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Background:While smoking is known to associate with development of multiple diseases, the underlying mech-
anisms are still poorly understood. Tobacco smoking canmodify the chemical integrity of DNA leading to changes
in transcriptional activity, partly through an altered epigenetic state. We aimed to investigate the impact of
smoking on lung cells collected from bronchoalveolar lavage (BAL).
Methods: We profiled changes in DNA methylation (5mC) and its oxidised form hydroxymethylation (5hmC)
using conventional bisulphite (BS) treatment and oxidative bisulphite treatment with Illumina Infinium
MethylationEPIC BeadChip, and examined gene expression by RNA-seq in healthy smokers.
Findings: We identified 1667 total 5mC + 5hmC, 1756 5mC and 67 5hmC differentially methylated positions
(DMPs) between smokers and non-smokers (FDR-adjusted P b.05, absolute Δβ N0.15). Both 5mC DMPs and to
a lesser extent 5mC + 5hmC were predominantly hypomethylated. In contrast, almost all 5hmC DMPs were
hypermethylated, supporting the hypothesis that smoking-associated oxidative stress can lead to DNA demeth-
ylation, via the established sequential oxidation of which 5hmC is the first step. While we confirmed differential
methylation of previously reported smoking-associated 5mC + 5hmC CpGs using former generations of
BeadChips in alveolar macrophages, the large majority of identified DMPs, 5mC + 5hmC (1639/1667), 5mC
(1738/1756), and 5hmC (67/67), have not been previously reported. Most of these novel smoking-associating
sites are specific to the EPIC BeadChip and, interestingly, many of them are associated to FANTOM5 enhancers.
Transcriptional changes affecting 633 transcripts were consistent with DNAmethylation profiles and converged
to alteration of genes involved in migration, signalling and inflammatory response of immune cells.
Interpretation: Collectively, thesefindings suggest that tobacco smoke exposure epigeneticallymodifies BAL cells,
possibly involving a continuous active demethylation and subsequent increased activity of inflammatory pro-
cesses in the lungs.
Fund: The study was supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, the
Stockholm County Council (ALF), the King Gustav's and Queen Victoria's Freemasons' Foundation, Knut and
Alice Wallenberg Foundation, Neuro Sweden, and the Swedish MS foundation.
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1. Introduction

Although tobacco smoking is a well-known toxic agent with serious
impact on human health, smoking or exposure to smoke remains com-
monworldwide. Smoke exposure is a risk factor and a common cause of
death from cardiovascular disease, chronic obstructive pulmonary dis-
ease (COPD) and multiple types of cancer, in particular lung cancer
ons.org/licenses/by-nc-nd/4.0/).
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Research in Context

Evidence before this study

Tobacco smoking can lead to epigenetic and transcriptional
changes in several tissues, and is a well-known risk factor for de-
velopment of a multiple diseases. There is a growing list of
smoking-associated epigenetic biomarkers in blood cells, as well
as novel sites in other affected tissues. We searched for articles
in PubMed using various combinations of the search terms “DNA
methylation”, “DNA hydroxymethylation”, “EPIC”, “850 K”,
“Smoking”, and “Alveolar macrophages” (last search April 30th
2019). Two studies on DNAmethylation in alveolar macrophages
from smokers were identified, one investigating ~25,000 CpG
loci (n = 22), and the other ~450,000 (n = 19). These studies
have presented evidence of genome-wide changes in total DNA
methylation and transcription in alveolar macrophages (lung mac-
rophages), using previously available techniques.

Added value of this study

The present study provides new fundamental information on
smoking-associated effects onDNAmethylation and transcription
in alveolar macrophage-dense BAL cells. Oxidative stress is in-
duced by tobacco smoking, and also links to a DNA demethylation
pathway where 5-methylcytosine (5mC), as a first step, is
oxidised to 5-hydroxymethylcytosine (5hmC). We investigated
smoking-associated DNA methylation and hydroxymethylation
changes in bronchoalveolar lavage (BAL) cells, and to the best of
our knowledge, this is the first epigenome-wide study identifying
differentially hydroxymethylated CpG sites as well as true 5mC
sites associated with smoking (n = 35) in any human tissue. It
is also the first study on lung cells using the recently released
Illumina EPIC BeadChip, covering N850,000 CpG loci. Predomi-
nant 5mC hypomethylation in contrast to predominant 5hmC
hypermethylation supports the hypothesis of a DNA demethyla-
tion process initiated by smoking-induced oxidative stress. Nota-
bly, many of the affected loci were located at enhancers. We
also investigated transcriptional changes using RNA-seq, and
found converging alterations in the transcriptome andmethylome,
with genes involved in signalling, migration, and inflammatory re-
sponse of immune cells.

Implications of all the available evidence

The current study provides new insights into understanding the
impact of tobacco smoking on human health. We could confirm
many differentially methylated sites from previous analyses of al-
veolar macrophages as well as blood cells. Importantly, we also
demonstrate novel findings including differential methylation/
hydroxymethylation at specific loci together with transcriptional
effects, and find previously unreported pathways. These findings
provide information that may be of relevance in inflammatory pro-
cesses leading up to disease. Further studies are warranted to ex-
plore the DNA demethylation pathway in the context of smoking-
induced oxidative stress.
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[1]. Tobacco smoking is also a risk factor for autoimmune diseases, most
notably rheumatoid arthritis (RA) andmultiple sclerosis (MS) forwhich
there is an established gene-environment interaction with specific HLA
risk alleles, resulting in a substantially elevated risk for developing dis-
eases [2,3]. Cigarette smoke contains a complex mixture of N6000
chemicals, many of them reaching the lower airways during smoke
inhalation [4]. Deep airway alveolar macrophages, which in healthy in-
dividuals constitute the majority of bronchoalveolar lavage (BAL) cells,
play pivotal roles in clearance of such inhaled particles and debris and
initiation of inflammatory response [5]. Overall, both the local pro-
inflammatory and oxidative response caused by cigarette smoke inhala-
tion, as well as the systemic impact of smoke exposure can lead to long-
term deleterious effects on health [6]. Epigenetic mechanisms have
been proposed to mediate some of the impact of cigarette smoke
through changes in DNAmethylation, whichmay alter gene expression
and contribute to smoking-associated disease [7]. With the develop-
ment of DNA methylation arrays, the effect of smoking on total DNA
methylation has been extensively studied in blood cells from adults,
showing marked differences in smokers compared to non-smokers
[7–9], which can be even more pronounced in patients, as shown in
MS smokers [10]. The effect of tobacco smoking on DNA methylation
is also evident in cells from cord blood [11] and blood [12] from new-
borns, whose mothers smoked during pregnancy. However, only a few
studies have investigated DNAmethylation in bronchoalveolar immune
cells [13,14], which regulate inflammatory reactions through secretion
of modulatory and proinflammatory signal molecules, and are affected
directly by tobacco smoke.

DNA methylation plays an important role as transcriptional regula-
tor in many biological contexts, such as cell differentiation, embryogen-
esis, genomic imprinting, and development of disease [15]. Inmammals,
DNA methylation is most commonly found as 5-methylcytosine (5mC)
in the context of CpG dinucleotides and has been associated with gene
regulation, where gene promoter methylation usually exerts a repres-
sive action on transcription [16]. In addition to traditional 5mC, other
forms of cytosine DNA modifications have been identified, deriving
from a DNA demethylation pathway with sequential oxidation of 5mC
by the TET family of enzymes, to 5-hydroxymethylcytosine (5hmC)
[17], 5-formylcytosine (5fC), and 5 carboxylcytosine (5caC) [18,19].
Hydroxymethylated cytosine (5hmC), often referred to as the sixth
base, is however not only an intermediary step of active demethylation,
but also a stable epigeneticmarkwith unique functional properties such
as binding of transcription factors and positive regulation of gene ex-
pression [20,21].

Recent studies have demonstrated that the DNA demethylation
pathway can be initiated by oxidative stress [22,23]. Briefly, oxidative
DNA damage from reactive oxygen species (ROS) leads to formation of
8-oxoguanine (8-oxoG), an oxidised product of guanine, and subse-
quent oxidation of adjacent 5mC to 5hmC [22]. However, conventional
bisulphite (BS) conversion used to detect DNA methylation is not able
to distinguish 5mC from 5hmC [24]. Therefore, most of the previously
published DNA methylation data are reporting overall signal from a
mixture of bothmodifications. In that context, DNAmethylation studies
in BAL cells (primarily alveolar macrophages) have identified smoking-
associated differentially methylated positions (DMPs) using Infinium
HumanMethylation27 BeadChip [13] and Infinium
HumanMethylation450 BeadChip [14]. In this study, we hypothesised
that oxidative stress caused by smoking [25], might affect not only
5mC but also 5hmC patterns in the lung as part of DNA demethylation.
In order to better comprehend the effect of tobacco smoking on pulmo-
nary cells, we examined DNA methylation and hydroxymethylation in
healthy smokers and non-smokers using the latest Illumina
HumanMethylation EPIC BeadChip, covering over 850 K CpG sites and
thus providing a higher coverage compared to previous arrays. Further,
we combined DNA methylation analysis with gene expression analysis
using RNA-seq in BAL cells from healthy smokers and non-smokers.

2. Material and methods

2.1. Study subjects, bronchoscopy and bronchoalveolar lavage

We obtained 49 BAL samples from healthy volunteers (20
smokers, 29 non-smokers) collected during bronchoscopy as
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previously described [26]. All subjects gave their written consent, and
the study was approved by the Regional Ethical Review Board in
Stockholm. None of the subjects had clinically relevant airway infec-
tions or allergy symptoms at the time of bronchoscopy, and subjects
diagnosed with asthma, COPD, other lung diseases, or other inflamma-
tory conditions were not included in the study. All subjects filled out
questionnaires regarding general and pulmonary health, current med-
ications, and previous and current smoking habits, and in addition also
underwent dynamic spirometry (Medikro PRO, Aiolos Medical). Indi-
viduals with N5 pack years (pack years = (cigarettes smoked per
day / 20) x years smoking), or smoking at least 5 cigarettes per day,
were defined as smokers. Non-smokers were defined as individuals
who has never smoked. All subjects have been included in a previous
study [27].
2.2. Differential cell count, DNA and RNA extraction

BAL cells and fluid were separated by centrifugation (400 ×g at 4 °C
for 10min), and the supernatants were immediately stored at -80 °C for
later use. Approximately 500.000 BAL cells were collected and resus-
pended in RPMI 1640 without supplements. Smears for differential
cell counts were prepared by cytocentrifugation (Cytospin 2, Shanon
Ltd) at 22 g for 3 min and stained with May-Grünwald Giemsa, or tolu-
idine/hematoxylin for mast cell identification. A minimum of 500 cells/
sample was counted, to estimate cellular proportions in BAL. Samples
with low alveolar macrophage content (b 80%) were not included in
the study. GenomicDNAand total RNAwere extracted using the AllPrep
DNA/RNA/miRNA Universal Kit (Qiagen) according to the manufactur-
er's protocol. The concentration of both DNA and total RNA were quan-
tified using PicoGreen (Invitrogen) and Qubit 3 fluorometer
(Invitrogen).
2.3. Total 5mC + 5hmC and 5mC methyl processing

DNA from BAL cells was processed using the TrueMethyl conversion
kit (Cambridge Epigenetix) workflow in order to investigate truemeth-
ylation (5mC) by using oxidative bisulphite treatment (oxBS), and total
methylation (5mC + 5hmC) by regular common non-oxidative
bisulphite treatment (BS). DNA methylome profiling was carried out
using the Infinium HumanMethylationEPIC BeadChip Kit (Illumina),
which interrogates over 850,000 CpG sites. Methylation arrays were
processed by the National Genomics Infrastructure (NGI), Science for
Life Laboratory at Uppsala University. Samples were randomised ac-
cording to smoking-status, age, gender, and cell-proportion and proc-
essed together with technical replicates in one run. DNA methylation
β-values from the technical replicates correlated strongly with a Pear-
son correlation value of 0.992 (P=2.2 × 10–16). Raw intensity IDAT for-
mat files were used for subsequent array analysis.
2.4. Generation of RNA sequencing libraries

RNA integrity number (RIN) measurements were performed on an
Agilent Bioanalyzer using the RNA 6000 nano kit (Agilent Technolo-
gies). 150 ng of total RNA from each individual was used to generate
poly-A selected SMART-seq2 cDNA libraries according to the published
protocol [28], with minor adjustments to fit bulk RNA input. Spike-in
ERCC (External RNA Controls Consortium) RNA was added at 10.000×
dilution and cDNA received 6 rounds of preamplification. Sequence
ready libraries was prepared with Illumina Nextera index primers
using in-house produced TN5 tagmentation enzyme according to fol-
lowing protocol [29]. All libraries were pool and purified with Ampure
XP beads, and sequenced at 125 bp paired-end on an Illumina HiSeq
2500.
2.5. Normalisation of 5mC + 5hmC and 5mC methyl data

Raw IDAT files were imported and processed in R software (version
3.5.2) using minfi (version 1.28.4) [30,31] and ChAMP (version 2.12.4)
[32] packages. BS and oxBS samples from the same individual were
run on the same array. We compared two different normalisation strat-
egies, stratified quantile normalisation (SQN) and subset-quantile
within array normalisation (SWAN) [33] and obtained similar results.
Final normalisation was done with SQN, and BS-treated (5mC
+ 5hmC) and oxBS-treated (5mC) samples were processed separately.

Methylation signalswere computed as β-values, ranging from0 to 1.
β-values from BS-treated samples represent the total methylation, in-
cluding both 5hmC and 5mC. The β-values from oxBS-treated samples
represent true methylation, and only include 5mC. Samples with
probe coverage b95% were removed, as well as probes with a detection
P value N.01 in N5% of samples. Further, sex chromosome, cross-reactive
and SNP-related probes were removed [34], resulting in 43 samples
with 764,958 total 5mC + 5hmC probes and 36 samples with 736,336
true 5mCprobes. Finally, only probes and samples overlapping between
the datasets were kept, resulting in 35 sampleswith both 5mC and 5mC
+ 5hmC readings of 735,794 probes (Supplementary Fig. 1).

2.6. Genomic annotation of CpG sites

Genomic regions were annotated using HumanMethylationEPIC
probe annotations through the ChAMP [32] Bioconductor package. The
following categories were used as locations in relation to gene:
TSS1500 (200 to 1500 nucleotides, nt, upstream of transcription start
site, TSS); TSS200 (up to 200 nt upstream of TSS); 5′ UTR (5′ untrans-
lated region); 1st exon; Body (gene body); ExonBnd (exon boundaries),
IGR (intergenic regions), and 3′ UTR (3′ untranslated region). Annota-
tions related to CpG islands (CGIs) were divided into following catego-
ries: CGIs, CGI shores (flanking shore regions, b2 kb up- and
downstream of CGIs), CGI shelfs (2–4 kb up- and downstream of
CGIs), and open sea (non-CGI-related sites). Venn diagrams were cre-
ated using the R package VennDiagram (version 1.6.20) [35].

2.7. Differential methylation and variability analysis

DMP analysis of 5mC+5hmC and 5mCwere done onM-values after
transformation fromβ-values (M= log2(β/(1-β)) as previously recom-
mended [36].We used a linearmodel (limma)with the empirical Bayes
approachwith non-smokers as the reference group and adjusted for co-
variates (age and sex). A probe was considered significantly differen-
tially methylated if the methylation difference (β-values) between the
smokers and non-smokers were at least 15% with a FDR-adjusted
(Benjamini-Hochberg) P value b.05. For hydroxymethyl (5hmC) DMP
finding, normalised 5mC (oxBS)β-valueswere subtracted fromnormal-
ised 5mC + 5hmC β-values to calculate the hydroxymethyl level (Δβ)
at each probe. Similarly to previous analysis we used limmawith empir-
ical Bayes approach adjusting for age and sex. Additionally, since oxBS
treatment is known to introduce negative β-values when subtracting
5mC from 5mC+5hmC, we performed a second limmawhere negative
β-values were set to a value close to zero (1 × 10−7). We combined the
twomethods and only 5hmCDMPs that overlapped between the gener-
ated lists were considered significant to limit false positives. The RUVm
method [37] was used to generate a comparison dataset where un-
wanted variation was removed. Instead of using known covariates,
which can be limited by inaccuratemeasurements, thismethod only as-
sume the presence of hidden covariates. A linear regression model with
ebayes was run on smoking status yielding statistically non-significant
CpGs (FDR-adjusted P value N.5) that were treated as negative control
probes, i.e. not associated with smoking. Next, RUVfit was run using
RUV-inverse function, and then adjusted through RUVadj (FDR-ad-
justed P value b.05).
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In addition to the single site DMP analysis, we applied the DMRcate
package (version 1.18.0) [38] with default settings to detect differen-
tially methylated regions (DMRs) between smokers and non-smokers.
We fitted a linear model of methylation values at each probe as a func-
tion of smoking status and adjusting for covariates (age, sex). DMRs
were defined as those with Stouffer-transformed limma-derived FDR-
adjusted P values b.05. Identified DMRs were also filtered using cut-off
values of mean absolute Δβ N15%.

Analysis of differential variability was applied to identify smoking-
associated DVPs (differential variability positions). DiffVar first uses an
empirical Bayes Levene-type algorithm to calculate absolute deviations
from respective group means, then uses moderated t-test to compare
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Table 1
Characterisation of healthy individuals included in our study.

All subjects Non-smokers Smokers

Subject 35 21 14
Sex (male/female) 13/22 9/12 4/10
Age (years) 25.0

[22.0–29.0]
24.0
[22.0–28.0]

28.0 [24.3–29.8]

Cigarettes/day 12.5
[10.0–19.8]

N/A 12.5 [10.0–19.8]

Pack years 6.0 [5.0–9.5] N/A 6.0 [5.0–9.5]
FEV1, % predicted 103.0

[97.5–110.5]
103.0
[98.0–107.0]

105.0
[94.8–110.8]

FVC, % predicted 109.0
[102.0–117.0]

108.0
[102.0–117.0]

110.5
[103.0–115.3]

FEV/FVC % 81.0
[78.0–83.5]

82.0
[79.0–83.0]

80.0 [76.5–84.5]

BALF cell concentration
(x106/L)

119.6
[75.4–254.9]

76.8
[72.2–105.4]

300.6
[219.0–357.5]***

BAL recovery (%) 71.0
[62.5–77.5]

74.0
[70.0–79.0]

64.0 [58.0–69.5]**

BAL macrophages (%) 93.4
[88.9–96.1]

90.8
[85.8–93.4]

96.5 [93.8–97.4]
***

BAL lymphocytes (%) 4.8 [2.8–9.7] 7.3 [4.2–12.0] 2.2 [1.8–3.45]***
BAL neutrophils (%) 0.8 [0.4–1.3] 1.0 [0.6–2.0] 0.7 [0.4–1.15]
BAL eosinophils (%) 0.2 [0–0.4] 0.2 [0–0.3] 0.1 [0–0.4]
BAL basophils (%) 0 [0–0] 0 [0–0] 0 [0–0]
BAL mast cells (%) 1.0 [0–2.5] 0 [0–3.0] 1.0 [0.3–2.0]
BAL CD4/CD8 ratio 1.6 [1.1–2.7] 1.9 [1.4–3.0] 1.1 [0.8–1.8]

Basic characterisation of individuals included in our cohort. Data represent n or median
[25th–75th percentile]. Pack years: (cigarettes smoked per day / 20) x years smoking);
FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; BALF: bronchoalveolar
lavage fluid; BAL: bronchoalveolar lavage; N/A: not applicable. Statistics calculated using
Chi-square test for male/female ratio and Mann-Whitney U test for other comparisons: *
P b .05 compared to non-smokers, ** P b .01 compared to non-smokers, *** P b .001 com-
pared to non-smokers.
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performance beads (GE Healthcare), the respective sequencing primer,
and PyroMark Gold Q96 reagent kit (Qiagen), for pyrosequencing with
the PSQ 96 system (Qiagen). Data were analysed on the PyroMark
Q96 software.

2.8. Identification of cell-type specific signal and transcription factor analy-
sis with eFORGE analyses

In order to account for differences in cell-type composition in BAL,
and identify if they might influence the observed methylation differ-
ences, we performed analyses with eFORGE (experimentally derived
Functional element Overlap analysis of ReGions from EWAS) [39]. As
input, eFORGE accepts a minimum of 20 and a maximum of 1000 CpG
sites, in our case including the top 1000 DMPs for total methyl and
5mC, and 67 CpG sites for 5hmC. We examined enrichments for
DNase I hypersensitive sites (DHSs) and histone marks (H3K27me3,
H3K36me3, H3K4me3, H3K9me3, and H3K4me1). Default settings
were used when running the analysis. An in-house pipeline for
eFORGE-TF analysis was used to investigate TF motif associations. TF
motifs were linked back to a TF gene list and analysed with PANTHER
pathway analysis.

2.9. Differential expression analysis

RNA sequencing reads were quality filtered and trimmed for
adapters using TrimGalore (version 0.6.0) at default parameters. After-
wards the filtered reads were processed using the pseudoalignment-
based Kallisto algorithm (version 0.45.0) with GENCODE v24 compre-
hensive transcript set as reference transcriptome. For downstreamanal-
ysis, only samples with a RIN value above 7 were included, and only
genes with N10 normalised read counts were kept. In total 23 samples
passed these criteria, 10 smokers and 13 non-smokers, which were
used for differential expression analysis using DESeq2 package in R.
We adjusted for the covariates sex and age and only considered genes
with a BH-adjusted (FDR) P value b.05 as significant, together with an
absolute log2 fold change threshold N1.

2.10. Gene ontology analyses

Gene ontology (GO) analysis was performed using Ingenuity Path-
way Analysis (IPA) (Qiagen) on the annotated genes from 5mC
+ 5hmC and 5mC DMP genes (FDR-adjusted P b .05, absolute Δβ
N0.15; 928 and 938 genes, respectively), differentially expressed genes
(adj. P value b.05, logFC N1, 633 genes) as well as dysregulated genes
that harbour 5mC+5hmCDMPs (70 genes), applying unbiased param-
eters for all criteria including tissues selection. GO analysis was also per-
formed on annotated genes from 5hmC DMP genes (nominal P b .001,
absolute Δβ N0.05; 983 genes). Right-tailed Fisher's exact test was
used to calculate P values, with P b .05 considered statistically signifi-
cant. We confirmed IPA findings using over-representation analysis
(www.webgestalt.org) [40] on differentially expressed genes and anno-
tated 5mC + 5hmC DMPs genes. Comparison between findings from
gene expression and DNA methylation analyses was performed using
REVIGO tool [41] based onmultidimensional scaling of overrepresented
GO terms with semantic similarities. STRING network was generated
using STRINGdatabase version 10.5with aminimum level of confidence
N0.4.

2.11. Statistical analysis

Statistical methods used for genome-wide DNA methylation and
gene expression analyses are detailed in the previous sections. For
feature-specific distribution analysis of β-values, we used Wilcoxon
rank sum test with Bonferroni adjusted P values for multiple compari-
son. For enrichment and depletion analysis of differential methylation,
we used Pearson's Chi-squared test on contingency tables of count
data, and adjusted for multiple comparison using Bonferroni. Correla-
tion analysis between β-values and normalised gene counts was per-
formed using Pearson method, and the Spearman method for
correlation analysis between β-values and macrophage fractions.
Power analysis (post-hoc) was performed using the pwrEWAS package
[42], a tool designed specifically for power analysis of EWAS studies.
Input parameters were as follows; 735.000 CpGs, 1700 target CpGs,
minimum Δβ detection limit 0.05, FDR-adjusted P value b.05, and
adult PBMC as the closest available tissue.

2.12. Data availability

DNA methylation data from this study is available in Gene Expres-
sion Omnibus (GEO) database under accession number GSE133062,
and RNA-seq data is available upon request.

3. Results

3.1. Characteristics of study participants

Our study included a total of 49 healthy volunteers who all
underwent bronchoscopy with bronchoalveolar lavage (BAL), spirome-
try, and clinical assessment. Quality checks and filtering described in
Supplementary Fig. 1 resulted in 35 DNA methylation samples (14
smokers and 21 non-smokers) and 23 RNA-seq samples (10 smokers
and 13 non-smokers) for further analyses. Description of the cohort
and cell counts is shown in Table 1. Smokers and non-smokers were
similar in age (median28 vs 24 years, P=ns) and both included a larger
proportion of females with non-significant difference between groups
(P=ns). Smokers displayed a significant increase in BAL fluid cell con-
centration (P b .001), as well as an altered cellular composition com-
pared to non-smokers (Table 1). More specifically, alveolar
macrophages proportion was higher (P b .001) and lymphocytes pro-
portion lower (P b .001) in smokers compared to non-smokers while

http://www.webgestalt.org
ncbi-geo:GSE133062
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other cellular compartments remained unchanged. Altogether, the
composition of BAL fluid is consistent with previous analyses of
smoking and non-smoking healthy volunteers [43].

3.2. Genomic profiling of total 5mC + 5hmC and 5mC reveals feature-
specific presence of hydroxymethyl in BAL cells

We determined genome-wide total 5mC + 5hmC and 5mC CpG
levels in BAL cells from smokers and non-smokers using the Illumina
HumanMethylationEPIC BeadChip. The array covers over 850 K CpG
sites with improved coverage of regulatory elements compared to its
27 K and 450 K predecessors, including 58% of Functional Annotation
of theMammalian Genome 5 (FANTOM5) enhancers. Totalmethylation
(5mC + 5hmC) was quantified using BS-treated (bisulphite-treated)
DNA samples and represents a combination of 5mC + 5hmC signals.
In order to decipher the contribution of 5mC from 5hmC signalswe per-
formed oxidative BS (oxBS) treatment in parallel to BS treatment prior
to array hybridisation. After QC and filtering steps (Supplementary
Fig. 1), we retained 35 subjects for further analysis, with overlapping
oxBS and BS data and 735,794 probes in common.

As an exploratory first step,we examined distributions of all 735,794
probes focusing on the genomic features related to CpG island (CGI)
(Fig. 1a), and gene location (Fig. 1b). BAL cells from both smokers and
non-smokers had a significantly higher 5mC + 5hmC than 5mC for
probes located in open sea, shelfs and shore regions (Wilcoxon rank
sum test, P b .001). The probe distribution was also significantly differ-
ent between smokers and non-smokers in open sea (P b .001) and
shelf regions (5mC + 5hmC P b .01, 5mC P b .05; Supplementary
Table 2
Summary of the top 10 significant smoking-associated DMPs of total 5mC + 5hmC (BS), true 5

Probe adj.P.Val Chr Position Gene Delta
Beta

5mC + 5hmC DMPs
cg04857037 3.77E-12 1 26,136,971 SEPN1 −0.24
cg04308301 4.68E-12 8 131,454,686 ASAP1 −0.21
cg26721868 8.01E-12 19 4,567,641 −0.38
cg02233197 9.41E-11 15 51,390,542 TNFAIP8L3 −0.30
cg04135110 1.72E-10 5 346,695 AHRR 0.19
cg01596674 2.01E-10 9 130,342,290 FAM129B −0.22
cg12617080 2.95E-10 1 156,509,844 IQGAP3 −0.25
cg01668352 3.27E-10 12 64,482,597 SRGAP1 −0.30
cg21513724 3.27E-10 10 105,409,153 SH3PXD2A −0.23
cg14223856 5.35E-10 9 139,508,740 −0.32

5mC DMPs
cg02233197 2.39E-09 15 51,390,542 TNFAIP8L3 −0.29
cg26721868 2.39E-09 19 4,567,641 −0.26
cg14223856 5.30E-09 9 139,508,740 −0.40
cg10655682 3.49E-08 19 4,567,177 −0.34
cg11180972 3.49E-08 12 105,066,468 CHST11 −0.29
cg25711726 3.49E-08 11 124,949,155 SLC37A2 −0.34
cg07457727 3.49E-08 8 131,451,983 −0.30
cg09552070 3.49E-08 17 3,704,607 ITGAE −0.22
cg04135110 4.88E-08 5 346,695 AHRR 0.20
cg10360854 5.81E-08 11 124,949,180 SLC37A2 −0.28

5hmC DMPs
cg00456797 1.36E-03 2 207,233,872 0.16
cg20991802 8.13E-03 22 17,724,817 0.12
cg13638884 8.13E-03 10 125,223,731 0.12
cg11385411 1.23E-02 1 184,133,807 0.11
cg13631605 1.23E-02 6 160,405,572 IGF2R 0.12
cg09550697 1.23E-02 8 145,012,068 PLEC1 0.15
cg13388131 1.23E-02 11 62,211,493 AHNAK 0.12
cg19800026 1.23E-02 5 14,492,945 TRIO 0.18
cg01025883 1.23E-02 16 23,867,088 PRKCB 0.12
cg27058773 1.58E-02 17 66,309,601 ARSG 0.17

Probe: Illumina probe ID; adj.P.Val: Benjamini-Hochberg corrected P value (FDR); Chr: Chromo
and non-smokers; Island Relation: Relation to CpG Island; Feature: Gene feature; Enh: Identifi
Blood: Significant in blood cell DNA methylation smoke signature as previously reported [7];
indicates presence in database, on chip, or in related studies; DMP overlap: Overlapping with B
Fig. 2a). Since the subtraction of true 5mC values from 5mC + 5hmC
values results in 5hmC values, our data suggest a genome-wide pres-
ence of 5hmC in BAL cells across CGI-related features, most likely out-
side CGI as the typically low CGI methylation levels is less permissive
to demethylation. Similar to reports describing other peripheral tissues
[44], we observed relatively low overall levels of 5hmC in BAL cells.

Exploration of DNA methylation signals throughout the genome re-
vealed significant differences in distribution between 5mC+5hmC and
5mC signals (Fig. 1b). No significant difference was observed between
5mC+5hmC and 5mC signal in 1st exon, displaying low range ofmeth-
ylation distribution in both smokers and non-smokers. Overall, distribu-
tion profiles at promoter regions (defined here as TSS200 + TSS1500)
indicated low methylation. Smokers and non-smokers displayed rela-
tively similar 5mC+ 5hmC and 5mC signal distribution across all geno-
mic regions, but with significant differences in gene bodies and IGR (P b
.001; Supplementary Fig. 2b). Thus, global differences between total
5mC + 5hmC and true 5mC (oxBS) methylation profiles indicate pres-
ence of 5hmC in BAL cells.

3.3. Site and feature-specific changes in total 5mC+5hmC, 5mC, and 5hmC
in BAL cells from smokers

To determine genome-wide differences in total 5mC + 5hmC and
true DNA methylation (5mC) between smokers and non-smokers in
BAL cells, we applied a linear regression model with age and sex in-
cluded as covariates and with a Benjamini-Hochberg (FDR) adjusted
level of significance of P b .05. We set a stringent delta beta (Δβ) cut-
off of 15% for differential methylation, which was substantially higher
mC (oxBS), and 5hmC.

Island
Relation

Feature Enh 450 k
chip

Blood AMs
450 k

DMP
overlap

OpenSea Body 5mC
N_Shore 5’UTR * 5mC
S_Shore IGR * 5mC
S_Shelf Body * * 5mC
S_Shelf Body * * 5mC
OpenSea TSS1500 * 5mC
OpenSea Body * 5mC
OpenSea Body * * * 5mC
OpenSea Body * 5mC
OpenSea IGR * * 5mC

S_Shelf Body * * BS
S_Shore IGR * BS
OpenSea IGR * * BS
S_Shore IGR * BS
OpenSea Body * BS
OpenSea ExonBnd BS
N_Shelf IGR * * BS
OpenSea TSS200 BS
S_Shelf Body * * BS
OpenSea Body * * BS

OpenSea IGR
OpenSea IGR
OpenSea IGR BS
OpenSea IGR *
OpenSea Body
S_Shelf Body * * 5mC
N_Shore Body
OpenSea Body * * BS
OpenSea Body *
OpenSea Body *

some; Gene: UCSC gene name; Delta Beta: difference in mean β-values between smokers
ed enhancer in FANTOM5 consortium; 450 k chip: Present on Infinium 450 k BeadChip;
AMs 450 k; Significant in alveolar macrophages in smokers as previously reported [14]; *
S (total 5mC + 5hmC), 5mC or 5hmC DMPs.
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Fig. 3. Hypomethylation and hyperhydroxymethylation in smokers. Overlapping total 5mC + 5hmC (yellow), 5mC (green) and 5hmC (purple) with adjusted P value b.05 (absolute Δβ
threshold: 5mC + 5hmC and 5mC N0.15; 5hmC N0.05). (a) Venn diagram illustrating number of DMPs and overlaps between 5mC + 5hmC, 5mC, and 5hmC. (b) Boxplot showing 5mC
+ 5hmC, 5mC and 5hmC Δβ for the 10 overlapping DMPs between 5mC and 5hmC.
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than the difference in content of alveolar macrophages in BAL of
smokers (median = 96.5% compared to median = 90.8% for non-
smokers), to exclude potential DMPs that would be caused by a differ-
ence in cell proportions alone. Analysis of 5mC + 5hmC and 5mC data
fromBAL cells revealed 1667 total 5mC+5hmCDMPs (Table 2; Supple-
mentary Table 2) and 1713 5mC DMPs (Table 2; Supplementary
Table 3) associated with smoking (FDR-adjusted P b0.05, absolute Δβ
N0.15). 5hmC was quantified by subtracting 5mC β-values from 5mC
+ 5hmC β-values (735,794) in 35 overlapping BS and oxBS samples
from smokers and non-smokers. As expected, 5hmCmethylation values
ranged at lower level and a minor fraction of probes displayed slightly
negative values. We therefore set an absolute Δβ threshold of N0.05
when calling 5hmC and found 67 significant 5hmC DMPs (Table 2; Sup-
plementary Table 4) after correcting for multiple testing (FDR-adjusted
P b .05). The most significant 5mC + 5hmC, 5mC, and 5hmC DMPs are
shown in Supplementary Fig. 3.

As expected, DNA methylation QQ plots (Supplementary Fig. 4)
show inflated observed –log10 P values, both after adjusting for covari-
ates (sex+age) and when removing unwanted variables using RUVm
[37]. This is not uncommon in EWAS studies [45,46] where alterations
in the phenotype also may reflect other underlying factors, unlike
genome-wide association studies where a genetic variant is closely
linked to a phenotype. In order to investigate statistical power, we per-
formed a post-hoc analysis using a power analysis tool designed specif-
ically for EWAS studies (pwrEWAS). With a sample size of 35 and an
effect size (absolute Δβ) of 0.15, the estimated statistical power of the
current study is N0.8 (Supplementary Fig. 5), which is a common cut-
off for well-powered studies.

Regarding cell composition across individuals, we observed a high
proportion of macrophages across our samples (median N 90%). How-
ever, BAL from smokers is known to present an increased macrophage
fraction and decreased lymphocyte fraction [43], which was also the
case in our cohort. We hypotesise that correction for cell type composi-
tion might mask some of the impact of smoke exposure since the
smoking effect will also be adjusted due to multicollinearity. To test
Fig. 2. Smoking-associated DMPs are predominantly hypomethylated in 5mC and total 5mC+
plots (a-d) illustrating relative frequencies of DMPs associated with smoking. (a) Relative freq
Percentage of hypermethylated and hypomethylated 5mC + 5hmC, 5mC and 5hmC acros
(TSS1500, TSS200, 1stExon, 5’UTR, Body, 3’UTR, ExonBnd, IGR), and (d) enhancers. The
(background) for comparison (b-d). Enrichment/depletion analysis was performed using Chi
compared to non-smokers, ** P b .01 compared to non-smokers, *** P b .001 compared to non-
this, we compared our findings with 5mC + 5hmC, 5mC, 5hmC DMP
analyses using cell-type as an additional covariate in the linear model
while applying the same criteria for significance (FDR-adjusted P b

.05) and effect size (5mC + 5hmC and 5mC: absolute Δβ N0.15;
5hmC: absoluteΔβ N0.05). Spearman's correlation coefficients (Rho) in-
dicated that there was no overall strong correlation between cell type
and DMP β-values (Supplementary Fig. 6, Rho and P values has been
added to Supplementary Table 2–4). Additionally, the FDR-adjusted P
values from the cell type-adjusted and unadjusted DMP lists strongly
correlated (Supplementary Fig. 7). Given the high proportion of macro-
phages across our samples, it is likely that our DNAmethylation changes
are specific to this particular cell type. To address this, we performed
eFORGE analyses [39] (based on DNase I hypersensitive sites or DHSs)
applied to the top DMPs of total 5mC + 5hmC (1000 probes), 5mC
(1000 probes), and 5hmC (67 probes). Since alveolar macrophages are
not part of the Epigenome Roadmap [47], we based the overlaps on pe-
ripheral blood cell types includingmonocytes. As expected, eFORGE re-
sults (Supplementary Fig. 8) showed that monocytes (primary
monocytes in peripheral blood) were by far the most enriched cell
type among our DMPs (5mC + 5hmC q-value = 1.77 × 10−152; 5mC
q-value= 1.04 × 10−153; 5hmC q-value = 1.77 × 10−13), demonstrat-
ing co-localisation of monocyte DHS sites and smoking-associated
DMPs. In contrast, we did not see any significant enrichment of T cells
(primary T cells from peripheral blood) among our DMPs (5mC
+5hmCq-value=ns; 5mCq-value=ns; 5hmC q-value=ns), further
validating that our findings were indeed macrophage-specific.

The majority of the significant DMPs were hypomethylated in
smokers compared to non-smokers (Fig. 2a), but to a larger extent in
5mC (87%) than in 5mC + 5hmC (72%), suggesting that a fraction of
the 5mC + 5hmC DMPs display 5hmC modification. This is confirmed
by the predominant hypermethylation in 5hmC DMPs (Fig. 2a). Next,
we stratified the significant DMPs into CGI (Fig. 2b) and gene-related
features (Fig. 2c), and performed enrichment analysis relative to the
EPIC background (735,794) probe distribution. In summary, analysis
of significant DMPs revealed that both 5mC + 5hmC and 5mC hypo-
5hmCwith enrichment in gene bodies, non-CGI context and enhancer sites. Horizontal bar
uencies of hypermethylated and hypomethylated 5mC + 5hmC, 5mC, and 5hmC DMPs.
s (b) CGI-related features (CpG islands, shores, shelves, open sea), (c) gene features
distribution of all EPIC array probes included in our analysis are shown as EPIC bkg
-square test on frequencies, adjusting P values for multiple testing (Bonferroni). * P b .05
smokers.
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Fig. 5. Functional annotations of differentially expressed genes. All (a) and top (b) biological processes and diseases associatedwith differentially expressed genes obtainedwith Ingenuity
Pathway Analysis (IPA). Top canonical pathways (c) associated with differentially expressed genes obtained with IPA. (d) Schematic representation of the top gene interaction network
obtained with IPA, with downregulated and upregulated genes depicted in blue and red, respectively. (a-c) Significance is represented as –log10 P value and colours indicate predicted
activation z-score, with decreased, no effect, and increased activation in blue, white and red colours respectively. n.a. prediction not available.

299M.V. Ringh et al. / EBioMedicine 46 (2019) 290–304
and hypermethylated changes, caused by smoking, predominantly
occur in open seas and CGI (P b .001). Hypermethylated 5hmC sites
(66 DMPs) were also found more often in open sea and under-
represented at CGI, without however, reaching significance level.
Hypomethylated 5mC + 5hmC and 5mC DMPs were enriched in gene
bodies (Fig. 2c), and depleted in TSS1500, TSS200, and 1st Exon (P b
Fig. 4. Correlation of promoter, gene body, and enhancer methylation with gene expression. Plo
(a-b), gene body (c-d), and enhancers (e-f) of smokers-associatedDMPs and genes. Scatterplots
Δβ in promoter (a), gene body (c), and enhancer (e). Orange dots represent genes with signific
expression (log2 fold change N1), green dots represent significant expression but not methyla
Correlation plots of selected genes showing both methylation (5mC + 5hmC, β-values) and g
(b,d,f). Smokers (n = 7) are represented by yellow dots, and (n = 12) non-smokers by blue
present at various genomic features and can overlap with both promoter and gene body sites.
.001). Hypermethylated 5hmC sites were not significantly changed,
but followed the same directionality as hypomethylated 5mC, with en-
richment at gene bodies and depletion at TSS1500 and TSS200. Interest-
ingly, we found a striking enrichment of both among 5mC+ 5hmC and
5mC DMPs in FANTOM5 enhancers (Fig. 2d). This is the case especially
for hypomethylated DMPs, with enrichment from 3.3% of total EPIC
ts showing genes with differences in both DNAmethylation and expression in promoters
ofmean gene expression values (log2 fold change) and totalmethyl (5mC+5hmC)mean
ant smoking-associated changes in both total 5mC+ 5hmC (N0.15 absolute Δβ) and gene
tion, and purple dots represent changes in 5mC + 5hmC but not gene expression (b,d,f).
ene expression (normalised gene count), with Pearson correlation coefficient and P value
dots. Promoters are represented by TSS200 and TSS1500 CpG sites. Enhancer sites are
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probes (background) to 20.3% of significant 5mC + 5hmC DMPs (244
DMPs, P b .001) and 18.1% of 5mC DMPs (276 DMPs, P b .001).

Interestingly, only 53% of the true 5mCDMPs (891) overlappedwith
5mC+5hmCDMPs (Fig. 3a), suggesting that relevant changesmight be
undetected by conventional BS methylation analysis. The 10 overlap-
ping 5mC and 5hmC DMPs (Fig. 3a-b) showed hypomethylated 5mC
and hypermethylated 5hmC, further supporting involvement of the
DNA demethylation pathway.

Predominant hypomethylation could be further confirmed at region
level. In order to do so, we investigated clusters of neighbouring probes
for potential differential methylation between smokers and non-
smokers, using again a linear model adjusting for age and sex. We fo-
cused on differentially methylated regions (DMRs) with clusters of at
least two consecutive differentially methylated CpGs and identified 60
5mC + 5hmC and 83 5mC DMRs associated with smoking status at
genome-wide level (FDR-adjusted P b .05) (Supplementary Table 5
and Supplementary Table 6). In accordance with DMPs analysis, most
a
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DMRs were found hypomethylated (90% and 92% of 5mC + 5hmC and
5mC DMRs, respectively).

For technical validation of the EPIC methylation array, we selected a
DMPmapping to ITSN1 (cg11650372), displaying strong hypermethyla-
tion in smokers compared to non-smokers. BS and oxBS pyrosequenc-
ing confirmed differential methylation in accordance with the EPIC
data (BS methyl and 5mC; P value b.0001; Supplementary Fig. 9).

3.4. Known and novel smoking-associated DMPs

In order to compare our findings with previously reported DMPs
generated using BS-treatment alone, we focused on the 1667 DMPs
from total 5mC + 5hmC signals. Strikingly, out of the identified total
1667 DMPs, a substantial fraction (63.8%, 1063 DMPs) were covered
only by the EPIC chip (hence absent from previous platforms) (Supple-
mentary Table 2). Among the remaining 604 overlapping probes, 18%
(110/604) are known smoking-associated sites from genome-wide
studies in blood [7]. In alveolarmacrophages, 60% (18/30) of previously
b
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reported DMPs [14] were also found significant in our cohort. Seven of
our DMPs overlapped with smoking-associated DMPs in both blood
cells and alveolar macrophages and map to the SRGAP1 (cg01668352),
AHRR (cg25648203), SUSD4 (cg25466245), DAB2 (cg17576603), FGR
(cg11254522), CD80 (cg13458803) and RYBP (cg09006487) genes,
respectively.

The most significant 5mC + 5hmC DMP map to the antioxidant-
producing SEPN1 gene (cg04857037, adjusted P value = 3.77
× 10−12), and is specific to the EPIC bead array (Table 2; Supplementary
Table 2). The most significant 5mC DMP (Table 2; Supplementary
Table 3) was annotated to TNFAIP8L3 (cg02233197, adjusted P value
= 2.39Ex10−9), and has been previously reported in alveolar macro-
phages [14], while the most significant 5hmC DMP (cg00456797, ad-
justed P value = 1.85 × 10−3) is intergenic and specific to the EPIC
bead array (Table 2; Supplementary Table 4). Overall, 30% of the 5mC
+ 5hmC, 50% of the 5mC and 70% of 5hmC top 10 DMPs were specific
to the EPIC chip.

3.5. Differential variability of total 5mC + 5hmC and 5mC associated to
smoking

Next, we tested whether DNA methylation variability was signifi-
cantly associatedwith cigarette smoking. Group-wise analyses of differ-
ential variability on M-values revealed 19 significant 5mC + 5hmC
differentially variable positions (DVPs) (Supplementary Table 7) and 3
significant 5mC DVPs (Supplementary Table 8) with an FDR-adjusted
P b .05. The commonly known smoking-associated AHRR CpG site
cg05575921 was among the top 5mC + 5hmC DVPs, together with
CpG site in the bidirectional promoter of oncogene BRCA1 and the
NBR2 gene (cg20760063). Out of the 3 significant 5mCDVPs, 2 were an-
notated to the 3’UTR region of NFYA (cg06671660, cg09580153).

3.6. Changes in methylation correlate with transcriptional differences

Todeterminewhether the total DNAmethylation profileswere asso-
ciated with differentially expressed genes, RNA was simultaneously ex-
tracted from BAL cells from the same individuals and subjected to RNA
sequencing (RNA-seq). After filtering reads passing quality threshold
(RIN N7, total read count N10), a total of 633 genes were differentially
expressed between smokers and non-smokers with an adjusted P
value b.05 and absolute log2-fold change N1 (Supplementary Table 9).

Since DNAmethylation in promoters and gene bodies often correlate
with gene regulation, and given the considerable evidence of interac-
tions between enhancers and promoters with subsequent transcrip-
tional regulation [48], we sought to investigate associations between
methylation and expression specifically in these regions. We thus fo-
cused on all probes annotated to promoter regions (defined here as
TSS200 or TSS1500), gene bodies, and enhancer sites. Comparison of
5mC + 5hmC and gene expression changes in smokers vs non-
smokers revealed 60 differentially expressed genes, with 90 DMPs an-
notated to them. A large fraction, 75.5% (68/90), of these 5mC
+5hmCβ-values correlatedwith gene expression (Pearson correlation,
R N 0.5) (Supplementary Table 10). More specifically, in promoters, a
total of 10 differentially expressed genes also showed 5mC + 5hmC
changes (12 DMPs) (Fig. 4a). 66.7% (8/12 DMPs) of these genes
displayed a negative correlation (RN 0.5) betweenDNApromotermeth-
ylation and gene expression, as is often the case with promoter methyl-
ation. Smoking associated with hypomethylation and upregulation of 5
genes, including FAM129B, CYP1B1, andA2M (Fig. 4b), alongwith hyper-
methylation and downregulation of 4 genes, such as ACKR3 and ATHL1.
An additional 45 genes showed significant differences in both genebody
total DNAmethylation (63 5mC+5hmCDMPs) outside of promoter re-
gion, and gene expression (Fig. 4c-d), includingMYB, EEPD1, FLT1, and
the antioxidant-producing SEPN1. Interestingly, gene bodies include
both hypo- and hypermethylation as well as over- and under-
expression, supporting a mechanistic difference between promoters
and gene bodies. Enhancer-associated DMPs negatively correlated
with gene expression and were mostly located at gene bodies (87.5%,
7/8) including the MVB12B, ADORA2B, and FAM129B genes (Fig. 4e-f).
Overall, 5mC methylation and gene expression associations largely
overlapped with 5mC + 5hmC, but included additional genes such as
IL4I1, NFIA (Supplementary Fig. 10a-c), and selectin L-producing SELL.
A few 5hmC DMPs were also differentially expressed, including XYLT1,
SH3RG1, and CDA (Supplementary Fig. 10d-e).

3.7. DNA methylation and expression changes associate with genes in-
volved in immune cells migration and activation

To gain insight into biological functions associated with transcrip-
tional changes in BAL cells from smokers, we performed Ingenuity Path-
way analysis (IPA) on the 633 differentially expressed genes (adj. P
value b.05, log2-fold change N1). Enriched biological functions associ-
ated with transcriptional changes showed inhibition of processes such
as cellular movement and cell-to-cell signalling while inflammatory re-
sponse and cancer-related processes were predicted to be activated
(Fig. 5a). This is exemplified by themost significant biological functions
implicating decreased activity of immune cell chemotaxis, movement
and activation (Fig. 5b). The most enriched canonical pathways
(Fig. 5c) showed alteration of LXR/RXR activation pathway involved in
lipid metabolism and inflammation (Fig. 5d), adhesion and diapedesis
of mononuclear leukocytes pathway, a key event in the process of in-
flammation, and complement system pathway bridging the innate
and acquired immune systems, including cell killing, clearance of im-
mune complexes and apoptotic cells and activation of inflammation.

Interestingly, biological processes (GO terms) associated with 5mC
+ 5hmC DMP-annotated genes strongly overlap with the differentially
expressed genes, and differentially expressed genes harbouring DMPs
also clusterswith them (Fig. 6a). Top biological functions for both differ-
entially methylated and expressed genes converge to immune-related
processes such as leukocyte recruitment, migration and adhesion
(Fig. 6a-b). Of note, functions and pathways of genes annotated by
novel EPIC smoking-associated DMPs converge to similar GO terms as
the ones from genes annotated with known (450 K) smoking-
associated DMPs (Supplementary Fig. 11). IPA analysis of dysregulated
genes affected by 5mC + 5hmC DMPs shows enrichment of canonical
pathways related to haematopoiesis, angiogenesis, immune/oxidative
pathways and metabolism (Fig. 6c), cores genes segregating into func-
tional groups of interconnected genes (Fig. 6d). Among them, AHRR
and CYP1B1 are known genes involved in AHR detoxification pathway.
Likewise, genes showing DNA methylation and transcriptional changes
have common upstream regulators, most of which are cytokines typi-
cally found in an inflammatory milieu, such as the pro-inflammatory
TNF, IFN-γ and IL-1 and the anti-inflammatory IL-4 and IL-10 cytokines.
Thus, smoking-associated changes in DNA methylation and gene ex-
pression alter genes important for immune functions of BAL cells.

Overall, we found a major overlap of 5mC + 5hmC and 5mC (Sup-
plementary Table 11), suggesting that 5mC accounts for a substantial
fraction of the biological terms for pathway analysis. Regarding 5hmC
as a separate modification, there was not enough significant DMPs at
FDR-adjusted P value b.05 to perform pathway analysis. As an explor-
atory step, we performed analysis on DMPs at an unadjusted P value
b.001 (1659 DMPs, Supplementary Table 11). Even though these find-
ings should be interpreted with caution, they reveal that the large ma-
jority (80%) of canonical pathways associated to candidate 5hmC
DMPs overlap with 5mC DMPs.

3.8. Transcription factor analysis

The monocyte-specific signature of the DMPs (Supplementary
Fig. 8), indicates that these probes point to regulatory elements present
in cells from the monocyte/macrophage line rather than T cells or B
cells. DHSs can include several classes of regulatory elements, including
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promoters, enhancers, and CTCF-binding sites. In order to refine our
previous associations, we performed further analyses with chromatin
states (defined by the Epigenomics Roadmap Project [47]) on the
same 5mC + 5hmC and 5mC DMPs and found monocyte/macrophage
enhancers as the top category, suggesting that the DHS enrichment is
driven mainly by overlap with monocyte/macrophage enhancers. To
gainmore insight into themolecular processes involved in the observed
smoking response signature, we performed eFORGE-TF (transcription
factor) analysis and identified several significant TF motif associations
with both the 5mC + 5hmC and 5mC DMPs. Similar TF motifs were
found for 5mC + 5hmC (Supplementary Fig. 12; Supplementary
Table 12) and 5mC DMPs (Supplementary Fig. 13; Supplementary
Table 13). Using PANTHER pathway analysis, genes associated with
these TF motifs revealed the platelet derived growth factor (PDGF) sig-
nallingpathway as the top enriched pathway (Fold enrichment: 14.55, P
value: 2.74 × 10−2). Thus, eFORGE-TF and PANTHER analyses of differ-
entially methylated changes in BALmacrophages link smokingwith the
PDGF signalling pathway.

4. Discussion

We have investigated DNAmodifications and gene expression in al-
veolar macrophage-enriched bronchoalveolar lavage cells from healthy
smokers and non-smokers. This is, to our knowledge, the first report of
smoking-associated genome-wide methylation data in pulmonary cells
that includes true 5mC and 5hmC as separate modifications, especially
in combination with the EPIC BeadChip. We identified a large number
of smoking-associated DMPs (5mC + 5hmC, 1667; 5mC, 1713; 5hmC,
67), many of them located in enhancers. Our findings suggest that
smoking-associated differences may include DNA demethylation of
5mCwith a 5hmC intermediate, an interpretation based on the detected
opposing hypomethylated 5mC and hypermethylated 5hmC data. Im-
portantly, we could correlate our DNA methylation data with gene ex-
pression, and associate tobacco smoking with genes involved in
cancer, immune cell migration, and activation pathways. The observed
smoking-associated effect on DNA methylation and gene expression in
BAL cells is likely to have implications on disease risk of several pathol-
ogies such as cancer, COPD, and autoimmune diseases.

In this study, we do not only show that tobacco smoking induce al-
terations in 5mC+5hmCand gene expression in BAL cells fromhealthy
individuals, but also report significant changes in 5hmC. It has been
well-established that oxidative stress (ROS) underlying smoke-related
lung inflammation, results in DNA damage and cytotoxic events [49].
For example, the oxidative damage biomarker 8-oxoG, is significantly
elevated in lung tissue of smokers and also correlates with number of
cigarettes smoked per day [25]. The DNA demethylation system
catalysed by the TET enzymes also appears to be regulated by oxidative
state, where oxidative stressmay lead to demethylation initiated by TET
enzymes [22]. This may induce formation of 5hmC but could impor-
tantly also lead to active continuous oxidation to formyl and carboxyl,
whichwould actually lower the amount of 5hmC. Since 8-oxoG is essen-
tial for initiation of oxidative stress-induced DNA demethylation [22]
and is abundant in smokers [25,49], we would expect to see many
hypomethylated 5mC DMPs in smokers compared to nonsmokers. In-
terestingly, nearly all of the 67 identified 5hmC DMPs were
hypermethylated while most of the 5mC + 5hmC and 5mC top DMPs,
DVPs and DMRs were hypomethylated. This association supports the
hypothesis that smoking can promote demethylation by oxidation of
5mC into 5hmC, a modification that can also exert effect as a stable
mark. Future studies are warranted to decipher themechanisms under-
lying the methylation profiles observed in BAL cells from smokers in
general, and the contribution of oxidative stress-related 8-oxoG in
such processes.

DNA demethylation of 5mC into 5hmC may also lead to functional
effects, since these modifications have distinct properties such as differ-
ent affinity to transcription factors [23]. In contrast to 5mC,which is able
to bind transcriptional repressors, 5hmC can inhibit this binding and
thereby counteract the repressive effect of 5mC [21]. While 5mC is
often associated with gene repression, 5hmC facilitates transcription
by contributing to an open chromatin state [21]. This has been widely
studied in adult neurons and during embryogenesiswhere there is a rel-
atively high abundance of 5hmC. For example, in mouse embryonic
stem cells, the majority of 5hmC are located in gene bodies, and associ-
ated with moderate CpG density [50]. In our study, 5hmC is mainly lo-
cated in highly methylated regions such as 3’UTR, 5’UTR, gene bodies,
exon boundaries, and intergenic regions, and this is also where most
smoking-associated 5hmC DMPs are observed. It should also be noted
that while the hydroxymethylation results of the current study are
highly interesting and novel, they also need to be replicated in future
studies.

CpG sites associated with the aryl hydrocarbon receptor repressor
(AHRR) gene often appear as top significantly differentially methylated
in studies on the effect of smoking [7,10,13]. This is the case in our co-
hort as well, where three 5mC + 5hmC and six 5mC DMPs were anno-
tated to AHRR, alongwith one 5mC+ 5hmC DVP. The aryl hydrocarbon
pathway regulates cytochrome P450 family members, metabolic en-
zymes involved in the elimination of xenobiotics that may have entered
the body through i.e. the lungs. One group of xenobiotics includes the
polycyclic aromatic hydrocarbons (PAH), which are increased in the
lung tissue of tobacco smokers [51]. Many of these PAHs are carcino-
genic and are, after metabolic activation, able to bind to DNA bases
and form DNA adducts that in turn can lead to mutations in oncogenes
and tumour suppressor genes [51]. The AhR-dependent cytochrome
P450 family member 1B1 (CYP1B1), another differentially methylated
gene in our study, is highly induced by PAHs, and responsible for
metabolising many xenobiotics, including metabolic activation of PAH
[52]. In addition, CYP1B1 also metabolizes many physiological com-
pounds, including steroid hormones such as testosterone and
oestrogen. Noteworthy, CYP1B1 is involved in both hydroxylation and
demethylation of oestrogen products, and the rapid oxidation of 4-
hydroxylated oestrogens to quinones [53,54]. This redox recycling
leads to ROS production and oxidative DNA damage, which may lead
to DNA adduct formation and carcinogenesis [54,55].

In our study, we found several hypomethylated promoter DMPs in
genes from smokers that associate with increased gene expression,
one of them being CYP1B1. Previous studies of smokers have reported
upregulated CYP1B1 expression in the oral mucosa [56] and bronchial
airway epithelium [57]. Due to the direct contact between alveolarmac-
rophages and lung tissue, the hypomethylated promoter of CYP1B1 in
combination with the increased expression, may have a significant
role in the activation of procarcinogens and biotransformation to carcin-
ogens. Functional phagocytic capacity is highly relevant for alveolar
macrophages and this was impaired in a study on CYP1B1-deficient
mice, suggesting a role for CYP1B1 in clearance of debris [58], and an at-
tempt to increase this capacity as a response to smoking. Genome-wide
epigenetic studies have emphasised that the location of DNA methyla-
tion in relation to the gene, influences the direction of gene expression.
For example, DNA methylation occurring in promoter regions of genes,
is well known to repress gene expression [59]. In gene bodies on the
other hand, DNA methylation does not inhibit transcription and might
even be positively correlated with expression [15]. Interestingly, it has
been shown that AhR can bind to the promoter region (TSS1500) of
CYP1B1 [60], the same region we found hypomethylated both at DMP
and DMR level in our study.

Enhancer–promoter interaction through spatial chromatin organisa-
tion is a fundamental part of transcriptional regulation [48]. Enhancers
are located at various distances from promoters and contain binding
sites for sequence-specific transcription factors, and compared to pro-
moters, enhancer usage varies vastly across cell types [61]. Tissue-
resident macrophages, such as alveolar macrophages, exhibit distinct
enhancer landscapes that are influenced by the tissue microenviron-
ment in which they reside [61]. In the present study, we observed a
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large enrichment of hypomethylated DMPs annotated to enhancers,
suggesting that these sites are highly affected by smoking exposure. In-
vestigation of transcription factor motifs enriched for our DMPs identi-
fied the PDGF signalling pathway, a mediator of vascular remodelling
that may be implicated in cigarette smoke-induced pulmonary artery
hypertension [62].

Pathway analysis of transcriptional changes in our study revealed bi-
ological functions highly relevant to well-known smoking-related dis-
ease processes. We identified inhibition of biological processes such as
cellular movement, migration and adhesion and cell-to-cell signalling,
while inflammatory response and cancer-related processes showed in-
creased activity. Interestingly, the most enriched canonical pathway is
related to LXR/RXR activation with involvement in lipid metabolism
and inflammation. In support of this, our highly significant DMP and
gene expression top hit EEPD1 has recently been identified as a LXR tar-
get gene, proposed to promote cellular cholesterol efflux in macro-
phages, by controlling ABCA1 activity and protein levels [63].
Additionally EEPD1 has recently been characterised as a protein being
recruited to stalled replication forks during replication stress, where it
promotes restart of the replication fork [64]. Since smoking is known
to damage DNA, and thereby create barriers for DNA replication, the up-
regulated EEPD1 expression seen in BAL cells could therefore be a re-
sponse to the replication fork stress.

By combining methylome and transcriptome data from BAL cells,
our study provides new insights into the biological impact of smoking
locally in the lungs and possibly systemically in peripheral immune
functions. Our findings confirm previously reported DNA methylation
and gene expression results from alveolar macrophages, but also reveal
new smoking-associated signatures. These novel targets especially map
to regions that have not been coveredwith the previousmethodologies,
thus increasing and refining our knowledge of the molecular mecha-
nisms underlying the effect of smoking.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.07.006.
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