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Conservation takes place within social–ecological systems, and many

conservation interventions aim to influence human behaviour in order to

push these systems towards sustainability. Predictive models of human

behaviour are potentially powerful tools to support these interventions. This

is particularly true if the models can link the attributes and behaviour of indi-

viduals with the dynamics of the social and environmental systems within

which they operate. Here we explore this potential by showing how combining

two modelling approaches (social network analysis, SNA, and agent-based

modelling, ABM) could lead to more robust insights into a particular type of

conservation intervention. We use our simple model, which simulates knowl-

edge of ranger patrols through a hunting community and is based on empirical

data from a Cambodian protected area, to highlight the complex, context-

dependent nature of outcomes of information-sharing interventions, depending

both on the configuration of the network and the attributes of the agents. We

conclude by reflecting that both SNA and ABM, and many other modelling

tools, are still too compartmentalized in application, either in ecology or

social science, despite the strong methodological and conceptual parallels

between their uses in different disciplines. Even a greater sharing of methods

between disciplines is insufficient, however; given the impact of conserva-

tion on both the social and ecological aspects of systems (and vice versa),

a fully integrated approach is needed, combining both the modelling

approaches and the disciplinary insights of ecology and social science.

This article is part of the theme issue ‘Linking behaviour to dynamics

of populations and communities: application of novel approaches in

behavioural ecology to conservation’.
1. Introduction
Biodiversity loss and ecosystem degradation result from human actions such as

over-harvesting of biological resources, destruction of habitat, and anthropogenic

climate change [1,2]. Conservation is action taken to reduce the loss of biodiversity,

to maintain the functioning of natural ecosystems, and to restore nature. While eco-

logical knowledge is vital for successful conservation, the anthropogenic nature of

these threats means that action to modify human behaviour and social systems is

often necessary [3]. These systems operate across multiple scales, from global mar-

kets and governance institutions, to the behaviour of smallholder farmers [4].

Conservation interventions developed with little understanding of social system

dynamics could result in simplistic and misguided approaches. More effective con-

servation, that seeks to influence the social drivers of ecological change, requires a

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2018.0053&domain=pdf&date_stamp=2019-07-29
http://dx.doi.org/10.1098/rstb/374/1781
http://dx.doi.org/10.1098/rstb/374/1781
http://dx.doi.org/10.1098/rstb/374/1781
http://dx.doi.org/10.1098/rstb/374/1781
mailto:andrew.dobson@ed.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4540400
https://dx.doi.org/10.6084/m9.figshare.c.4540400
http://orcid.org/
http://orcid.org/0000-0003-1058-2801
http://orcid.org/0000-0002-5853-3657
http://orcid.org/0000-0002-9704-5576
http://orcid.org/0000-0003-1213-4834
http://orcid.org/0000-0003-0324-2710
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180053

2
more nuanced and predictive understanding of these drivers

[5]. There have been recent calls for more predictive approaches

in ecology, making ecological science more useful for real-

world applications [6]. In conservation, there is a long history

of using models to explore the effectiveness of different inter-

ventions (e.g. Population Viability Analysis [7,8] and the

Incidence Function Model [9]). However, there is much less

focus on the use of predictive modelling to understand

human behavioural responses to conservation action [10].

Human behaviour is the object of inquiry in a vast number

of academic disciplines with disparate epistemological

perspectives and methodological approaches (e.g. [11]). Con-

servation scientists have predominantly drawn on economic

and psychological models of individual behaviour [12]. For

example, the Theory of Planned Behaviour from social psychol-

ogy has been used extensively to understand individual

behaviours and to design interventions [13]. Bounded Ration-

ality, from economics, is also relevant, but has not been widely

adopted in conservation [14]. Economic models of humans as

rational actors have been used to understand hunting patterns

[15]. Models from behavioural ecology are also applied to

humans, analogous to the rational utility-maximizing models

of economics but substituting fitness for utility. However, uti-

lity-maximizing frameworks need to be used with care, in

the light of the important role of proximate mechanisms in

determining the behaviour of both humans and other animals

(e.g. psychological state; [16]).

Integrating the various bodies of knowledge about

human behaviour with ecological data to produce more

meaningful understanding of human-altered ecosystems

and inform more effective conservation action, is an ongoing

and challenging process [17]. One approach to integrating

social and ecological knowledge that has been well devel-

oped is the modelling of social–ecological systems, which

make explicit linkages between the ecological and social com-

ponents of a system [18]. This enables predictions to be made

about how changes in the social system might impact the eco-

system and vice versa [19]. However, the accuracy of these

predictions depends on the degree to which knowledge of

both the ecological and the social components is integrated

into the model, and the manner in which this is achieved [20].

One technique which is very amenable to crossover

between the ecological and social sciences is agent-based mod-

elling (ABM), often referred to in ecology as individual-based

modelling [21]. This sets rules for how individuals respond to

their environment, allowing complex phenomena to emerge at

the macro level. For example, ABMs have been used to model

collective nest choice in ants [22], as well as racial segregation

in urban neighbourhoods [23]. Social network analysis (SNA)

is a complementary approach that provides theoretical frame-

works for modelling the interactions between individuals,

revealing how social structures influence individual beha-

viours and vice versa [24]. For example, SNA has been used

to understand how innovations spread in populations of

wild birds [25], and the spread of obesity in humans [26].

The two approaches differ principally in their perspective; an

ABM is used to explore the outputs of complex systems

(such as networks) by focusing on the behaviours of, and inter-

actions between, individual components. In this view, the

particular structures taken by the system are rarely the object

of interest to the researcher. By contrast, in SNA—which is a

suite of related techniques rather than a single method—the

structural qualities of networks of individuals are explicitly
regarded as determinants of group and/or individual behav-

iour and vice versa. Combining these two modelling

approaches, such as by nesting ABMs within a social network,

offers potentially rich insights into the behaviour of social

groups. However, this has only rarely been attempted

(though see [27] for an example from non-human epidemiol-

ogy). One notable example from public health, which shares

many characteristics with conservation (i.e. the goal of influen-

cing the behaviour of groups of people), is the use of this

integrated method to explore the effectiveness of anti-obesity

interventions in social networks formed in schools [28].

One important basic mechanism influencing human

behaviour is the flow of information. All theories of human

behaviour recognize that people act on the basis of information

received about the world [14], while acknowledging that the

relationship between information receipt and subsequent

behavioural change is not straightforward [29]. Not surpris-

ingly, therefore, many conservation interventions aim to

provide information in order to change individual behaviours.

For example, law enforcement interventions may attempt to

deter would-be rule-breakers by providing credible infor-

mation about the risks and costs of punishment [30]. This

information can come from direct experience or from com-

munication with others. Many studies have shown that

communication networks play a key role in determining

who accesses certain information or adopts certain behaviours,

and therefore that these networks determine socio-ecological

outcomes (for a review in the context of natural resource man-

agement, see [31]). For example, in a Hawaiian fishery, a

disconnection between two groups of fishers prohibited the

spread of bycatch reduction techniques [32]. However, there

is limited understanding within conservation science of the

theory and practice of information flow, even though SNA is

not an unfamiliar approach per se, and one which, ironically

perhaps, has its origins in understanding the way that infor-

mation moves through and influences human networks [33].

In this paper we explore how ABMs and SNAs, separately

and in tandem, could be useful for understanding the

dynamics of structured information flow. We examine the

potential benefits of promoting a cross-over between the eco-

logical and social sciences in conservation, where the

emergent properties of individual actions inform system-level

dynamics. We use a case study of the flow of information

about the penalties for rule-breaking to illustrate how the

two techniques may be used interactively to design an effective

conservation intervention. We use insights from our work with

communities in Cambodian protected areas to develop our

analysis in the context of a real conservation situation [34].

We next reflect on the potential of SNAs and ABMs to improve

our understanding of how individual decisions feed through

into population-level dynamics, in the context of conservation

science and practice. We close by reflecting on the future poten-

tial for cross-over between the ecological and social sciences in

modelling human decision-making for conservation.
2. Social network analysis and agent-based
modellings in ecology and social science

(a) Agent-based modelling
An ABM is a bottom-up modelling approach in which the

macro-scale characteristics of a complex system (for example,
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a biological community) are investigated by simulating the

behaviour of constituent agents that follow pre-determined

rules [35,36]. There may also be learning components, such

that an agent’s behaviour can be modified by experience

[37,38].

Because small changes to starting conditions or behav-

ioural rules could have profound downstream effects,

ABMs are often better suited to exploring the potential mech-

anisms that are capable of generating observed phenomena

and performing experiments in silico than to predicting

real-world behaviour [39,40]. Furthermore, ABMs are

context-specific simulations, and must therefore be designed

for specific problems, meaning that generalizing their results

can be challenging ([41], though see [42]). Nonetheless, ABMs

have been very widely employed across the natural, social

and economic sciences [41–43], in situations as diverse as

the movement of people fleeing a building via a fire escape

[44] and the potential response of the stock market to changes

in trading policies [45]. In ecology, ABMs are often used to

understand the dynamics of populations and communities

of organisms, with agents representing either individuals

(e.g. [46,47]) or other discrete units such as wolf packs [48].

Models combining humans and other animals can yield

insights into human–wildlife conflicts (e.g. [49]) and the

dynamics of harvesting (e.g. [50]), both of which have impli-

cations for conservation. ABMs for humans are conceptually

identical to those for non-human animals, though in the case

of humans there is much more scope for incorporating behav-

iour that has not been empirically observed, and hence to

explore hypothetical scenarios.
(b) Social network analysis
Humans, like other social animals, interact with others and

form enduring relationships which influence how they

behave. For example, through social interactions individuals

come to learn new behaviours [51], but are also constrained

by the need to conform to social norms [52]. In this way,

many interacting individuals together make up societies

which function in enduring and ordered ways. SNA is an

analytical approach to studying social structures via the inter-

actions between individuals, allowing these structures to be

quantitatively described [24]. SNA techniques provide objec-

tive bases for testing hypotheses about relationships between

network structures and emergent outcomes (e.g. the speed at

which a problem can be solved by a network of people; [53])

and also allows researchers to explain how social structure

influences, and is influenced by, the behaviours of individ-

uals. In SNA, individuals are conceptualized as nodes

connected by edges representing their interactions. These

graphs are then analysed using network-theoretic concepts

[24,54].

SNA has been used extensively in both behavioural

ecology and the social sciences. In behavioural ecology,

animal interactions are usually measured through obser-

vation, either directly or using proxies such as proximity at

feeding sites [54]. In the social sciences, observational

methods may also be used, but as human subjects are able

to report on many of their own behaviours, survey-based

methods are common [24]. Although theoretically the same

analytical approaches may be used on social network data

of any kind, in practice social scientists and behavioural ecol-

ogists tend to use different approaches. For example, to
determine the influence of a social network on the spread of

behaviours, behavioural ecologists commonly use Network-

Based Diffusion Analysis [55]. While social scientists use

similar approaches in studying network diffusion (e.g. [56]),

they may also use Stochastic Actor-Oriented Models [57] or

respondents’ own perceptions of learning in their analyses

(e.g. [58]). SNA is increasingly used in conservation, for

example to understand how pro-conservation behaviours

can be spread more effectively [31,59].
3. Case study—information flow to deter
rule-breaking in hunting

(a) Deterring rule-breaking in hunting
One of the most important drivers of defaunation, inside and

outside protected areas (PAs), is the hunting of wild animals

for food or sale, frequently described as ‘bushmeat hunting’

or ‘wild meat hunting’ [60–62]. Conservation law enforce-

ment patrols are seen as a key line of defence against illegal

hunting but, despite being a high funding priority, direct evi-

dence of their effectiveness in deterring hunting within PAs is

difficult to obtain ([63], though see [64]). Collecting first-hand

information about the behaviour of hunters is often challen-

ging or impossible because they may be unwilling to talk

openly. The sensitivity of the topic means that even special-

ized questioning methods such as the randomized response

technique and unmatched count technique [65] can fail to

generate reliable data [66,67], and data from other sources,

such as the records of ranger patrols, are difficult to interpret

[63,68]. In this situation, modelling approaches based on

behavioural ecology can provide an alternative means of

exploring how patrols might be made more successful in

preventing hunting, given specific assumptions about hunter

behaviour and motivations.

Agent-based models have been applied to the related

problem of sustainable hunting in both recreational and sub-

sistence contexts. Ling & Milner-Gulland [69] investigated an

Asiatic ibex (Capra sibirica) hunting system by coupling

models of ibex ecology and the behaviour of human hunters,

and found a complex set of dynamics in which the likelihood

of sustainable equilibrium depended both on ibex behaviour

(specifically the selection of relatively inaccessible locations)

and the costs experienced by hunters. In a model of human

settlement expansion in Amazonian Guyana, Iwamura et al.
[70] simulated interactions between social and ecological sys-

tems driven by human nutritional requirements and resource

availability in the environment. Feedback loops between

animal and human population densities determined the equi-

librium status of environmental quality and settlement size.

These models are complex and time-consuming to pro-

duce, but much simpler calculations based upon static

indices of hunter effort (e.g. as a basic function of stock

size) and population-level biological parameters for the

prey are unlikely to adequately capture the inherent

dynamics of hunting systems [71]. Indeed, hunting encom-

passes a nebulous set of activities that are typically

motivated by the need to obtain food or income (either

directly from the animals that are caught, or indirectly

through the protection of crops), but also commonly

shaped by institutions and social norms or customs [61].

Individual motivations and behaviour, which can vary
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significantly in response to environmental conditions, there-

fore contribute to, but are also shaped by, community

norms and institutions—mediated by relationships between

individuals. Planning an effective intervention at the commu-

nity level therefore requires: (i) knowledge of existing social

networks that mediate the transfer of information between

individuals, and structure perceptions of norms; and (ii) the

ability to model (forecast) the flow of new information with

respect to a desired behavioural change.

Many interventions that change behaviour do so by alter-

ing the positive and negative incentives that result from the

interplay between economic and biological processes. In the

case of hunting, economic and social gains from the acqui-

sition of meat or other animal products are balanced

against the direct and opportunity costs. However, while

there have been a number of bio-economic models that

attempt to quantify hunting behaviour in these terms (e.g.

[72–74]), the role of deterrence following the imposition of

a rule has had little attention in the conservation literature

(e.g. [75]). This lack of research focus may derive in part

from the complexity of the issue; as with any behavioural

change, deterrence at the level of a community involves a

series of both individual and social processes (figure 1),

many of which are difficult to measure empirically. In these

circumstances, combining SNA with an ABM offers a way

to: (i) explore the emergent outcomes from sets of plausible

starting conditions and behavioural rules, and (ii) identify

the most influential individual processes, thereby setting

priorities for targeted interventions.

cost–benefit

following
observation

and
discussion in
community

Figure 1. Flow diagram illustrating a potential series of behavioural pro-
cesses that might occur following the institution of a statutory hunting
prohibition, leading to the community-level response. Blue and beige
shapes denote processes occurring within and outside the community,
respectively. In the first two large boxes, the darkness of the point colour
denotes the order in which the information is received (darker ¼ later). In
the other large boxes, green points are those that judge hunting to be
cost-effective, and red points those that do not.
(b) Modelling the spread of information
To demonstrate how a combination of SNA and an ABM

could facilitate the successful implementation of an interven-

tion to deter rule-breaking at the level of a single community,

we present a case study in which we simulate the spread of

knowledge of the presence of law-enforcement patrols

through communities with differing network structures.

This process is only one among a series of steps that might

characterize the full sequence from the creation of a rule to

the outcome in terms of reduced rule-breaking at the commu-

nity level (figure 1), but since our intention is to illustrate the

modelling approach, we have kept the model simple. None-

theless, its structure and parametrization are grounded in

insights from our work with hunters in a Cambodian

protected area [34]. We provide an overview of the model’s

construction here, with full details in the electronic sup-

plementary material. With this approach we conserve the

fundamental features of both SNA and an ABM, by model-

ling the flow of information through a connected network

of individual agents. The elements of the model that build

on SNA outputs relate to the properties of the network in

terms of the presence and strength of the connections,

while the agent-based element of the model means that indi-

viduals in the network differ in their propensity to spread

and act on information (based on their probability of listening

to and then passing on information received).

Non-spatial networks of 40 individuals were created in

three types of community structure, which differed princi-

pally in the distribution of direct social contacts (‘degrees’

in SNA terminology) across individual members. Distri-

butions were either highly, moderately or minimally

skewed towards a theoretical extreme in which one
individual is connected to everyone else, and no other pairs

of individuals are connected. A variable proportion of indi-

viduals was then provided with knowledge of the presence

of patrols. This initial knowledge of patrol presence was

directly proportional to patrol effort, on the assumption

that first-hand knowledge is gained by encountering patrols.

We always selected the least-connected individuals, because

in many tropical forest communities, most hunting is con-

ducted by marginalized people living at forest edges (e.g.

[76]). Where this is the case, knowledge of patrols may be

concentrated in poorly connected individuals, though this

scenario will not universally apply (we provide results in

the electronic supplementary material for simulations where

the best-connected individuals receive information first).

We then simulated the flow of that knowledge through

each network over fifty discrete time-steps of unspecified

duration, under varying patrol effort, E, and rules for knowl-

edge exchange. If a member of their immediate network had
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uals over time. The dark line represents the mean of 100 simulations, each of
which is shown as a grey line. Parameter values as follows: T ¼ 2, E ¼ 0.25,
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the information, the likelihood that an individual without

it would receive it from them was controlled by two vari-

ables: (i) the probability of listening, L (and therefore the

information-holder being able to pass on the information

received), and (ii) the threshold number of knowledge-

holding individuals to whom the recipient is directly

connected, T (proxying the need for repeated independent

transmission of information for it to be taken seriously). For

each unique combination of variables, we repeated the simu-

lations 100 times. We present the rate of information flow as

the area under the curve (AUC) of the plot of cumulative

receipt of information in the community over time (figure 2).

In general, information travelled fastest (highest AUC)

when the distribution of social contacts was most skewed

towards a handful of highly connected individuals, when

the patrol effort (E) was high (meaning that more people

started with the information), when the listening probability

(L) was high, and when the listening threshold (T ) was low.

E and L both had significant positive effects on AUC (table 1;

figure 3 columns (iii) and (iv)), but the effect of the interaction

between these variables was dependent upon the listening

threshold (T ) and the distribution of social contacts. When

T ¼ 1, the interaction term was positively associated with

AUC, but when T ¼ 2 the association was significantly

positive in networks with lightly skewed distributions, non-

significant at moderate skews, and significantly negative

with highly skewed distributions (table 1, far right column).

These results imply that, when a recipient only needs

to be connected to one information-holder to receive

information, the increase in rate of information spread associ-

ated with increases in either patrol effort or propensity to

listen is tempered when both increase at the same time. By

contrast, when a potential recipient needs to be connected

to two information-holders, and there is not much difference

between individuals in their connectedness, increases in

E and L reinforce each other. This phenomenon probably

occurs due to the bounded nature of the response variable;

AUC cannot exceed 2000 (the product of the number of

time-steps and the number of people), so the functions

linking AUC with E and L are saturating. When the distri-

bution is highly skewed, AUC is close to 2000 even for the

lowest values of E and L, such that there is far less potential

for changes in either variable to effect a rise in AUC than

when AUC starts at a lower value. These outputs encompass

only a small proportion of the potential parameter space even

for this simple model, however; different outcomes might

have arisen had we altered the selection of individuals

for information seeding, or increased the ranges of values

of T and E.
4. Discussion and future perspectives
For a specific situation, the key strength of an ABM is its abil-

ity to follow the compound outcomes of a large number of

interacting processes, in which the cause–effect relationships

may be circular; the advantage of nesting agents in a social

network within the ABM is that it constrains agent behaviour

within a realistic social structure. Another useful consequence

of incorporating network information into an ABM is the

additional practice-relevant insights which this generates,

such as with whom to seed information about the conse-

quences of rule-breaking for maximum effectiveness, and
what properties of an agent are most influential in determin-

ing their information-spreading effectiveness; such as their

propensity to listen or their connectedness to others.

We demonstrate these advantages with our ‘toy’ model.

However, even for this very simple model simulating an

isolated process, the outcomes were neither straightforward

nor predictable.

Additional elements would be required in order to pre-

dict how a given information transfer process would

translate into actual conservation outcomes, thereby making

the model potentially useful for application in the real

world. At the individual level, this could include more realis-

tic variation between agents in their hunting behaviour, trust

and trustworthiness (hence their likelihood of believing, and

being believed, when passing on information) and risk pro-

files (hence their likelihood of acting upon the information),

and their ability to switch to alternative hunting or non-

hunting activities. There is also likely to be variation in

their willingness to pass on information, and to whom. At

the system level, prey population dynamics, the response of

patrols to changes in hunter behaviour, and setting the scen-

ario in a spatially explicit context, would all be important

steps towards realism. Patrol responses would require a

second set of agents in the ABM, as per Ling & Milner-

Gulland [69,77], while prey dynamics could also be modelled

as part of a spatially explicit ABM (cf. [50]). However, each of

these additions is likely to dramatically increase the extent to

which outcomes would be a priori unforeseeable, unless they

constrain the system to the point at which insights are

specific only to the individual system and its current

circumstances.

There is an ongoing and well-recognized tension between

complexity and simplicity in predictive modelling [39,78].

Heuristic insights tend to come from simple models which

can capture the fundamental dynamics of a system [79]. On

the other hand, detailed, spatially explicit, individual-based

models can capture the emergent properties of a given

social–ecological system that could lead to unintended

consequences of conservation interventions [80]. As we

recognize the importance of understanding social–ecological

system dynamics in the context of a changing world (both

socially and environmentally), the ability of ABMs to predict

outside current conditions (so long as the basic properties of

the agent remain constant) will become more useful, and
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Figure 3. Impacts of network structure, listening probability (L), listening threshold (T ) and patrol effort (E) on the rate of flow of information through networks of
40 individuals. The distribution of social contacts, which describes the evenness of connectedness among the community, is shown in column (i) and varies from
lightly skewed (a), via moderately skewed (b) to highly skewed (c). When skewness is high, a small number of individuals are highly connected, while most
individuals have only a small number of direct connections. Each histogram comprises data from 12 000 generated networks. Example network structures are
shown in column (ii). Information flow is simulated through each of the networks for 100 replicates of each of the 120 combinations of L, T and E. Rate of
information flow, characterized as the area under the curve (AUC) of plots of cumulative information accumulation over 50 time-steps (figure 2), is plotted against
L and E in columns (iii) and (iv), for T ¼ 1 and T ¼ 2, respectively.

Table 1. Direction of the influence of listening probability (L) and patrol effort (E) on the rate of information flow through networks, from multiple linear
regression analysis of AUC, for different values of listening threshold (T ) and different distributions of social contacts. þ, positive relationship; 2, negative
relationship (where þþþ/222 represents p � 0.01; þ/2 represents 0.01 , p � 0.05, 0 represents p � 0.05).

skew of social contacts distribution

T 5 1 T 5 2

E L E*L E L E*L

low þþþ þþþ 222 þþþ þ þþþ
moderate þþþ þþþ 222 þþþ þþþ 0

high þþþ þþþ 222 þþþ þþþ 222
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potentially more worth the price of added complexity and

specificity. This is in line with recent developments of

‘models of intermediate complexity’ which capture the

main elements of complexity which are required for tactical

decision-making in real-world situations [81].

We have highlighted two particular modelling

approaches that are currently in individual use within ecol-

ogy and social science, but which are rarely integrated (but

see [28] for a public health example). We used the example

of a particular conservation problem to show how their
integration could bring benefits. But there is also a wider

point: that methodological interchange between the social

and ecological sciences is still more limited than it should

be, even though they use the same modelling approaches

in their own disciplines. For example, social and ecological

feedbacks have been separately incorporated into systematic

conservation planning, but not modelled together [82];

without incorporating both, the consequences of conserva-

tion action on the social–ecological system cannot be

properly understood [5].
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Part of the reason for this lack of integration is likely to be

linguistic mismatches, such that it is not immediately clear

that studies in ecology and social science are talking about

the same thing (such as the terminology of individual-

based versus agent-based model; [83]). Partly it may be that

people still do not read papers in core disciplinary journals

outside their own disciplines. To take one example, there is

a growing literature on the determinants and consequences

of network structure in ecology (e.g. in great tits, Parus
major; [25,84]) and epidemiology (e.g. [27,85]) which is of

direct relevance to conservationists’ work on information-

sharing between people, but as yet this linkage has not

been explored. As conservation science becomes a discipline

in its own right, one danger is that its interdisciplinary jour-

nals draw further away from its foundational disciplines,

potentially leading to a lack of cross-fertilization. Interdisci-

plinarity is hard to achieve [86] and modelling is often

viewed with suspicion by both conservationists and ecolo-

gists [87,88]. However, because conservationists operate

within social–ecological systems, and aim to influence
those systems in order to promote sustainability, it is impor-

tant that these barriers to cross-disciplinary working are

overcome.

The combined use of ABMs and SNAs to model the inter-

actions between individual- and system-level dynamics, and

predict the effect of conservation interventions on system

dynamics, is one example of a way forward. This particular

application will be further strengthened if we move beyond

model-based prediction towards empirical testing of our

hypothesized dynamics in the real world, within an adaptive

management framework [89].
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