed differentiation

could not be explained by the geographical arrangement of

the populations because genetic differentiation between two

rural populations was much lower despite the fact that the

geographical distance was much higher between them.

Genetic differentiation among close populations has been

documented in other species as well. For instance, the

Nubian ibex, Capra nubiana, is a social desert ungulate that

is listed as Vulnerable by the International Union for Conser-

vation of Nature, and is typically found on or nearby cliffs in

the vicinity of desert oases. Ibex populations in the vicinity of

two human settlements in the Negev desert in Israel (the vil-

lage of Midreshet Ben-Gurion and the town of Mitzpe

Ramon) have been shown to exhibit high tolerance towards

humans and human disturbances [89], and an increasing

reliance on food and water resources provided by these settle-

ments (D. Saltz 2019, personal observations). The distance

between the two settlements is approximately 50 km that

include continuous cliffs and water sources, both of which

are important for the ibex, and in the past, the presence of

ibex has been regularly documented on this route [90]. How-

ever, a recent analysis found strong genetic differentiation

between the two populations [90]. Because the physical land-

scape in the area did not undergo any major alterations in the



Table 1. A list of landscape-independent fragmentation (LIF) processes that are highlighted in this paper, their main drivers, and the main mechanisms through
which they can elicit fragmentation.

LIF process driver main mechanisms

interspecific dispersal

dependency

changes to community structure — global or local extinction of a pollinator, seed disperser or host species

— reduced movement in a pollinator, seed disperser or host species

interspecific avoidance

induction

changes to community structure — ‘landscape of fear’: avoidance of areas (and periods) with high perceived

risk of predation

— avoidance of areas (and periods) with strong interference competition

— ‘landscape of disgust’: avoidance of areas (and periods) with high

perceived infection rates

intraspecific behavioural

divergence

anthropogenic selection on

behaviour

— selection for reduced dispersal

— selection for behaviours linked to reduced dispersal (e.g. shyness,

low aggressiveness)

— divergence in courtship or mating behaviour

— divergence owing to high tolerance of local populations to human

disturbances
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past few decades, the separation between the two popu-

lations is believed to be caused by behavioural

differentiation because of their attraction to the human settle-

ments [90]. Both of the abovementioned examples (the foxes

and the ibex), are cases of documented ’isolation by environ-

ment’, where genetic differentiation is a function of the

environment and is independent of geographical distance.

The proposed mechanism in these cases is behavioural segre-

gation or behavioural specialization where a positive

feedback loop is created—becoming specialized in one habitat

reduces the tendency to use other habitat types, which further

increases specialization and so forth.

Dispersal is a complex behaviour that is composed from a

suite of phenotypic traits (also called dispersal syndromes;

[91]), and is correlated with many other internal and external

factors, including other behavioural traits. Similarly, a behav-

ioural syndrome is a suite of correlated behaviours expressed

across different contexts (e.g. correlations among feeding,

antipredator, mating, aggressive and dispersal behaviours;

[92]). Recently, there is a growing awareness in the scientific

literature of the links between dispersal syndromes and be-

havioural syndromes (also called personality-dependent

dispersal syndromes; [93]). For example, boldness is usually

associated with increased dispersal [94,95]. The effects of

aggression on dispersal behaviour are less clear-cut [95,96].

In some species, less aggressive individuals were found to

be more likely to disperse [97–99], while in other species,

more aggressive individuals were more dispersive [100,101].

Other more specific behaviours have also been associated

with dispersal behaviours. For instance, in the Alpine swift,

Apus melba, nest-defence behaviour has been found to be

negatively correlated with natal dispersal [102]. This means

that anthropogenic selection against some behavioural traits

(such as boldness) can result in increased fragmentation,

because shyer individuals are less likely to disperse. More-

over, such selection may result in synergistic interactions

with other fragmentation-inducing processes. For instance,

shyer individuals may also be more likely to avoid corridors

owing to interspecific avoidance induction.
5. Discussion
We highlighted three landscape-independent processes that

can fragment wild populations of animals and plants

(table 1). It is important to point out that we have separated

the processes governing fragmentation into landscape and

landscape-independent in order to draw attention to impor-

tant processes that have so far received very little attention

in the literature. However, in reality, it is likely that the sep-

aration into landscape and landscape-independent

processes is murkier. For example, wolves are known to

prefer to travel along natural and anthropogenic linear fea-

tures causing woodland caribou in northeastern Alberta to

avoid such features [103]. The caribou are reacting to a

change in the community structure in their area, avoiding

areas of higher predation risk, but this change is directly

linked to anthropogenic modifications of the landscape. In

a similar fashion, animals may be deterred by traffic noise

or the road lights, rather than by the road itself, because

both noise and light can be associated with heightened pre-

dation risk [104,105]. Another case that serves to emphasize

the complex interactions between landscape dependent and

independent processes is the effects of local resources on

interspecific dispersal dependency. Any changes to the distri-

bution of attractive resources—such as food patches, shelters

or conspecifics, or alternatively, any changes to the way indi-

viduals perceive these resources, may alter movement of

individuals through the transformed landscape, which in

turn may have a strong effect on plant species relying on

these individuals for spatial propagation. We, therefore,

believe that anthropogenic fragmentation may be best

described as a continuum in which at one end fragmentation

is purely the result of landscape modifications that present

physical barriers to movement, and at the other end, frag-

mentation is purely the result of anthropogenic impacts on

inter- and intra-specific interactions without any landscape

component to them (figure 1).

It is also important to note that LIF processes are not

mutually exclusive and they may operate at the same time or
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may be dependent on one another resulting either in syner-

gism (see example above on how selection against boldness

can induce fragmentation through two different processes),

or in a cascading fragmentation effect (e.g. if dispersal is

reduced in species A owing to interspecific avoidance induc-

tion, this can also induce fragmentation in species B, if

species B relies on species A for propagation or transport).

In this paper, we concentrate on how inter- and intra-

specific interactions can drive LIF, but the same general prin-

ciples we put forth can also explain landscape-independent

increase in connectivity. From the perspective of interspecific

dispersal dependency, novel and exotic species can serve as

new seed dispersers or pollinators [106,107], and humans

themselves can be a major agent of transportation for

pollen, seeds and entire organisms [108]. Interspecific avoid-

ance induction may sometimes become interspecific

attraction induction when anthropogenic changes to the com-

munity increase the propensity of species to move into certain

habitats, and just as human-induced selection could reduce

the tendency of animals to disperse, it may also make that

tendency stronger in some cases [109]. From a conservation

perspective, such ’invisible movement facilitators’ may

benefit populations at risk, but may also pose a serious pro-

blem when they promote the movement of invasive species

and disease vectors [110,111]. As in the case of the invisible

barriers, being aware of the processes that promote move-

ment across the landscape is the first step in creating

effective mitigation strategies when necessary.

The movement and habitat choices of animals are directly

linked to the distribution of animal and plant species in space

and time [48,112]. Therefore, any changes to these movement

patterns are bound to have an impact on their ecosystem.

These ’behavioural cascades’ have mostly been described in

the literature in the context of the non-lethal effects of top pre-

dators on their ecosystems (e.g. [48,49,113]) and are also

known as behaviourally mediated trophic cascades

(BMTCs, [114,115]). Indeed, the process of interspecific avoid-

ance induction encapsulates some of the negative

consequences that human-induced BMTCs can have on
wildlife populations. However, behavioural cascades are

not limited to the effects of apex predators. Novel anthro-

pogenic resources, such as dumps, crop residuals, and fish

ponds are relatively predictable in space and time, making

them sometimes easier to access than natural resources

[116]. Such resources have been found to alter the movement

and space-use behaviours of predators and prey alike

[117,118], thus initiating behavioural cascades that can radi-

cally change ecosystems. Other anthropogenic disturbances

such as noise or light pollution can also elicit behavioural

changes that can cascade throughout ecosystems [119,120].

We believe that studies investigating behavioural cascades

that are driven by anthropogenic changes to the landscape

are sorely needed.

There is no doubt that understanding how animal

movement interacts with the physical attributes of the land-

scape is critical for our ability to conserve and manage

wildlife populations. However, it may not be enough. To suc-

cessfully and efficiently address the problem of fragmentation,

we must integrate landscape-independent genetic and behav-

ioural knowledge with the more traditional landscape-based

approach. By gaining insights into the mechanistic underpin-

nings of movement and dispersal, wildlife managers will be

able to identify and eliminate or mitigate LIF processes,

increasing connectivity among populations, thus improving

their chances of survival in our rapidly changing world.
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