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Juvenile hormones and the genetic interaction between the transcription fac-
tors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of
insects from immature to adult forms in both types of metamorphosis (holo-
metaboly with a pupal stage versus hemimetaboly with no pupal stage);
however, knowledge about the exact instar in which this occurs is limited.
Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate
that a genetic interaction occurs among Gb0Kr-h1, Gb0Br and the adult-speci-
fier transcription factor Gb0E93 from the sixth to final (eighth) nymphal
instar. Gb0Kr-h1 and Gb0Br mRNAs were strongly expressed in the abdomi-
nal tissues of sixth instar nymphs, with precocious adult moults being
induced by Gb0Kr-h1 or Gb0Br knockdown in the sixth instar. The depletion
of Gb0Kr-h1 or Gb0Br upregulates Gb0E93 in the sixth instar. By contrast,
Gb0E93 knockdown at the sixth instar prevents nymphs transitioning to
adults, instead producing supernumerary nymphs. Gb0E93 also represses
Gb0Kr-h1 and Gb0Br expression in the penultimate nymphal instar, demon-
strating its important role in adult differentiation. Our results suggest that
the regulatory mechanisms underlying the pupal transition in holometabo-
lous insects are evolutionarily conserved in hemimetabolous G. bimaculatus,
with the penultimate and final nymphal periods being equivalent to the
pupal stage.

This article is part of the theme issue ‘The evolution of complete
metamorphosis’.
1. Introduction
Holometabolous insects, such as butterflies, beetles and flies, undergo a complete
morphological transformation from larva to adult via a pupal stage. The inter-
mediate pupal stage is specific to holometabolous insects, and is needed to
transform immature larvae to winged adults. The nymphs of hemimetabolous
insects, like locusts, cockroaches and crickets, also undergo morphogenesis to
form mature wings and external genitalia, as observed in the larva-to-pupa tran-
sition and pupa of holometabolous insects. However, the nymphs of
hemimetabolous insects resemble miniature adult forms with wing pads, with
the wings and genitalia outgrowths developing throughout the nymphal stages.

Despite these two types of metamorphosis being clearly distinct, both are
regulated by two hormones, the steroid 20-hydroxyecdysone (20E) and the
sesquiterpenoid juvenile hormones (JHs) [1–3]. 20E is the most active form
of insect moulting hormone, ecdysone, and larval–larval moulting and
larval–pupal–adult metamorphosis are provoked by pulses of 20E [4,5]. 20E
binds to a heterodimer in the nuclear receptor complex, ecdysone receptor
(EcR) and ultraspiracle protein (USP), and EcR-USP binds to 20E response
elements (EcRE). 20E-EcR-USP triggers a transcriptional cascade, which
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includes transcription of the 20E primary response genes,
such as Br-C, E74, E75 and E93, and subsequent events of
20E secondary response genes [4,5]. However, the type of
moult is determined by JH levels. For instance, for larva-to-
larva moults, high JH titres are needed. JH antagonizes 20E
signalling to prevent precocious metamorphosis during the
larval stages, and the metamorphic moult occurs when
the JH titre drops during the final instar. JH acting through
JH receptor Methoprene-tolerant (Met) [6–9], which is
the bHLH-PAS protein family member, prevents adult differ-
entiation during the pre-ultimate immature stages, by
inducing the expression of the antimetamorphic transcription
factor gene Krüppel homologue 1 (Kr-h1) [3,10–13]. JH-stimu-
lated Kr-h1 expression prevents metamorphosis, whereas
the noticeable decline in Kr-h1 expression, following a natural
drop in the JH titre during the final juvenile stages, particu-
larly last-instar nymphs in hemimetabolans and pupae in
holometabolans, permits adult development [14–18].

A key regulatory gene in the metamorphosis of holometa-
bolous insects is the pupal-specifier transcription factor Broad
(Br), which specifies pupal development. The transient
expression of Br is essential for the successful formation of
pupae. The subsequent repression of Br during the pupal
stage allows proper pupal–adult transition [19–22]. In Droso-
phila melanogaster (Dm), Dm’Br is predominantly expressed
during the larval–pupal transition when 20E is high and JH
is absent [23,24]. In comparison, the milkweed bug Oncopel-
tus fasciatus (Of ) and cockroach Blattella germanica (Bg),
which are hemimetabolous insects that lack pupal stages,
Of’Br or Bg’Br are expressed during embryonic, pronymphal
(first postembryonic form before hatching) and nymphal
development, but then disappear at the moult to adult
[25,26]. However, during the final nymphal instar of B. germa-
nica nymphal instar, a small peak in Bg’Br expression was
reported when ecdysone peaks. Thus, these compounds, at
least, regulate gradual wing bud growth.

Recent studies have identified E93, which is a helix–turn–
helix transcription factor containing a Pipsqueak (Psq) motif,
as an important player downstream of Kr-h1 [27]. The depletion
of E93 in final instar nymphs of B. germanica, as well as the
pupae of Tribolium castaneum (T. castaneum) andD. melanogaster,
prevents transition to the adult stage. Thus, in contrast with
Kr-h1, it has been proposed that E93 is an adult specifier in
both hemimetabolan and holometabolan species [28,29]. The
effects of Kr-h1 and E93 are, to some extent, antagonistic
during the prefinal nymphal instars of B. germanica, with
Kr-h1 and E93 acting as mutual repressors [28].

Based on experimental data of B. germanica, T. castaneum
and D. melanogaster, Bellés & Santos [30,31] proposed the
MEKRE93 (Met-Kr-h1-E93) pathway to explain the regulation
of insect metamorphosis. The MEKRE93 pathway appears to
be central to the status quo action of JH, which switches adult
morphogenesis off and on in a variety of insect species, ran-
ging from cockroaches to flies. JH signals through Met to
induce the expression of Kr-h1, which, in turn, blocks adult
development, at least partly, by repressing the E93 gene.

The single short period of morphogenesis that arises in
the larva-to-pupa transition of holometabolous insects
evolved from progressive changes that occur during the nym-
phal series in basal insects. The hemimetabolous B. germanica
and Hemiptera (true bugs) pass through six and five instar
stages, respectively, before becoming adults. The levels of
Kr-h1 mRNA in these insects are not detectable in the final
nymphal stage, which allows adult development. In addition,
Br levels are greatly reduced during the final instar.

To extend our further understanding of the conservation
and diversification in the mechanisms of metamorphosis
among hemimetabolous insects, this study focused on the
two-spotted cricket, Gryllus bimaculatus, belonging to the
order Orthoptera. In G. bimaculatus nymphs, the life stages
following hatching progresses through eight instars, moult-
ing into adults after the final (eighth) instar nymph [32,33].
Based on the MEKRE93 pathway, we propose a model to
explain the evolution of pupal formation. In the hemimetabo-
lous G. bimaculatus, RNA interference (RNAi)-mediated
knockdown of Gb0Kr-h1 or Gb0Br during the nymphal stage
causes the precocious upregulation of Gb0E93 and adult differ-
entiation, bypassing the penultimate and the final nymphal
instar stages. In addition to Gb0Kr-h1 and Gb0Br, we show that
Gb0E93 is highly expressed in the penultimate nymphal instar,
with RNAi knockdown of Gb0E93 preventing nymphal–adult
transition, inducing an endless reiteration of nymphal develop-
ment. Based on our findings, we propose a novel hypothesis for
the evolutionary origin of the pupal homologous stage in the
hemimetabolous insect, G. bimaculatus.
2. Material and methods
(a) Animals
All adults and nymphs of the two-spotted cricket, G. bimaculatus,
were reared at 28°C and 70% under standard conditions, as
described previously [34].

(b) Cloning
Gryllus cDNAs homologous to Kr-h1 (346 bp) and Br (978 bp) or
E93 (1572 bp) were cloned by reverse transcription-polymerase
chain reaction (RT-PCR) from abdomen cDNA samples of third
or eighth instar nymphs, respectively, by using gene-specific pri-
mers listed in the electronic supplementary material, table S3.
The design of all gene-specific primers was performed with the
draft genomic sequences of G. bimaculatus (T. Mito et al. 2019,
unpublished data). All PCR conditions were as follows: 98°C
for 2.5 min, 40 cycles of 94°C for 30 s, 55°C for 30 , and 72°C
for 1 min, followed by 72°C for 5 min. Following amplification,
the PCR products were subcloned into a pGEM T-Easy vector
(Promega, Madison, WI, USA) and were sequenced using an
ABI-300 instrument (Applied Biosystems, Foster City, CA, USA).
Recombinant vector containing the Gb0Kr-h1 cDNA fragment
was used for double stranded RNA (dsRNA) synthesis.

(c) RNA interference
Template cDNA fragments for the synthesis of Gb0Br and Gb0E93
dsRNAs were prepared by RT-PCR by using gene-specific pri-
mers listed in the electronic supplementary material, table S4.
The templates for Gb0Kr-h1 (346 bp), Gb0Br (448 bp) and Gb0E93
(492 bp) dsRNA synthesis were amplified with a T7 promoter
sequence primer and a Sp6 promoter sequence primer with T7
on the 50 end. dsRNAs were synthesized using the MEGAscript
T7 Transcription Kit (Ambion, Austin, TX, USA). Within 24 h of
ecdysis, nymphs were injected in the ventral abdomen with
20 µM dsRNA in a volume of 0.2–0.5 µl, as described previously
[35]. In all RNAi experiments, DsRed2 dsRNA was injected as a
negative control, as described previously [36]. The body length
(cm) of RNAi-treated adults was measured from the anterior
part of the head to the posterior of the anus, and weight (g)
was measured in the whole body just after moulting to adult.
The graphs of body size are created using the average values
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of measured body length and weight in each RNAi-treated adult.
The obtained total numbers of survival are shown in the elec-
tronic supplementary material, tables S1 and S2.

(d) Quantitative reverse transcription-polymerase chain
reaction

Total RNA was extracted from the abdomen tissues, including
peripheral tissues such as epidermis and fat body cells targeted
by JH and 20E [12,24,37], using ISOGEN (Wako Pure Chemical
Industries Ltd, Osaka, Japan). Total RNAwas reverse transcribed
to cDNA using the SuperScript III First-Strand Synthesis System
(Invitrogen, Carlsbad, CA, USA) with an oligo(dT)20 primer,
according to the manufacturer’s instructions. The quantitative
PCR (qPCR) primers that were used are listed in the electronic
supplementary material, table S5. qPCR was performed using
the Power SYBR Green PCR Master Mix (Applied Biosystems)
on an ABI 7900 Real-Time PCR System (Applied Biosystems).
qPCR conditions were as follows: 95°C for 10 min and then
95°C for 15 s, 60°C for 30 s and 72°C for 30 s repeated
40 cycles with 0.4 µM concentration of each primer. The
G. bimaculatus β-actin (Gb0β-actin) gene was detected as a reference
gene. All qPCR reactions were performed in triplicate as
technical replicates.

(e) Hormone treatment
20E (Sigma-Aldrich, Saint Louis, MO, USA) was dissolved in
ethanol to a concentration of 1 µg µl−1, and then approximately
3 µl of this 20E solution was injected into the ventral abdomen
of newly moulted fifth instar nymphs (approx. 3 µg of 20E per
nymph). The same volume of ethanol was injected as a control.
3. Results
(a) Gb0Kr-h1 and Gb0Br prevent adult metamorphosis

during late instar stages of the hemimetabolous
Gryllus bimaculatus

The cricket G. bimaculatus progresses through eight nymphal
instars before adult differentiation, with each nymphal instar
being distinguished by body size and shape (figure 1a). In
particular, the morphological changes that occur between
the sixth and the penultimate (seventh) instar are mainly
characterized by the degree of development of the wing
pads and ovipositor (electronic supplementary material,
figure S1a–d). However, no significant changes were observed
during the seventh and final (eighth) instar (electronic sup-
plementary material, figure S1c–f ). Following the injection
of progressively younger fifth instar with dsRNA, we found
that nymphs treated with RNAi against Gb0Kr-h1 moulted
into normal sixth instar nymphs, showing precocious differ-
entiation of adult features in the ensuing moult, instead of
moulting into seventh instar nymphs, as observed for control
nymphs in both sexes (figure 1b; electronic supplementary
material, table S1). RNAi-mediated depletion of Gb0Br in
fifth instar nymphs also caused precocious metamorphosis
to adults, instead of normal moult to seventh instar (figure 1c;
electronic supplementary material, table S1). In addition, the
overall body size and weight of the treated precocious adults
significantly declined (figure 1d,e). These animals were not
able to moult again, and exhibited strikingly abnormal mor-
phology of the wings (figure 1g,h; electronic supplementary
material, figure S2) and ovipositor (figure 1k,l ), when
compared with the control (figure 1f,j ). Interestingly, when
fifth instar nymphs were treated with 20E, precocious meta-
morphosis was induced after the sixth instar, instead of
normal moult to seventh instar. In addition, the abnormal
development of the wing and ovipositor resembled that of
animals subjected to Gb0Kr-h1 and Gb0Br RNAi (figure 1i,m).
These results demonstrate that Gb0Kr-h1 and Gb0Br are
required for the seventh instar moult, and that their functions
during the sixth instar are essential to prevent the precocious
differentiation of adult features.

(b) Gb0E93 promotes adult differentiation in the
last-instar stage

When Gb0E93 dsRNA was injected into fifth instar nymphs, all
Gb0E93 RNAi nymphs successfully moulted to normal final
instar nymphs, but subsequently failed to cause adult metamor-
phosis. Instead, the individuals of both sexes repeated the
nymphal moult to the supernumerary instar. All of the super-
numerary Gb0E93 RNAi nymphs continuously moulted until
they became giant 10th instar nymphs (figure 2a,b). Although
the development of many of these supernumerary nymphs
was arrested without adult metamorphosis, several individuals
subsequently moulted into adults (figure 2c; electronic sup-
plementary material, table S2). However, instead of the
normal adult pigmentation with a black cuticle, the supernu-
merary Gb0E93 RNAi 10th instar nymphs had the typical
characteristics of control eighth instar nymphs. Specifically,
they had thick lines of white melanin on the prothorax and
head (figure 2d–f). Consistently, when nymphs moulted to the
supernumerary 10th instar, their body size and weight were
significantly larger than those of control adults (figure 2g,h).
Furthermore, the wing pads of these 10th instar nymphs had
similar proportions to those of eighth instar nymphs, and
begin to bend to the outside (figure 2i,j). These Gb0E93
knockdown experiments indicate that Gb0E93 is required
for the morphological transition from the eighth instar to
adults. Thus, Gb0E93 is a critical factor that promotes adult
metamorphosis in hemimetabolous G. bimaculatus.

(c) Interplay between Gb0Kr-h1, Gb0Br and Gb0E93 is
associated with sixth instar-to-adult transition of
Gryllus bimaculatus

Gb0Kr-h1 and Gb0Br mRNAs were found to be constitutively
expressed throughout the nymphal stages, while the levels of
these mRNAs exhibited periodic changes in each of the instars
(figure 3a,c). The peak in relative amount of Gb0Kr-h1 transcript
was observed on day 1 of the sixth instar, but decreased until it
could no longer be detected during the seventh instar
(figure 3b). Similarly, higher Gb0Br mRNA level was detected
in the sixth instar, and then mRNA level decreased during
the seventh instar (figure 3d). Conversely, the expression of
Gb0E93 transcript significantly increased after moulting to the
seventh instar, and the high transcript level was also detected
in the eighth instar (figure 3e,f ). Declines in Gb0Kr-h1 and
Gb0Br expression, and an increased expression of Gb0E93,
suggest that the cross-talk between these genes contributes
towards regulating metamorphosis in G. bimaculatus (figure 3g).

At the sixth instar, the level of Gb0Kr-h1 mRNA in Gb0Kr-
h1 RNAi nymphs was significantly lower than that in the con-
trol (figure 4a). The knockdown of Gb0Kr-h1 caused the
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mRNA level of Gb0Br to decline in comparison to the control
(figure 4b). Thus, the expression of Gb0Br during the sixth
instar might be controlled by Gb0Kr-h1. However, Gb0E93
expression during the sixth instar was upregulated by
Gb0Kr-h1 RNAi knockdown (figure 4c). Similarly, the RNAi-
mediated depletion of Gb0Br (figure 4b) also caused the
expression of Gb0E93 to increase during the sixth instar
when compared with its expression in the control (figure 4c).
Thus, the Gb0E93 transcript during the sixth instar had
already been repressed by Gb0Kr-h1 and Gb0Br.

Of note, the expression levels of Gb0Kr-h1 and Gb0Br pro-
gressively declined during the seventh instar, just after
Gb0E93 upregulation. When sixth instar nymphs received
Gb0E93 RNAi, Gb0Br mRNA levels in Gb0E93 RNAi nymphs
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were significantly higher than those of control nymphs
(figure 4b), despite Gb0Kr-h1 not being upregulated in these
sixth instar nymphs (figure 4a). These results suggest that
Gb0Br expression might be negatively affected by Gb0E93
in the sixth instar nymphs. Accordingly, the precocious
increase in Gb0E93 expression caused by the RNAi-mediated
Gb0Kr-h1 knockdown might lead to reduced expression of
Gb0Br during the sixth instar. Interestingly, under the
Gb0Br RNAi treatment, Gb0Kr-h1 expression during the
sixth instar was downregulated in these nymphs (figure 4a).
Consequently, the observed decrease in Gb0Kr-h1 might be
owing to increased Gb0E93 expression, which results in
Gb0Br knockdown. Thereafter, Gb0E93 depletion during the
seventh instar prevented the downregulation of Gb0Kr-h1
and Gb0Br (figure 4d ). Thus, the Gb0Kr-h1 and Gb0Br tran-
scripts during the seventh instar can be tightly repressed
by Gb0E93.
In previous studies in D. melanogaster and Bombyx mori
[27,38,39], E93 has been found to be a primary response
gene that is positively regulated by 20E. In the present
study, we showed that the injection of 20E into the fifth
instar nymphs causes precocious metamorphosis to adults,
instead of moulting into seventh instar nymphs. Consistent
with the precocious adult metamorphosis that had received
20E treatment, Gb0E93 mRNA levels were upregulated at
the sixth instar nymphs, while Gb0Kr-h1 and Gb0Br were
downregulated (figure 4e). Thus, the expression of Gb0E93
might be positively affected by an excess of 20E during the
sixth instar.

Overall, our results indicate that the precocious adult
moult in Gb0Kr-h1 and Gb0Br RNAi nymphs depends on the
precocious upregulation of Gb0E93 expression during the
sixth instar. Furthermore, Gb0E93 causes morphological
changes to form adults through the repression of Gb0Kr-h1
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and Gb0Br during the penultimate and final nymphal instars,
as adult metamorphosis is prevented by RNAi depletion
of Gb0E93.

(d) Gb0Kr-h1, Gb’0Br and Gb0E93 expression are influenced
by juvenile hormone biosynthesis signalling

Based on our recent study, Gb0Myoglianin (Gb0Myo) and
Gb0Decapentaplegic (Gb0Dpp)/Gb0Glass bottom boat
(Gb0Gbb) signalling are involved in JH synthesis by mediat-
ing the transcriptional regulation of Gb0jhamt [33]. Gb0jhamt
is a key enzyme for JH biosynthesis in the corpora allata
(CA) of G. bimaculatus. Because the RNAi-mediated depletion
of Gb0Myo and Gb0Dpp/Gb0Gbb signalling molecules altered
the JH titre to increase and decrease, respectively, we exam-
ined how the expression of Gb0Kr-h1, Gb0Br and Gb0E93 is
altered by Gb0myo or Gb0mothers against dpp (Gb0mad)
knockdown.
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We have previously shown that RNAi targeting Gb0mad
results in significant reductions in Gb0jhamt transcript and JH
titre in the sixth instar nymphs and consequently causes preco-
cious adult metamorphosis [33]. Here, we found that the levels
of Gb0Kr-h1 and Gb0BrmRNA in Gb0mad RNAi-treated nymphs
were lower than those in the controls during the sixth instar
(figure 5a,b). Thus, the decline of Gb0Kr-h1 and Gb0Br mRNA
levels might be largely attributed to the absence of JH by the
depletion of Gb0mad. Furthermore, the knockdown of Gb0mad
caused the expression of Gb0E93 to increase during the sixth
instar (figure 5c). By contrast, Gb0Kr-h1 and Gb0Br mRNA
levels were upregulated in Gb0myo RNAi nymphs during the
sixth instar (figure 5a,b). Furthermore, we also found that
Gb0myo RNAi allows the strong upregulation of Gb0E93
(figure 5c). Thus, Gb0Kr-h1, Gb0Br-C and Gb0E93 are probably
regulated by JH in hemimetabolous G. bimaculatus.

4. Discussion
Previous studies showed that the downregulation of Kr-h1
and the upregulation of E93 in the final nymph stages of
hemimetabolous insects and in the pupae of holometabolous
insects are crucial for adult development in both types of
metamorphosis [14,29–31,40]. The present study showed
that RNAi-mediated depletion of Gb0Kr-h1 during the sixth
nymphal instar of G. bimaculatus induces Gb0E93 and
suppresses Gb0Br expression. Consequently, Gb0Kr-h1 RNAi
animals showed the precocious differentiation of adult fea-
tures. We also showed that RNAi knockdown of Gb0E93
during the penultimate (seventh) nymphal instar prevents
adult metamorphosis and promotes supernumerary nymphal
moults. In addition, Gb0E93 is required to prevent the
expression of Gb0Kr-h1 and Gb0Br during the penultimate
nymphal instar. Overall, the mechanism of the functional
interactions between Kr-h1 and E93 for metamorphosis is
conserved in G. bimaculatus. Consequently, the regulation of
the MEKRE93 pathway is common throughout hemimetabo-
lous and holometabolous insects. However, based on data
reported from other hemimetabolous insects (including
Pyrrhocoris apterus, Rhodnius prolixus, Cimex lectularius and
B. germanica), changes to the timing of expression and
regulation of cross-talk between Kr-h1, Br and E93 usually
occur during the penultimate and final nymphal period
[14,17,29,41] as they do during the final larval and pupal
stage in holometabolous insects. In comparison, the func-
tional relationship between Gb0Kr-h1, Gb0Br and Gb0E93 is
already present in the antepenultimate (sixth) instar
nymphs of G. bimaculatus. Consequently, Gb0Kr-h1 RNAi-
dependent induction of Gb0E93 expression during the sixth
instar initiates the precocious development of adult struc-
tures. Previous reports showed that high JH levels prevent
the incomplete metamorphosis, by inducing the expression
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of Kr-h1, in early instars, whereas its subsequent disappear-
ance allows metamorphosis to occur [2,3,5,13,42,43]. This is
because the elevated expression level of Gb0myo is essential
for the arrest of JH biosynthesis in G. bimaculatus [33]. Thus,
the shift in the timing of regulation of cross-talk between
Gb0Kr-h1, Gb0Br and Gb0E93 might be attributed to the
mechanism for regulating stepwise expressions of Gb0myo.

Gb0Myo and Gb0Dpp/Gb0Gbb signalling might be associ-
ated with the expression of Gb0Kr-h1, Gb0Br-C and Gb0E93
through regulating JH biosynthesis. Interestingly, it has pre-
viously been demonstrated that myo is also expressed in the
prothoracic glands (PG) in G. bimaculatus [33] and B. germanica
[44]. Thus, Myo might be independently associated with both
JH and ecdysone biosynthesis. Consequently, increased Gb0E93
expression caused by Gb0myo RNAi might be related to
changes in 20E levels. Thus, Gb0Kr-h1, Gb0Br and Gb0E93 are
probably regulated by JH and 20E in hemimetabolous G. bima-
culatus, assuming that Gb0Myo and Gb0Dpp/Gb0Gbb signalling
in the CA or Gb0Myo signalling in the PG are responsible for
regulating JH or ecdysone biosynthesis, respectively.

In this study, we propose a model showing the inter-
actions of Gb0Kr-h1, Gb0Br and Gb0E93 during the
antepenultimate (sixth) instar (figure 6a) with the penulti-
mate (seventh) and final (eighth) nymphal instars
(figure 6b). First, Gb0Kr-h1-dependent repression of Gb0E93
might be essential for the proper moulting of the penulti-
mate and final nymphal instars, but prevents adult
differentiation (figure 6a). Subsequently, after moulting
into the penultimate nymphal instar, Gb0E93 represses the
expression of Gb0Kr-h1 and Gb0Br; thus, ensuring metamor-
phosis into adults (figure 6b). Therefore, our present
results suggest that the expression profiles and the functions
of Gb0Kr-h1, Gb0Br and Gb0E93 during the sixth-to-penulti-
mate instars of G. bimaculatus closely resemble those of the
final larval-to-pupal period in holometabolous insects
[14,29,40].

Several theories have been proposed to explain the pupal
formation and the evolutionary transition fromhemimetabolous
to holometabolous insects [45,47]. Truman & Riddiford [46,48]
proposed a hypothesis that the endocrinology of the larvae of
holometabolous insects corresponds to the final hemimetabo-
lous embryonic stage, which the authors termed pronymphs
(the pronymph hypothesis). The three stages (pronymph,
nymph and adult) of ancestral insect species are equivalent to
the larva, pupa and adult stages of insects that exhibit complete
metamorphosis. The authors speculated that the progressive
changes which occur in a number of nymphal series in basal
insects are compressed to a single short period of morphogen-
esis that is seen in the larva-to-pupa transition of
holometabolous insects. This interpretation might support the
pronymph hypothesis [25].

However, this hypothesis is subject to controversy. Huang
et al. [26] proposed a hypothesis on the evolution from hemi-
metaboly to holometaboly regarding Br (the wing-to-pupa
hypothesis). In this hypothesis, JH action on Br expression
shifts from being stimulatory (hemimetaboly) to inhibitory
(holometaboly) during the young larval stages. Thus, Br
expression is inhibited in the young larvae of holometabolous
ancestors, suppressing Br-dependent wing development and
patterning. Accordingly, the roles of Br culminated in the
morphogenesis of pupae in extant holometabolous species.

In both hypotheses, because Br expression is regulated by
JH, the evolution of metamorphosis might be attributed to
heterochronic change in the timing of JH activation and/or
suppression or changes in the target organs of JH action.
In addition, Br functions might have radically diverged
and changed from the progressive development of hemime-
tabolous nymphs to specifying holometabolous pupa
[14,19–22,24–26].

Indeed, we also found that Gb0Kr-h1 mRNA levels were
significantly reduced in Gb0Br RNAi-treated sixth instar
nymphs. The RNAi knockdown of Gb0Br also induced preco-
cious Gb0E93 expression and promoted precocious adult
development in our study. Thus, the expression of Gb0E93
might be negatively affected by Gb0Br in the sixth instar
nymphs of G. bimaculatus. Therefore, Gb0Kr-h1 and Gb0Br
might have to interact for nymphs to transition to the penul-
timate instar. However, the phenotypes of Gb0Br RNAi
knockdown exhibited irregular morphology, especially in
the wing pads and ovipositor (electronic supplementary
material, figure S2). Nymphs which were given Gb0Br RNAi
in the third instar showed abnormal development of Br-
dependent tissues, such as the wing pads in the sixth instar
nymphs and the wings and ovipositor in the precocious
adults (electronic supplementary material, figure S3). There-
fore, the function of Gb0Br related to regulating wing size
and form is conserved from the progressively nymphal
stages in hemimetabolous insects (like P. apterus [14], O. fas-
ciatus [25] and B. germanica [26]) to the final larval stage in
holometabolous insects (like T. castaneum [19,21], lacewing
Chrysopa perla [22] and D. melanogaster [24]). Interestingly,
the role of Gb0Br in the wing and ovipositor transition that
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occurs at the penultimate instar seems similar to those of Br
in the imaginal leg and eye primordia in the final instar just
prior to the onset of their morphogenic growth for metamor-
phosis in Manduca sexta [49]. Thus, Br specializes in wing
development, and retains the pupal specifying function in
these periods. Ultimately, Gb0Br is required to prevent adult
metamorphosis and to allow the anisometric growth of devel-
oping wings and ovipositors in G. bimaculatus.
5. Conclusion
We demonstrated that the parallel timing of the critical inter-
action between Kr-h1 and Br is conserved in hemimetabolous
and holometabolous insects. This interaction underlies the tran-
sition to the penultimate instar nymph in G. bimaculatus and the
formation of pupae in holometabolous insects. Thus, these
periods might represent evolutionarily homologous units.
Gb0Br was shown to regulate progressive wing development
during nymphal stages. In addition, the interaction between
Gb0Kr-h1 and Gb0Br is related to the transition that occurs
during later (antepenultimate-to-penultimate) instars, prevent-
ing metamorphosis to adults in G. bimaculatus (figure 6a). In
holometabolous insects, Brmight fulfil both function of regulat-
ing wing development and preventing adult metamorphosis in
the single short period of pupal transition.

We hypothesize that three stages, pronymph (first
postembryonic stage), nymphs and penultimate nymph, of
the hemimetabolous insect G. bimaculatus are equivalent
to the larva, final larvaandpupa stages of insectswith complete
metamorphosis (figure 6c). Notably, the prepupa (late phase of
the final larva)-to-pupa transitional stages of holometabolous
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insects might be evolutionarily homologous to the
antepenultimate-to-penultimate nymph transitional stages of
G. bimaculatus, supported by the conservation of the mechan-
isms underlying insect metamorphosis. In addition, wing
formation and development from the larva to the pupa might
originate from the periods of pronymph-to-penultimate
nymph in hemimetabolous insects.
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