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Insect metamorphosis promotes the exploration of different ecological niches,
as well as exposure to different parasites, across life stages. Adaptation should
favour immune responses that are tailored to specific microbial threats, with
the potential for metamorphosis to decouple the underlying genetic or phys-
iological basis of immune responses in each stage. However, we do not have
a good understanding of how early-life exposure to parasites influences
immune responses in subsequent life stages. Is there a developmental legacy
of larval infection in holometabolous insect hosts? To address this question,
we exposed flour beetle (Tribolium castaneum) larvae to a protozoan parasite
that inhabits the midgut of larvae and adults despite clearance during meta-
morphosis. We quantified the expression of relevant immune genes in the
gut and whole body of exposed and unexposed individuals during the
larval, pupal and adult stages. Our results suggest that parasite exposure
induces the differential expression of several immune genes in the larval
stage that persist into subsequent stages. We also demonstrate that immune
gene expression covariance is partially decoupled among tissues and life
stages. These results suggest that larval infection can leave a lasting imprint
on immune phenotypes,with implications for the evolution ofmetamorphosis
and immune systems.

This article is part of the theme issue ‘The evolution of complete
metamorphosis’.
1. Introduction
Few factors have a greater impact on the outcome of an interaction between
host and parasite, or the spread of disease in a host population, than the age
and stage of the host. As hosts age, cumulative exposure to microbes shapes
the maturation and polarization of their immune systems. Life-history priorities
shift from growth to reproduction, inducing alterations in behaviour, food
source and even ecological niche [1]. As a result, hosts experience dynamic
changes over their ontogeny, from birth to old age, in both exposure to parasites
and susceptibility to infection once exposed [2].

The consequences of these ontogenetic dynamics can be observed across
broad swaths of the tree of life. In plants, for example, gibberellin hormones
that promote seedling growth also inhibit signals related to defence against pre-
dators and parasites. At the same time, signalling from the salicylic acid
pathway, which is involved in the response to biotrophic pathogens, inhibits
the action of the growth hormones [3]. As a result, growing plants are susceptible
to different pathogens than mature stages, and infection can influence the growth
trajectories of their plant hosts [4]. In humans, lack of early-life exposure to ben-
eficial microbes and other environmental antigens can set the stage for chronic
inflammation, allergy and other forms of immunopathology [5,6]. From an evol-
utionary perspective, the risk of immunopathology in early life is predicted to
favour decreased immunological sensitivity to infection later in life [7]. In all of
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these examples, host ontogeny is a fairly continuous process,
punctuated by hormonal signals that encourage flowering or
the onset of puberty but otherwise keep major organs and
physiological structures intact. In animals that undergo meta-
morphosis, however, developmental continuity is swapped
for discrete stages characterized by transition periods of dra-
matic physiological restructuring that alter the calculus of
costs and trade-offs in host–parasite interactions.

During metamorphosis, tadpoles become frogs and cater-
pillars become butterflies, allowing hosts to exploit disparate
resources and environments that individually maximize par-
ticular, stage-associated traits like growth or reproduction [8].
Metamorphosis is not a requirement for stage-specific niche
differentiation; even within insects, dragonflies and mosqui-
toes both have an aquatic juvenile stage and a terrestrial
adult stage, but dragonflies undergo relatively continuous
maturation from instar to instar while the holometabolous
mosquitoes undergo pupation prior to adulthood. Why
bother with complete metamorphosis, then? After all, the
pupal stage can be a liability as it is generally sessile, poorly
defended and unable to acquire resources to fuel its energetic
needs. The adaptive decoupling hypothesis suggests that the
pupal stage might be the price paid for immature and mature
developmental modules that can respond relatively inde-
pendently to evolutionary pressures at a genetic regulatory
level [9], allowing organisms to simultaneously maximize
performance in multiple life stages.

The re-invention of the midgut during complete metamor-
phosis is a particularly potent example of adaptive flexibility
achieved by decoupling one life stage from another. In most
insects, the midgut comprises epithelial cells, goblet cells and
stem cells [10–12]. The ratio and renewal rates of these cell
types differ extensively from one life stage to another and
vary dynamically even within life stages. For example, as
larvae grow larger and moult, the stem cells of the midgut
undergo proliferation and differentiate into new, polyploid epi-
thelial cells and goblet cells [11]. This renewal process is also
crucial in the host response to bacterial toxins and viruses that
rely on the invasion of epithelial cells to colonize the host [13].
As insects transition to the pupal stage, however, the old somatic
cells are excised into the lumen to form the yellow body, which
undergoes apoptosis and autophagy to recycle the nutrients
before being evacuated during eclosion of the new adult [12].
In the midgut of a new pupa, only the intestinal stem cells
remain, imaginal structures that proliferate and differentiate
into the epithelial cells that will eventually compose the adult
gut [11]. Consistent with the adaptive decoupling hypothesis,
the relative morphologies of larval and adult epithelial cells
reflect the relative feeding ecologies of each life stage. For
example, in fruit flies, the polyploid epithelial cells of larvae
facilitate the rapid acquisition and processing of nutrients
from complex food media, while the smaller, diploid nuclei of
adult midgut epithelial cells reflect the narrower breadth of
adult food sources [10]. On the other hand, the larval and
adult stages of the flour beetle Tribolium castaneum both feed
on the same resource [11], and both contain midgut epithelial
cells that share a common polyploid morphology.

Midgut remodelling during insect metamorphosis can
exert complex effects on the persistence of parasites and
othermicrobes. Protozoan trophozoites that remain embedded
in the flour beetle (T. confusum) gut when a larva enters meta-
morphosis, for example, are evacuated with the yellow body
[14], allowing the adult to eclose without a parasite burden.
On the other hand, the elimination of the gut epithelia could
also eliminate beneficial microbiota, allowing any remaining
opportunistic pathogens to exploit the pupa or colonize the
new adult gut. IndeedGalleria mellonellamoth pupae cooperate
with a beneficial microbe (Enterococcus mundtii) to exclude
pathogenic Serratia strains during metamorphosis [15]. Knock-
ing down host immune gene expression or preventing the E.
mundtii strain from producing bacteriocins allowed Serratia to
dominate, at a cost to pupal survival. Furthermore, the cessa-
tion of resource acquisition during pupal gut remodelling
can render larvally acquired infections hazardous duringmeta-
morphosis. The microsporidian parasiteNosema whiteii kills its
flour beetle host during the pupal stage after manipulating the
host into an extended larval stage during which the parasite
converts acquired resources into spores [16]. Conversely, a pro-
tozoan parasite (Ophryocystis elektroscirrha) of the monarch
butterfly (Danaus plexippus) can lethally deform its host
during the pupal stage if it reaches excessive spore densities
in the larval stage, prematurely curtailing transmission [17].
Thus, metamorphosis can shape parasite life-history evolution
while also influencing host phenotypes and fitness.

The impact of metamorphosis on the adaptive decoupling
of gene expression is hypothesized to extend to the immune
system [18,19]. Life stages that use different resources or display
disparate behaviours are also likely to encounter different types
of parasites that require alternate forms of immunological
defence. Thus, the decoupling of correlated gene expression
by the use of different regulatory elements from one life stage
to the next could allow evolution to simultaneously optimize
immune system regulation inmultiple life stages. Empirical evi-
dence from multiple holometabolous insect species supports
this hypothesis, as summarized in table 1. For example, the
larvae and adults of Drosophila melanogaster fruit flies express
the antimicrobial peptide diptericin at similar levels but funda-
mentally differ in their expression of the antimicrobial peptide
drosomycin [19]. In a similar vein, the larvae of the Anopheles
gambiae mosquito, which live in a microbe-rich aquatic
environment, exhibit higher numbers of haemocytes that pha-
gocytose bacteria and higher levels of immune gene
expression than adults [18]. These examples suggest that
expression of an immune phenotype in the larval stage does
not indelibly predict adult phenotypes, allowing plasticity in
immunological investment over ontogeny.

Despite the importance of complete metamorphosis for the
outcome of host–parasite interactions, we know little about
the legacy of larval infection on the immunological state of
pupal and adult stages, particularly upon remodelling of the
midgut. Most of what we do know (table 1) focuses on
the response to immune challenge with bacteria. As both
beneficial endosymbionts and virulent entomopathogens, bac-
teria are undoubtedly important selective factors on the
adaptive decoupling of immune responses across life stages.
Horizontally transmitted, relatively avirulent parasites like
eugregarine protozoa are also ubiquitous among insect popu-
lations [27,37,38], and yet we know almost nothing about
host immune responses to these parasites or their interaction
with host metamorphosis. In this study, we compare the
expression of immune genes in the guts and whole bodies of
larval, pupal and adult flour beetles (T. castaneum) that were
infected as larvae with a naturally occurring and common gre-
garine parasite that gets expelledwith the recycled gut epithelia
during metamorphosis. We chose to assay the expression of
antimicrobial peptides (AMPs), recognition proteins and
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other immune effectors previously associated with the insect
gut, metamorphosis and/or protozoan infection (figure 1).
As flour beetles are holometabolic and have coevolved with a
variety of parasites that afflict one or many stages [16], we pre-
dicted that different immune genes would show different
strengths of pairwise correlations across beetle life stages,
reflecting at least partial evolutionary decoupling of immune
gene regulation. Even though gregarines are expelled from
the gut during metamorphosis, adults can become re-infected,
and we therefore also expected that larval infection would
inform the expression of immune genes in pupae and adults
in anticipation of adult re-exposure. We discuss the impli-
cations of our results for our understanding of the evolution
of metamorphosis and innate immune systems.
2. Material and methods
(a) Gregarine infections
Septate eugregarine protozoa are ubiquitous and generally aviru-
lent inhabitants of insect midguts [14,27,39,40]. The strain of
Gregarina parasites used in this study was originally derived
from infected T. castaneum beetles collected at a feed store in Ken-
tucky in June 2017 and subsequentlymaintained in a continuously
infected colony. We have not observed any obvious disease-
induced mortality or other symptoms of virulent infection with
this parasite. This parasite is transmitted via the secretion of game-
tocysts from the infected insect gut. The gametocyst produces
oocysts in the flour environment that are then ingested by the
new host. Thus, the addition of beetle eggs to flour derived from
a heavily infected colony is sufficient to reliably expose newly
hatched larvae to the parasites [14,27,39,40]. Before the start of
the experiment,we confirmed infection in the source colony by dis-
secting the guts of 15mature larvae and stainingwith a 60% iodine
saline solution tovisualize gregarine parasites via lightmicroscopy
(25×). We found that 7/15 larvae had visible trophozoites in the
midgut, although the infection rate is likely higher as the tropho-
zoites are hard to see until almost ready to enter syzygy. None
of the 15 pupae that we dissected showed signs of infection, agree-
ing with previous observations [14] that parasites are unlikely to
survive in the pupal gut because the epithelia to which they are
attached are destroyed.

(b) Flour beetle rearing and sample collection
We set up 11 Petri dishes containing all-purpose white flour, to
which we added 60 T. castaneum adults from the ‘Snave’ colony,
originally collected from a Pennsylvania grain elevator in July
2013 and subsequently maintained in the laboratory [39]. Four
days later, we sieved approximately 600 eggs from the breeding
groups, mixed them together and distributed them randomly
into one of two 0.5 l plastic containers, to which we added either
100 g of gregarine-positive flour from the heavily infected
T. castaneum colony or 100 g of gregarine-free flour from a



Table 2. Primers used to assay immune gene expression in T. castaneum.

primer
set full name function forward oligo sequence reverse oligo sequence AT. (°C)

Def1 defensin-1 Toll/IMD AMP TTTRYCGTTGCARTAKCCTCC TCAARSTGAATCATGCCGCWTG 55

Cec3 cecropin-3 Toll AMP AACATGARYACCAAACTTTT CCAAYTTATMGGCTKTGGWG 55

PGRP-LA peptidoglycan recognition protein LA IMD recognition TGCCACCTTAAACTTCTCTAAAC GACTGCACCCTTTGCGAACAT 55

PGRP-LC peptidoglycan recognition protein LC IMD recognition ACGAAGGCCGGGGATGGAAA GTTGTTTGCAAGCCGTTATCTG 55

PGRP-SC2 peptidoglycan recognition protein SC2 IMD recognition ACAGTTGGATGCKTTGAAACAGT AACTSGTYCTGCTCCCTTG 55

DDC dopa decarboxylase melanin synthesis AGAAGTCGTGATGCTKGACT CTTGRATCACGCCGCC 55

Duox dual oxidase ROS synthesis CGCAATTGATCGGCCACTTT AGCTCCAAGGGATTTGGTCG 55

TEP-B thioester-containing protein B cellular recognition AGGTTTCACCTCATCGCAGG GTTGAAATTGTGGCGCTGGT 55

S18 ribosomal protein S18 ribosomal Protein CGAAGAGGTCGAGAAAATCG CGTGGTCTTGGTGTGTTGAC 55
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parasite-negative colony. Threeweeks later, we pulled 50 pupae as
well as 50 larvae with an approximate length of 4 mm from each
treatment, and 25 newly eclosed, virgin adults from each treatment
a week after that. For development assays, we collected 30 pre-
pupae from each treatment and placed them in individual wells
of a 96-well plate, monitoring them daily first for pupation and
then for eclosion as new adults. All beetles were kept at 29°C in
the same incubator in the dark except when handled.

All larval and adult individuals destined for gene expression
studies were starved overnight prior to sample processing to elim-
inate non-colonized parasites and food in the midguts, although
remnants remain in the hindgut. The beetles were then dipped in
sterile water to remove excess flour immediately prior to sample
collection. We dissected whole guts from all stages by making an
incision in the abdomen and gently removing the gut with twee-
zers while the insect was immersed in 10 µl sterile insect saline.
Guts were immediately placed in a 1.5 ml collection tube on dry
ice. After collections were complete, guts were kept at −80°C. We
originally treated a subset of guts with iodine as well to visualize
parasites before freezing the guts, but after finding that iodine
treatment severely affected gene expression, we eliminated these
samples from subsequent analyses, leaving us with five to seven
gut samples per exposure treatment per life stage. Whole individ-
uals (8–10 per treatment/life stage) were placed in individual
tubes, frozen and kept at −80°C.

(c) Quantification of immune gene expression via
RT-qPCR

We isolated gut RNA using the Qiagen All Prep Micro Kit and
isolated whole body RNA with Qiagen All Prep and RNeasy
kits. We synthesized cDNA with 0.5 µl RNA (whole body) or
4 µl RNA (gut) in a 5 µl or 10 µl reaction using the manufac-
turer-recommended protocol with SuperScript IV VILO master
mix (ThermoFisher Scientific) and diluted the cDNA with
30–40 µl nuclease free water. We conducted RT-qPCR on the Bio-
systems Quantstudio 6 Flex machine using sybr green chemistry
(PowerUp SYBR green master mix from Applied Biosystems,
500 nM primers (table 2), 10–50 ng cDNA). Thermal cycling con-
ditions were 95°C for 2 min, followed by 40 cycles of 95°C (15 s),
55°C (10 s) and 60°C (1 min). All samples were run in duplicate
or triplicate and the average ct value was used for subsequent
analyses as long as technical replicates were within 1 ct.

We used RT-qPCR to quantify the expression of immune
response-associated genes (figure 1) including defensin-1, cecro-
pin-3, dopa decarboxylase (DDC), thioester-containing protein B
(TepB), dual oxidase (duox) and the peptidoglycan recognition
protein genes pgrp-LA, pgrp-LC and pgrp-SC2. Defensin-1 and
cecropin-3 are AMPs that are thought to be activated by both the
IMD and Toll pathways in T. castaneum and have orthologues
that are upregulated during the bacterial oral challenge in
Bombyx mori and D. melanogaster [41,42]. Pgrp-LA and pgrp-LC
are transmembrane receptor proteins for the IMD pathway in T.
castaneum and essential for its production of AMPs [43]. PGRP-
SC2 is the T. castaneum homologue of pgrp-LB in D. melanogaster,
which downregulates the IMD pathway [44]. DDC is a precursor
in the melanization pathway, which kills malaria parasites in the
midgut ofAnophelesmosquitoes [41,45]. TEPs are highly expressed
in the crop andproventriculus inD.melanogaster [46]. Finally, Duox
synthesizes reactive oxygen species (ROS) in gut epithelial cells,
and RNAi knockdown of Duox has been shown to increase host
susceptibility to oral bacterial infection in D. melanogaster [47].
We used ribosomal protein S18 (rps18) as a reference gene for quanti-
fication of relative gene expression [48], as it has been shown to be
stably expressed during infection [49] in T. castaneum. We con-
firmed its stability by comparing the ratios of mean S18 ct values
to ng µl−1 cDNA among infected versus uninfected whole larvae
(F1,10 = 3.09, p = 0.10), which was not significant.
(d) Statistical analyses of gene expression
We calculated the Δct values for each gene for each individual
sample by subtracting the mean ct value of the target gene from
the reference gene mean ct value. Thus, the Δct value represents
the relative expression value of the target gene on a log2 scale
[48]. As our expression data were lognormally distributed, we
retained the log2-transformed value for subsequent analyses. All
statistical analyses were conducted in R (v. 3.5.2). To analyse the
main effect of tissue on overall host gene expression, we conducted
a MANOVA with our eight genes as dependent variables and
tissue as the independent variable. To analyse the impact of each
life stage, parasite exposure and their individual interactions
within each tissue on gene expression, we used linear models
(lm() function) of the form (target relative expression∼ stage +
exposure + stage * exposure). We adjusted the p-values with the
Benjamini–Hochberg method to control for the false discovery
rate [50]. We interpret a significant main effect of exposure as indi-
cating the differential expression of a given gene in the same
direction in multiple life stages, while a significant interaction
effect would indicate that the magnitude or even direction of
exposure-induced differential expression differs among stages.
Finally, to analyse pairwise expression correlations between
genes, we used the cor() function on gut and whole body as well
as larval, pupal and adult data. To get differences in covariance
relationships among these datasets, we subtracted the absolute
value of one matrix from another and graphed the resulting differ-
ences using the lowerUpper (psych package) and ggcorrplot
(ggcorrplot package) functions.
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Figure 2. The influence of tissue type and gregarine parasite exposure on immune gene expression across developmental stages of the flour beetle T. castaneum.
The expression of the antimicrobial peptides defensin-1 (a), and cecropin-3 (b), the recognition protein pgrp-LC (c) and the reactive oxygen species generator duox
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parasites as larvae (blue; right boxes) or not (orange; left boxes). The expression of each gene relative to the reference gene RP18s is represented on a log2 scale.
Lines have been added to visualize the developmental trajectory of median gene expression. (Online version in colour.)
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3. Results

(a) The impact of gregarine infection on pupal
development

The majority of individuals from both treatment groups took
6 days to develop from newly ecdysed pupae to newly eclosed
adults and thus the distribution of development times was
underdispersed (dispersion parameter = 0.05). Nevertheless,
individuals exposed to gregarine parasites as larvae developed
significantly faster than those who were not exposed (quasi-
Poisson GLM, t = 2.05, p = 0.046), although the effect size was
less than 1 day among treatments.
(b) Immune gene expression differs by tissue
The overall effect of tissue (gut versus whole body) on
gene expression was highly significant (MANOVA, F1,89 =
31.34, p < 2 × 10−16). Models for individual genes revealed that
the gene ddc had, on average, 5.7-fold higher expression in the
whole body than in the gut (F1,89= 27.7, p < 1 × 10−6). Genes
that showed significant upregulation in the gut relative to the
whole body, on the other hand, include pgrp-LC (fold change
= 2.6, F1,89= 21.4, p < 2 × 10−5), duox (fold change = 11.47,
F1,89= 66.2, p < 1 × 10−11) and cecropin-3 (fold change = 14.8,
F1,89= 31.4, p < 1 × 10−6). There was no significant tissue-
driven difference in expression for the genes pgrp-LA,
defensin-1, pgrp-SC2 or tepB (p > 0.05). Figure 2 illustrates the
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relative expression of four genes among tissues (top row in each
panel = gut expression, bottom row=whole body expression).

Does the co-regulation of immune gene expression differ
between tissues? Previous work on T. castaneum and other
model insects like D. melanogaster have proposed that several
of our genes are likely to be under the control of common
pathways like IMD and Toll (e.g. [51]), resulting in expression
patterns that covary among co-regulated genes. In our data,
all genes showed a moderate to high correlation of expression
with at least one other assayed gene (figure 3b), but these
relationships were not always consistent among tissues
(figure 3a). For example, pgrp-LA and tepB were tightly corre-
lated at the whole body level but show no relationship in the
gut (figure 3c).

(c) The effect of developmental stage and parasite
exposure on immune gene expression

To analyse the impact of developmental stage, larval
gregarine exposure and their interaction on immune gene
expression (figure 2), we performed linear modelling on
each gene. We analysed gut and whole body datasets separ-
ately because of the complex tissue-specific genic interactions
described above. In the whole body, there was no significant
effect of gregarine exposure on gene expression (table 3), but
expression differed broadly by life stage. Most genes showed
higher expression in pupae and adults relative to larvae (elec-
tronic supplementary material, table S1 ‘whole body’). Pgrp-
LC, pgrp-LA and tepB increased in each subsequent life stage,
while defensin-1 (figure 2a) and to a lesser extent cecropin-3,
duox and ddc peaked in the pupal stage. Only pgrp-SC2
expression showed no significant effect of stage.

The expression of immune genes in the gut was more
diverse in the response to stage and exposure (table 3).
Larval exposure to gregarines resulted in the overall downre-
gulation of cecropin-3 (figure 2b), pgrp-LC (figure 2c) and duox
(figure 2d) that persisted into the pupal and adult stages. The
expression of duox further depended on the interaction of
exposure and life stage (electronic supplementary material,
table S1), as the expression was suppressed in exposed larvae
but upregulated in the guts of pupae that were previously
exposed (figure 2b). Only defensin-1wasmore highly expressed
in pupae than in larvae and adults (figure 2a), but pgrp-LC,
duox and tepB were significantly more highly expressed in
adults relative to larvae (e.g. figure 2c,d). No gene was most
highly expressed in larvae than in other life stages.

In whole organisms, the strength of pairwise gene
expression correlations differed among life stages (figure 3d ).



Table 3. Summary of statistical results for the impact of stage, larval parasite exposure or their interaction on immune gene expression in the gut and whole
body. Full statistical tables for each gene are available in electronic supplementary material, table S1. The expression of each gene was fit with the model:
expression∼ stage × exposure using the lm() function in R, where stage has three levels (larva, pupa, adult) and parasite exposure has two levels (exposed,
unexposed). p-values were adjusted for false discovery rate using the Benjamini–Hochberg method, and asterisks indicate the level of significance for at least
one level of factor or interaction, relative to unexposed larvae: *padj < 0.05, **padj < 0.01, ***padj < 0.001. ‘—’ indicates lack of statistical significance.

gene

gut whole body

stage exposure stage*exposure stage exposure stage*exposure

defensin-1 *** — — *** — —

duox * *** *** *** — —

tepB *** — — *** — —

cecropin-3 — * — *** — —

ddc — — — ** — —

pgrp-LC * ** — *** — —

pgrp-LA — — — *** — —

pgrp-SC2 — — — — — —
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For example, pgrp-LC and tepB expression was tightly and
steeply correlated in larvae but less so in pupae and adults
(figure 3e), while the strong positive relationship observed
between pgrp-LA and cecropin-3 in larvae and adults broke
down in pupae (figure 3f ).
4. Discussion
Our data suggest that larval exposure to a relatively benign
protozoan parasite can leave an imprint on gut immune
system gene expression that persists into metamorphosis.
Our study also reflects a dynamic change in the immunological
profile of the insects as they mature through metamorphosis
into adulthood and demonstrates the decoupling of immune
gene regulation among tissues as well as across different life
stages. As we know little about the insect immune response
to eugregarines despite their ubiquity and diversity, andmore-
over the immunological dynamics of metamorphosis are still
poorly described for most insects, this study provides a
unique window into the integration of parasites with the life
history of holometabolous insects. The persistent downregula-
tion of several important immune recognition and effector
genes beginning in the gut of infected larvae also raises the
possibility of trade-offs with resistance to the bacterial infection
that could haunt the host in later life stages.

The downregulation of AMPs observed in infected larval
guts in our study may reflect parasitic manipulation of IMD
and Toll pathways, but it could also hint at the polarization of
the immune response toward defences aimed at eukaryotic
parasites at the expense of antibacterial defences. Evidence
from the Egyptian cotton leafworm (Spodoptera littoralis), for
example, suggests that antibacterial activity trades off with
cellular immune function and cuticular melanization in
larvae [52]. While the insect immune response to gregarines
has not been well described prior to this study, we do have
evidence that gregarine infection can impact concurrent
or subsequent infections. For example, larval T. confusum
infection with the gregarine parasite Gregarina minuta
primed the resulting adults to better resist re-infection [14]
although the impact of gregarines across generations was
less beneficial to their flour beetle hosts; gregarine-infected
T. confusum females produced offspring that were more
susceptible to infection with the virulent bacterial entomo-
pathogen Bacillus thuringiensis [39]. Gregarines do not
always facilitate entomopathogens, however, as cockroaches
(Blattella germanica) were less competent hosts for parasitic
nematodes if they were first infected with gregarines [53].
While the polarization of helper-T cell responses [54], for
example, is well characterized in mammals, we still have
not delineated analogous mechanisms that contribute to
functional trade-offs among arms of the immune system in
insects. Gregarine infection may represent an underappre-
ciated route for exploring the costs of maintaining multiple
immunological fronts in invertebrate immune systems.

Should we expect decoupling of immune gene regulation
across discrete life stages in flour beetles? Larval, pupal and
adult flour beetles all live in the same milled grain substrate
and therefore experience similar environmental challenges
[55], including exposure to gregarine parasites, suggesting
that selection for stage-specific immune system optimization
may not be as extreme as in insects that experience completely
different ecological conditions over ontogeny. However, there
are still fine-scale spatial and behavioural differences among
the flour beetle life stages that could bias relative rates of para-
site exposure. Larvae tend to burrow down into the flour
column and are renowned for their tendency to cannibalize
multiple life stages [56], making the transmission of parasites
an occupational hazard. Adults, who generally only canniba-
lize eggs and then only under high-density conditions, tend
to congregate at the top of the column where they can find
mates or achieve dispersal. Pupae also congregate at the top
of the column, cannot feed and lack robust behavioural
defences, making them easy targets for both predators and
parasites or parasitoids that can penetrate the cuticle. Finally,
mating is a well-known test of adult-specific immunological
competence, as exposure to sexually transmitted diseases and
the resource-intensive costs of producing offspring can tax
host defences [33].

Thus, we might still expect selection to favour adaptive
decoupling of immunological architecture in this system,
and our data suggest that immune gene co-regulation does
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become at least partially decoupled across life stages. For
example, the recognition gene pgrp-LA and the antimicrobial
peptide gene cecropin-3 are tightly positively correlated in
larvae and adults, but the correlation is completely lost in
pupae (figure 3f ). Co-regulation was also decoupled across tis-
sues, as pgrp-LA and tep-B are strongly positively correlated at
the whole body level but completely uncorrelated in the gut
(figure 3c). This agrees in part with previous work on the onto-
genic [19] and tissue-specific [31] decouplingofAMPexpression
inD.melanogaster, and ourwork additionally suggests that there
might be an interaction between stage and tissue. This makes
sense from an evolutionary perspective, as some parasites to
which the flour beetle is exposed mainly inhabit the gut
(e.g. eugregarines and the microbiota), while others inhabit
the haemolymph or fat body (e.g. microsporidia or coccidia
[16,35]), requiring different responses and regulatory mechan-
isms in different tissues. Thus, we advise caution when
inferring the contributions of particular immune pathways or
regulatory elements to differentially expressed immune genes,
as many canonical immune pathways have been described
from studies of whole adult insects. This caveat extends to the
study of immunological imprinting from early-life infection,
as the signal of gregarine infection on immunity across
ontogeny was lost at the whole-organism level.

Most of our immune genes were significantly differentially
expressed in different life stages at the whole organism level
independent of gregarine infection, and a subset was also sig-
nificant in the gut for the main effect of life stage. Our
observation of monotonically increasing recognition and effec-
tor gene expression over ontogeny is consistent with a few
examples from table 1 (e.g. PO activity in Apis mellifera [57])
but at odds with others that demonstrate peak responses
during larval [18,20] or pupal [58] stages. Only defensin-1, for
an antimicrobial peptide that tends to be highly expressed in
both the presence and absence of infection in flour beetles
[59], peaked in expression during the pupal stage (figure 2a),
consistent with observations in lepidopteran hosts of high anti-
microbial peptide expression against opportunistic infections
by microbes escaping the gut lumen during metamorphosis
[15,60]. We note that we collected the larvae and pupae at the
same time for this experiment, and while the difference in
their development times may be down to the length of the
egg laying period, it is also possible that the pupae were
higher quality individuals able to develop faster. However, in
this case, wewould expect most genes to show non-monotonic
expression over development, so differences in quality are unli-
kely to be a major factor here. Future work using stage- and
tissue-specific functional genetics approaches could help
to clarify the relative contributions of canonical and non-
canonical immune pathways and host quality to the generation
of antimicrobial effectors across tissues and life stages.

Moving forward, how can we assess the role of infection
and immunity in the evolution of metamorphosis, and conver-
sely the role of metamorphosis in immune system evolution?
First, it would be interesting to leverage the overlap in stage-
structured ecological niches among holometabolous and
hemimetabolous insects such as mosquitoes and damselflies
or milkweed bugs and milkweed beetles to characterize, for
example, patterns of parasite prevalence or immune function
as a function of environment, stage and developmental
mode. With the maturation of the i5 k project [21] and related
efforts to sequence and annotate insect genomes, comparative
analyses of immune gene architecture or stage-structured tran-
scriptional dynamics among species could help to disentangle
the effects of phylogeny from ecology and ontogeny on
immune system evolution. In addition, better characterization
of the natural enemies of insects could complement current
descriptions of immunological dynamics in model insects
against laboratory-amenable bacteria. For example, the relative
rates of exposure and susceptibility metrics could differ among
life stages, as could the density distribution of parasites among
infected insects. Many parasites are aggregated among hosts
(including gregarines, althoughwe could not quantify parasite
load distribution in this study). If most hosts have only a few
parasites while a few hosts have many parasites [22], parasite
aggregation could induce heterogeneity in the impact of infec-
tion on host demography through mortality or developmental
effects. Connecting empirical patterns of infection and immu-
nity across ontogeny with mathematical models of age- and
stage-structured immune system evolution [2,7,23] could pro-
vide a unifying framework for understanding patterns of
immunological variation in nature.
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