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Many (re)emerging infectious diseases in humans arise from pathogen

spillover from wildlife or livestock, and accurately predicting pathogen

spillover is an important public health goal. In the Americas, yellow fever

in humans primarily occurs following spillover from non-human primates

via mosquitoes. Predicting yellow fever spillover can improve public

health responses through vector control and mass vaccination. Here, we

develop and test a mechanistic model of pathogen spillover to predict

human risk for yellow fever in Brazil. This environmental risk model,

based on the ecology of mosquito vectors and non-human primate hosts,

distinguished municipality-months with yellow fever spillover from 2001

to 2016 with high accuracy (AUC ¼ 0.72). Incorporating hypothesized

cyclical dynamics of infected primates improved accuracy (AUC ¼ 0.79).

Using boosted regression trees to identify gaps in the mechanistic model,

we found that important predictors include current and one-month lagged

environmental risk, vaccine coverage, population density, temperature

and precipitation. More broadly, we show that for a widespread human

viral pathogen, the ecological interactions between environment, vectors,

reservoir hosts and humans can predict spillover with surprising accuracy,

suggesting the potential to improve preventive action to reduce yellow

fever spillover and avert onward epidemics in humans.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
Many important (re)emerging infectious diseases in humans—including Ebola,

sudden acute respiratory syndrome (SARS), influenza, Plasmodium knowlesi and

other primate malarias, yellow fever and leptospirosis—arise from spillover of

pathogens from wildlife or livestock into human populations [1,2]. While

spillover is an important mechanism of human disease emergence, the drivers

and dynamics of spillover are poorly understood and difficult to predict [3].

Pathogen spillover requires favourable conditions to align in the reservoir

(non-human animal), human and pathogen populations and in the environ-

ment [3–5]. Because these conditions interact, nonlinear relationships among

the environment, host populations and spillover probability are likely to

emerge. Moreover, spillover is a probabilistic process that does not always

occur, even when suitable conditions align. Despite these challenges, it is

critical to predict pathogen spillover to enhance public health preparedness.

Predicting spillover also provides an opportunity to test ecological approaches

to solving globally important human health problems.

Most previous attempts to predict pathogen spillover have used statistical

models [6–8]. These models may be locally accurate for within-sample predic-

tion, but may struggle to detect multidimensional, nonlinear and stochastic

relationships among host populations, pathogens, the environment and spillover.
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By contrast, mechanistic models can test our understanding of

transmission ecology, reproduce the complex, nonlinear inter-

actions emerging in disease systems and potentially improve

our ability to predict spillover. In particular, Plowright et al.
[3] recently proposed a mechanistic model, which remains

untested, that integrates multiple ecological requirements to

identify when conditions will align for pathogen spillover.

Yellow fever in Brazil presents an ideal opportunity to test

this model because the ecology of the pathogen has been

studied for nearly 120 years [9], providing a wealth of mechan-

istic information and data, and because almost all recent cases

in South America have occurred via spillover from the sylvatic

cycle [10,11].

Yellow fever virus is a mosquito-borne Flavivirus that

mainly persists in a sylvatic transmission cycle between

forest mosquitoes (primarily Haemagogus janthinomys, Hg.
leucocelaenus and Sabethes chloropterus in South America)

and non-human primates, and occasionally spills over into

human populations [12]. In some settings, these spillover

events lead to onward human epidemics in an urban

transmission cycle between humans and Aedes aegypti
mosquitoes [9]. Spillover of yellow fever requires the virus

to be transmitted locally, mosquito vectors to acquire the

virus from infected non-human vertebrate hosts, survive

the extrinsic incubation period, and feed on human hosts, and

human hosts to be susceptible to infection following exposure.

These events require distributions of reservoirs, vectors and

humans, their interactions, and immune dynamics to align in

space and time. In humans, yellow fever is the most severe

vector-borne virus circulating in the Americas [10], with an esti-

mated fatality rate for severe cases of 47% [13]. While no urban

transmission of yellow fever has occurred in the Americas since

1997 [14] and in Brazil since 1942 [15], a large epidemic began

in December 2016 in Minas Gerais and by June 2018 had caused

2154 confirmed cases and 745 deaths [16]. Despite these

large case numbers, molecular and epidemiological evidence

suggests that human cases were caused by spillover from the

sylvatic cycle, rather than urban transmission [11], most recently

in areas previously believed to be free of yellow fever.

Prior statistical models have found climate and weather

(including precipitation, temperature and normalized differ-

ence vegetation index), non-human primate richness, land

use intensiveness and a latitudinal gradient to be predictive

of the spatial and spatio-temporal distribution of yellow

fever [6,8]. We build on previous efforts by incorporating a

mechanistic understanding of how ecological and human

population factors affect yellow fever transmission and spill-

over. A mechanistic model allows known relationships

between the environment and transmission mechanisms,

estimated from empirical data, to be included to test our

understanding of the disease ecology. Additionally, mechan-

istic models allow extrapolation beyond known regions to

identify other regions where conditions are also suitable for

yellow fever spillover. We use a mechanistic model encapsu-

lating sylvatic yellow fever ecology to predict the spatial and

temporal distribution of yellow fever spillover in Brazil, and

we test the model on human yellow fever case data using a

receiver operating characteristic curve and logistic regression.

Here, we use ‘predict’ to refer to independently estimating

spillover risk mechanistically from simultaneous covariates

and ‘forward prediction’ to refer to estimating future

spillover. We contrast this mechanistic prediction with stat-

istical models that are fitted to the spillover data, and
therefore not able to make independent, out-of-sample pre-

dictions. We then incorporate the mechanistic model into

further statistical analyses with boosted regression trees to

understand what mechanisms our model does not capture.

Specifically, we ask: (1) Does the environmental suit-

ability for sylvatic vectors, reservoir hosts, vector–human

contact and vector transmission—together termed environ-

mental risk—predict geographical, seasonal and interannual

variation in yellow fever virus spillover into humans? (2)

Are human population size and vaccine coverage, above

and beyond environmental risk, critical for predicting spil-

lover? (3) What additional environmental and population

drivers might improve predictions of spillover? (4) Do the

ecological processes that predict spillover in other parts of

Brazil predict the recent yellow fever outbreak in the South-

east region of Brazil in 2016–2018, and if so, was risk

elevated above historical baseline levels?
2. Methods
Our goals were (1) to construct mechanistic estimates of yellow

fever spillover risk over space and time, (2) to test these mechan-

istic risk models against observed cases of yellow fever spillover to

humans and (3) to statistically test for associations between

observed spillover occurrence, mechanistically predicted risk

and environmental covariates to identify potential gaps in the

mechanistic models. We constructed mechanistic risk estimates

by modelling the ecological processes expected to drive trans-

mission within reservoir hosts—vector distribution and seasonal

abundance, vector dispersal, vector infectiousness, vector survi-

val, vector–reservoir contact and reservoir host distributions—

and the risk of spillover to humans—human population density,

vector–human contact rates and human susceptibility (figure 1,

Mechanistic model). For each of these ecological or human popu-

lation factors, we parameterized a submodel using data from

the literature and remotely sensed covariates (figure 1 lists data

sources and figure 2 shows the data and/or fitted submodels).

We modelled several different risk metrics, as described below

(see Methods: Spillover model (§2a)). We then predicted monthly

risk of yellow fever spillover from the component submodels for

each 1 km � 1 km pixel from December 2000 to December 2016

(figure 1; electronic supplementary material, S1.1). The risk

estimates from January 2001 to December 2016 were aggregated

to a municipality-level estimate to compare with available reports

of human cases. Next, to test for relationships that were absent or

mis-specified in our mechanistic model, we used both current and

lagged aggregated municipality-wide environmental risk from

December 2000 to December 2016 as covariates in a statistical

model (a boosted regression tree) along with other environmental

and demographic covariates to identify the traits of municipalities

and months when yellow fever spillover occurred using the avail-

able human case data from 2001 to 2016 (figure 1, Statistical

model). Finally, we sought to identify whether the mechanistic

models predicted high suitability for spillover during the recent

outbreaks (December 2016–April 2018) [16]. Given the limited

time range of some covariates, we extrapolated model covariates

for 2017 and 2018 by assuming that they were identical to 2016

or followed the same linear trend as was observed from 2015 to

2016. We then calculated the environmental risk metric for Janu-

ary 2017 to June 2018 in the region where the large outbreak

occurred.

(a) Spillover model
Yellow fever spillover risk was first estimated monthly from

December 2000 to December 2016 using an adapted version of



covariates
primate species richness 
air temperature 
precipitation 
fire area 
vaccine coverage 
human population density 
month 
region 
reservoir disease prevalence 
environmental disease risk

reservoir species occurrence (ESM, table S1)

environmental covariates (ESM, table S2) 
vector species occurrences (ESM, S2.1.2)

seasonal abundance (ESM, S2.2.2)

transmission experiments (ESM, S2.4.2)

forest cover (eESM, table S1)

mark–recapture studies (ESM, S2.5.2)

survival experiments (ESM, S2.3.2)

non-forest cover (ESM, table S1)

human population estimates (ESM, table S1)

Submodel output Data Outcome

MECHANISTIC MODEL STATISTICAL MODEL

reservoir distribution

vector distribution

vector seasonal abundance

vector dispersal

vector survival

vector infectiousness

reservoir–vector contact

human–vector contact

vaccine coverage estimates (ESM, table S1)human susceptibility

human distribution

population-scaled 
disease risk

periodic 
disease risk

immunological 
disease risk

environmental 
disease risk

municipality-months
with spillover

boosted  
regression tree

reservoir disease prevalence
annual number of municipality-months 
with spillover (ESM, S3.2)

Figure 1. Mechanistic and statistical model schematic. Submodels of components in the mechanistic model are parameterized using independent data on reservoir
species, vector species occurrences, seasonal abundances, vector mark – recapture studies, vector survival, transmission experiments, forest cover, estimated vaccine
coverage and human population estimates. Reservoir disease prevalence is estimated from annual number of municipality-months with spillover. The output from
the submodels are used in a mechanistic spillover model to predict four risk metrics of yellow fever in humans: periodic disease risk, environmental disease risk,
immunological disease risk, and population-scaled disease risk. Environmental disease risk metric is then used as a covariate in a boosted regression tree to predict
the municipality-months with spillover and identify covariates important for predicting spillover. Other environmental covariates are also included in the boosted
regression tree. Details on data used in the mechanistic model can be found in the electronic supplementary material (ESM). Specific locations within the electronic
supplementary material are noted parenthetically by either the section or table in which details can be found. Data used in the boosted regression tree are described
in electronic supplementary material, table S6. Layers shown on the left correspond to mechanistic model components in figure 2a – k.
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the model from Plowright et al. [3]. We then estimated monthly

spillover risk using extrapolated covariates (electronic supplemen-

tary material, table S1) for the duration of the 2016–2018

outbreaks. We defined environmental risk at a location y and

time t—proportional to the number of infectious mosquito

bites—as:

b(y,t)bh(y,t)
ðt¼t

t¼0

ð
~x

rv(x,t)b(x,t)bp(x,t)k(x,t)EIP(T(x,t), t� t)

�s(T(x,t), t� t)d(ky� xk)dxdt, ð2:1Þ

as a function of sylvatic vector density (rv(x,t), figure 2b,e), prob-

ability of biting non-human primates (bp(x,t), figure 2c)

contingent on primate presence (figure 2a), probability of biting

humans (bh(y,t), figure 2d) which depends on human presence

(figure 2j), non-human primate infection prevalence (k(x,t),

figure 2k), vector biting rate (b(y,t)), vector probability of becom-

ing infectious (EIP(T(x,t), t� t), figure 2h), vector survival

(s(T(x,t), t� t), figure 2g) and vector dispersal (d(ky� xk),
figure 2f ), as described in table 1. This model is a case study of

a more general family of percolation models of pathogen spillover

with alternative pathogen sources in space and time [17].

We hypothesized that yellow fever spillover could be limited

by environmental conditions, human susceptibility, human

population distribution and primate infection dynamics. To

compare their relative importance, we defined four metrics of

model-predicted yellow fever spillover risk. First, we approxi-

mated environmental risk (equation (2.1), figure 2l ), assuming

that biting rate (b(y,t) in equation (2.1)) and reservoir infection

prevalence (k(x,t) in equation (2.1)) are constant over space and

time in the absence of empirical data on these parameters, as

described in table 1. Since this metric ignores variation in
human susceptibility, we then calculated immunological risk
(figure 2m) as environmental risk multiplied by the estimated

proportion of the human population that is susceptible to

yellow fever (figure 2i), using previously estimated vaccine

coverage rates [18]. We then considered the influence of human

population size on spillover risk by calculating population-scaled
risk (figure 2n) as the immunological risk scaled by the number

of people in a given location (figure 2j ). Finally, we incorporated

the effects of cycles of reservoir susceptibility and infection

dynamics, for which data were not available, by calculating per-
iodic risk (figure 2o), which uses a phenomenological periodic

curve (figure 2k) for primate infection prevalence (k(x,t) in

equation (2.1)). This periodic curve was designed to represent

cycles of reservoir infection prevalence, driven by the demogra-

phy of primate populations as naive individuals are born,

susceptible individuals accumulate, and epizootics become

more likely [19]. The full spillover model was run in

Google Earth Engine [20]. We estimated risk metrics monthly

for 1 � 1 km pixels using built-in functionality of Google Earth

Engine that allows calculations across differing scales by

performing calculations for a specified output pixel scale.

(b) Mechanistic submodels
We fitted mechanistic submodels from data for all key com-

ponents of spillover (figure 1). For primate distribution

(figure 2a), human susceptibility (figure 2i) and human popu-

lation distribution (figure 2j ), we used previously published

estimates [18,21,22]. All other mechanistic models (terms in

equation (2.1)) were fitted with the R programming language,

v.3.5.1 [23], with additional packages used for data processing,

manipulation and visualization [24–32].
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Figure 2. Data used to estimate ecological and human population components of spillover (a – k) and estimates of overall spillover risk (l – o). Number of primate
reservoir species (a), vector species probability of occurrence (b), reservoir – vector contact probability (c), human – vector contact probability (d ), human sus-
ceptibility approximated by 1 minus estimated vaccine coverage (i), and human distribution ( j ) vary spatially. Vector seasonal abundance is modelled as a
function of rainfall using mosquito capture data (e). Vector dispersal depends on distance and is estimated from mark – recapture studies ( f ). Vector survival has
been measured at different temperatures in laboratory (open circles) and field (closed circles) settings and was used to estimate temperature-dependent vector
lifespan (g). Transmission studies at different temperatures inform modelled probability of vector infectiousness as a function of days since infecting bite and
temperature (h). Phenomenologically modelled reservoir disease prevalence (light blue line, k) is approximated from human case data (blue dots, k). All
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Given limited information on the vector species, we used

data for Hg. janthinomys, Hg. leucocelaenus and Sa. chloropterus
to fit models for the sylvatic vectors collectively for all mechan-

istic vector trait models. All data used were publicly available

or results from previously published papers, as described in

electronic supplementary material, S2 and table S1. Additional

details on mechanistic model methods and data are available

in the electronic supplementary material.
(i) Vector distribution and seasonal density
To estimate the geographical distribution of sylvatic vector

species (figure 2b), we fitted a species distribution model

[33,34] to Hg. janthinomys, Hg. leucocelaenus and Sa. chloropterus
occurrence data identified from the Global Biodiversity Infor-

mation Facility (GBIF) [35–37] and a review of the literature

[38–92], using the maxnet package in R [93]. We included maxi-

mum, median and minimum annual land surface temperature,



Table 1. Spillover model variables and definitions.

variable definition model

bh(x ,t) proportion of mosquito bites from sylvatic vectors on

humans at location x at time t

approximated as 1� f (x ,t) in locations with non-zero human

population density, where f (x ,t) is the per cent forest cover at

location x at time t

bp(x ,t) proportion of mosquito bites from sylvatic vectors on non-

human primates at location x at time t

approximated as f (x ,t) in locations within at least one non-human

primate range, where f (x ,t) is the per cent forest cover at

location x at time t

rv(x ,t) sylvatic vector density at location x at time t approximated as maximum mosquito density in a location

multiplied by relative seasonal abundance, where maximum

mosquito density is determined by a species distribution model

and seasonal abundance is modelled from field capture data

(see Methods: Mechanistic models—Vector distribution and

seasonal density (§2b(i)))

EIP(T(x ,t),Dt) probability a mosquito that took an infectious blood meal

becomes infectious with yellow fever virus given a

temperature T (x ,t) and Dt days elapsing

see Methods: Mechanistic submodels—Vector infectiousness

(§2b(iii))

s(T(x ,t),Dt) probability that a mosquito survives Dt days given a

temperature T (x ,t)

see Methods: Mechanistic submodels—Vector survival (§2b(ii))

d(kx � yk) probability that a mosquito disperses from x to y see Methods: Mechanistic submodels—Vector dispersal (§2b(iv))

b(x ,t) biting rate of sylvatic vectors at location x at time t assumed constant given limited information on determinants of

vector biting rates

k(x ,t) infection prevalence in non-human primate reservoir at

location x at time t

for environmental risk metric, assumed constant given limited

information of non-human primate infection prevalence. For

periodic risk metric, used periodic curve fitted to yearly case

data (see Methods: Phenomenological primate dynamics (§2c)).
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total annual precipitation, precipitation in the driest month, pre-

cipitation in the wettest month, elevation, forest cover (%), land

cover category, median annual enhanced vegetation index

and absolute latitude as predictors in the model (electronic

supplementary material, table S2). To account for uneven

sampling effort across the geographical range, we corrected the

background (pseudo-absence) points by subsampling from

occurrence data of other mosquito species from GBIF [94]. We

calculated vector density as log (1=ð1� pÞ), where p is the prob-

ability of occurrence estimated from the species distribution

model [95]. To estimate seasonal variation in vector abundance

(figure 2e) due to rainfall seasonality [96], we fitted a logistic

regression of relative monthly vector abundance on current and

one-month lagged relative monthly rainfall using field data

[60,82,97–100] with glm in R.

(ii) Vector survival
To capture effects of temperature on vector survival (figure 2f ),

we used empirical data [101–103] and Bayesian inference to fit

a quadratic function to the relationship between lifespan and

temperature using RStan in R [104]. Assuming constant vector

mortality at a given temperature, we calculated daily survival

probability as p ¼ e�1=L, where L is vector lifespan [105].

(iii) Vector infectiousness
Virus infection, dissemination and infectiousness in the vector

are temperature-dependent (figure 2h) [106]. We assumed that

vector competence—the probability that a vector exposed to an

infectious blood meal becomes infectious with virus in its
salivary glands—is a quadratic function of temperature, as

shown for other flaviviruses [107]. Additionally, we assumed

that at a given temperature, the extrinsic incubation period—

the length of time required for an exposed vector to become

infectious—is log-normally distributed across individuals

[108,109]. We fitted a Bayesian model using experimental data

[110–117] with the package RStan [104].

(iv) Vector dispersal
To estimate the range over which sylvatic mosquitoes disperse

(figure 2f ), we fitted a negative binomial dispersal kernel [118]

to mark–recapture data [119] using a Bayesian framework with

the package RStan [104].

(v) Vector contacts
We approximated reservoir–vector contact (figure 2c) as per cent

forest cover [120] contingent on the presence of at least one

reservoir species (figure 2a). Similarly, we approximated

human–vector contact (figure 2d ) as per cent non-forest cover

[120] contingent on the presence of human population

(figure 2j ).

(c) Phenomenological primate dynamics
Primate population dynamics and susceptibility have been

suggested as important constraints on yellow fever spillover

[19], which remain poorly characterized. In the absence of

primate infection data, we assumed that human spillover

events are a proxy for infection prevalence during reservoir
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epizootics. This is the only mechanistic submodel that uses the

human yellow fever spillover data directly—all other submodels

are independent of human infection data. For this submodel, we

used human cases of yellow fever reported by month of first

symptoms and municipality of infection (2001–2016) from the

Brazilian Ministry of Health [121]. We define a spillover munici-

pality-month as one in which at least one human case of yellow

fever occurred. As an estimate of reservoir infection dynamics,

we fitted a phenomenological sine curve with a 7-year period

[122] to the yearly number of municipality-months with spillover

(figure 2k) and then transformed the curve to be positive and

less than 1. The resulting curve is used as a spatially constant

estimate of primate reservoir infection prevalence. Phenomenolo-

gical primate dynamics are used in the periodic risk estimate

(figure 2o) to account for a missing ecological process but are

not used in any other risk metric, so all other risk metrics are

parameterized independent of human spillover data.

(d) Model – data comparison
We compared spatially- and temporally-explicit mechanistic

model predictions for spillover risk with observed human cases

of yellow fever spillover using a statistical model. We limited

the comparison to 2001–2016 based on the availability of

human case data. We considered four modelled risk metrics

(defined above): environmental risk, immunological risk, popu-

lation-scaled risk and periodic risk. Because risk was modelled

by pixel, to compare the model output with municipality-

month observations of human cases, we calculate both mean

risk and maximum risk in each municipality and month. While

mean risk may be more representative of the entire municipality,

we hypothesized that maximum risk in the municipality-month

might better predict the small-scale processes that drive spillover.

The use of maximum risk may also help to avoid spatial aggre-

gation which can lead to bias or mask the relationships, for

example the modifiable areal unit problem [123].

We compared municipality means and maxima for all four

risk metrics with human yellow fever data for model evaluation

in the following three ways. First, for each modelled risk metric

and each municipality summary statistic (mean and maximum),

we fitted a logistic regression of spillover probability as a function

of model-predicted risk (electronic supplementary material, table

S4) using glm in R [23]. Second, we calculated a receiver operating

characteristic curve to calculate the area under the curve (AUC), a

measure of goodness of fit, for each modelled risk metric and

municipality summary statistic (electronic supplementary

material, table S4). As this analysis focuses on prediction of spil-

lover as a way to compare hypothesized mechanisms,

comparison of AUC values with a null model is beyond the

scope of this paper. Finally, for all eight mechanistic predictions

and estimated vaccine coverage, we regressed the number of

reported yellow fever cases given that spillover occurred, and cal-

culated Spearman’s rank correlation coefficient with number of

reported cases to consider nonlinear but monotonic associations

(electronic supplementary material, table S5).

(e) Statistical model
We used a boosted regression tree [124,125] to understand any

potential gaps in the mechanistic model and its relationship to

environmental and human population covariates. As predictors

of yellow fever spillover in the boosted regression tree, we

included the following covariates for each municipality-month:

current and one-month lagged maximum predicted environ-

mental risk, current and one-month lagged fire area, average

and maximum number of primate species, estimated municipality

vaccine coverage, average human population density, average

monthly air temperature, average monthly precipitation, phenom-

enological primate dynamics, region and month (electronic
supplementary material, table S6). Each observation is a munici-

pality-month and the response variable is the binary indicator of

whether or not yellow fever spillover occurred in a municipal-

ity-month (see Methods: Model–data comparison (§2d)). While

some of predictor covariates contribute to the environmental

risk metric (i.e., air temperature, rainfall and primate reservoir

ranges), we also included them in the boosted regression tree

analysis to identify whether the environmental covariates have

any predictive power beyond their role in the mechanistic

model, which could indicate that the mechanistic model does

not fully capture their influence on spillover. We included fire

area as a proxy for land conversion [126], which has previously

been shown to be predictive of yellow fever spillover [8]. We

also included vaccine coverage and human population density

despite their poor predictive performance in the mechanistic

model to identify whether these human population factors are

predictive of spillover in ways not previously hypothesized, and

therefore not captured in the mechanistic model. Boosted

regression trees repeatedly fitted regression trees, which created

multiple binary splits in the dataset based on predictor variables.

Each successive tree was fitted to the residuals of the previous best

model. The model was then updated to include the next tree [124].

Variable importance was calculated as a weighted sum of the

number of times a variable was used for splitting, with weights

determined by the squared improvement due to the split [124].

We fitted the boosted regression tree to data from 2001 to

2016, given this was the range of the available human case

data for inferring spillover. We partitioned the dataset into

spatially- and temporally-balanced training (80%) and test

(20%) sets prior to the analysis. Optimal learning rate, tree com-

plexity and number of trees were selected as the set of

parameters that minimized cross-validation predictive deviance

(electronic supplementary material, table S7; [124]). The dataset

was split in R using the BalancedSampling package [127],

models were fitted in R using the gbm and dismo [128,129]

packages, and variable effects were calculated with the pdp

package [130]. Additional details can be found in the electronic

supplementary material.
3. Results
Primate species distribution (figure 2a), vector distribution

(figure 2b; electronic supplementary material, figures S1

and S2), reservoir–vector contact (figure 2c), human–vector

contact (figure 2d ) and human susceptibility (figure 2i)
varied over space and time based on estimates and models

fitted to empirical data. In addition, vector survival

(figure 2g) and infectiousness (figure 2h; electronic sup-

plementary material, figures S4 and S5) varied with

temperature, vector abundance varied seasonally with rain-

fall (figure 2e; electronic supplementary material, figure S3

and table S3), and vector dispersal declined exponentially

with distance (figure 2f; electronic supplementary material,

figure S6). Together, these empirical relationships between

environment and host, vector and virus ecology compose

an estimate of environmental risk of yellow fever spillover

(electronic supplementary material, file S2).

The environmental risk model strongly predicted episodes of

yellow fever spillover into humans (AUC ¼ 0.72) and adding

phenomenological reservoir infection dynamics in periodic risk

further improved the model (AUC ¼ 0.79; figure 3). Surprisingly,

models that included human vaccination coverage and human

population size performed worse than the environment-driven

models (AUC¼ 0.64 and 0.64; figure 3). For all risk metrics,

maximum value in the municipality-month was a better predic-

tor of spillover than mean value (figure 3). Logistic regressions of
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spillover probability as a function of model-predicted risk

showed similar patterns in Akaike information criterion (AIC)

values (electronic supplementary material, table S4). Model-

predicted environmental (mean and maximum), periodic

(mean and maximum) and immunological (maximum) risk

metrics were statistically significant predictors of spillover prob-

ability at the 5% level after correcting for multiple hypothesis

testing (electronic supplementary material, table S4; [131]). By

contrast, given that spillover occurred, none of the eight

mechanistic model risk summaries (maximum and mean of

the four risk metrics) was a statistically significant predictor of

number of cases, nor was estimated vaccine coverage (electronic

supplementary material, table S5). In Spearman’s rank corre-

lations, we find that of the independent predictors, vaccine

coverage is most correlated with risk, followed by maximum

environmental risk, although these correlations are weak

(electronic supplementary material, table S5).

Mechanistic model estimates matched seasonal variation in

spillover, and accurately captured differences in seasonality by

region (figure 4a). Risk peaked in April in the North and North-

east regions and in February in Central-West, South and

Southeast regions. The seasonal regional correlation between

number of municipality-months with spillover and average

environmental risk was highest in the Southeast (0.77), fol-

lowed by the South (0.61), Central- West (0.58) and North

(0.42) regions. The periodic risk matched interannual variation

in spillover (figure 4c), an unsurprising finding given periodic

risk incorporated phenomenological primate dynamics

derived from human cases of spillover. Interannual regional

correlations were weaker than seasonal correlations but simi-

larly highest in the Southeast (0.54), followed by the Central-

West (0.45), North (0.21) and South (0.13) regions.

The boosted regression tree found one-month lagged

environmental risk and current environmental risk to be

the second and fifth most important predictors of spillover,
respectively (figure 5). Not surprisingly, the boosted

regression tree significantly improved predictive performance

from the mechanistic model because it was trained on the

human spillover data (training AUC . 0.99, test AUC ¼

0.95). Vaccine coverage, temperature, population density

and precipitation were also among the six most important

predictors in the boosted regression tree. As expected,

municipality-months with spillover had higher current and

one-month lagged environmental risk (figure 5b,e), as well

as high (phenomenologically) estimated primate infection

prevalence and high primate species richness (electronic

supplementary material, figure S8). We find that municipality-

months with spillover have low monthly average temperatures

(figure 5a), which may in part be due to poorly captured

effects of temperature in the mechanistic model from aver-

aging temperature before calculating mosquito trait values

for survival and infectiousness [132]. We also find that muni-

cipality-months with spillover have low rates of precipitation

(figure 5d ), which may correspond to settings with increased

human activity in the forest, and therefore increased chance

of spillover. However, current and lagged fire area,

hypothesized indicators of deforestation activity, had low

predictive importance in the boosted regression tree models

(electronic supplementary material, figure S8).

Unexpectedly, municipality-months with spillover tended

to have vaccine coverage above 90%, suggesting that high

rates of vaccine coverage do not prevent spillover from

occurring. While estimated vaccine coverage was included

as a measure of human susceptibility, it is likely capturing

other patterns in the spatial distribution of spillover; regions

known to experience yellow fever spillover are likely to have

high vaccination rates, while those where spillover is rare or

non-existent are likely to have low vaccination rates. Accord-

ingly, estimated vaccine coverage is bimodal, potentially due

to a group of lower risk municipalities and a group of higher

risk municipalities. The partial dependence plot also displays

two plateaus in the marginal effect in the vaccine coverage on

model estimates, which roughly correspond to the two

vaccine coverage groups.

The recent outbreaks in Brazil in the 2016–2017 and

2017–2018 transmission seasons have been the largest in

over 50 years [16]. The environmental risk model predicts

persistent, low environmental risk of spillover in the affected

states (Minas Gerais, Espı́rito Santo, São Paulo and Rio de

Janeiro) and does not predict any increase in spillover

risk during the recent transmission seasons (figure 6). The

date ranges of confirmed human cases during the 2016–

2017 and 2017–2018 outbreaks are shown in pink bands

(figure 6) based on a World Health Organization epidemiolo-

gical update [16]. The mechanistic model predicts spillover

risk in Espı́rito Santo and Rio de Janeiro, where no spillover

occurred from 2001 to 2016, at levels similar to those in Minas

Gerais and São Paulo, where spillover had previously

occurred. As in other regions, the model accurately captures

the seasonality of spillover risk in this region (figure 6),

which is distinct from that of other regions (figure 4a).
4. Discussion
Our mechanistic understanding of environmental risk of

spillover—which combines reservoir host and sylvatic

vector distributions, vector contact with reservoirs and
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humans, and vector dispersal, survival, infectiousness and

seasonal abundance—predicts yellow fever spillover into

humans with high accuracy (AUC ¼ 0.72; figure 3). Within

each municipality and month, the maximum risk, rather

than the mean risk, was the best predictor of spillover occur-

rence, suggesting that local heterogeneity in risk within

municipalities is important for determining spillover prob-

ability. Rainfall-driven seasonality in the vector populations

and temperature-driven seasonality in vector survival and

infectiousness accurately predicted seasonal variation in

spillover (figure 4a). While interannual variation in risk was

not well-predicted in the environmental risk model based

on climate and land cover information alone, including phe-

nomenologically modelled variation in primate yellow fever

infection prevalence improved predictions of year-to-year

variation in spillover (AUC ¼ 0.79).

Although we hypothesized that low vaccination coverage

and high human population density would each increase

spillover risk, neither improved model accuracy for predict-

ing spillover in the mechanistic model (figure 3). However,

we found that vaccine coverage was the third most important

predictor of municipality-months with spillover when

allowing for a nonlinear but generally positive relationship

between coverage and spillover probability (figure 5).

The recent outbreak is also consistent with the ecological

processes driving past spillover in this region (figure 6).

While environmental risk in 2016–2018 was not elevated

above historical levels (2001–2015) and spillover had not

occurred in the states of Espı́rito Santo or Rio de Janeiro

during the previous 15 years, it has previously occurred in

Minas Gerais and São Paulo states in 2001–2003 and 2008–

2009. Data from the recent 2016–2018 outbreak past

December 2016 are not included in the statistical models
because consistent monthly municipality-scale spillover

data across the country are not available for that period.

The boosted regression tree analysis, which aimed to

detect candidate drivers of spillover that might be missing

from our mechanistic model, identified vaccine coverage, cur-

rent and lagged environmental risk, temperature, population

density and precipitation as important predictors, which

together improved upon mechanistic model predictive per-

formance of pathogen spillover (out-of-sample AUC ¼ 0.95).

The relative importance of lagged and current environmental

risk provides evidence that the mechanistic model captures the

potentially nonlinear and interactive relationship between

environmental variables that drive spillover in mosquitoes,

reservoir hosts and humans better than the environmental

variables alone. One-month lagged environmental risk

may be more important than current environmental risk for

predicting spillover because of a lag between cases and report-

ing. Additionally, environmental suitability for reservoir and

vectors may drive reservoir infection dynamics, causing a

lag between conditions suitable for virus amplification in the

primate reservoir and vector populations, and spillover into

humans. Moreover, the relative importance of one-month

lagged environmental risk creates the potential for forward

prediction of spillover. The boosted regression tree also ident-

ified municipality-months with spillover to have low

temperatures. As mosquito thermal performance traits often

have steep drop-offs at high temperatures, temperature vari-

ation affects mosquito traits [133]. Our mechanistic model

using monthly average temperature may overestimate the suit-

ability in warm temperatures and underestimate the suitability

in cool temperatures [132], resulting in the decreasing relation-

ship observed between average monthly temperature and

spillover in the boosted regression tree.
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In a recent publication, Kaul et al. [8] also used a machine

learning approach to predict municipality-months with

spillover in Brazil and similarly found rainfall and temperature

to be important predictors. However, their model also identified

primate richness and fire density as important predictors, while

our boosted regression tree analysis ranked municipality aver-

age primate richness tenth, municipality maximum primate

richness fourteenth, one-month lagged fire area ninth, and cur-

rent fire area twelfth for variable importance out of 14 variables.

Our covariates add to those used by Kaul et al. [8] by including

vaccine coverage and our mechanistic environmental risk esti-

mate (current and lagged), which boosted regression trees

found to be three of the five most important predictors. We

expect that our mechanistic environmental risk estimates cap-

ture much of the variation attributed to other environmental

variables in the Kaul et al. model. Despite the differing relative

importance of variables for predicting spillover in the two

models, they both predict that seasonal patterns vary by regions

of Brazil and find Southeast Brazil seasonally suitable for yellow

fever spillover. Our mechanistic model further illustrates that

this differing seasonality can be explained by seasonal variation

in vector survival and infectiousness driven by temperature and

vector abundance driven by rainfall.

Given the importance of vaccination campaigns in limiting

yellow fever outbreaks, we expected that the number of suscep-

tible (unvaccinated) people would be an important positive

predictor of yellow fever spillover occurrence, yet mechanistic

population-scaled risk performed worse at predicting spillover

than environmental risk alone (figure 3). For example, scaling

by population size predicts areas of very high risk along the

coast of Brazil, where environmental risk is low, but population

sizes are high. Additionally, we expected that vaccination cov-

erage and human density might be more predictive of the

number of cases in spillover events (for example, the recent out-

break in Southeast Brazil) than the probability of spillover

occurring, given that very low environmental suitability will

be amplified in large, unvaccinated populations. However,

vaccine coverage was not a significant predictor of the

number of human cases of yellow fever given that spillover

occurred (electronic supplementary material, table S5). Anec-

dotally, it is worth noting that prior to the recent large

outbreak in southeastern Brazil in 2016–2018, vaccination

rates in the region were low, potentially allowing that outbreak

to reach an unusually high magnitude.

The substantial improvement in model prediction from

environmental to periodic risk (AUC ¼ 0.72 versus 0.79)

suggests that primate population dynamics, immunity and

infection prevalence may be a key missing component of

this mechanistic model. Ongoing surveillance efforts in

Brazil are used to detect non-human primate cases of

yellow fever as an advanced warning system [134]. While

this advanced warning system can make a critical difference,

the recent outbreaks in Southeast Brazil displayed that in

some cases this surveillance may not provide sufficient time

to respond to prevent spillover, especially in areas with

high populations and low vaccine coverage rates, as were

found in the Southeast. Incorporating a mechanistic model

of non-human primate infection prevalence, driven by

local primate surveillance data, could help to indicate

when primate cases of yellow fever are likely, to provide

additional time for public health officials to respond. This

remains a significant and potentially very fruitful gap in our

understanding of yellow fever transmission and spillover.
Vector–human contact rates are another important

empirical gap in the mechanistic model, which could further

refine the relationships between land use, human occupations

and behaviour, and spillover risk. We approximate human

contact rates with sylvatic vectors with per cent forest cover,

but the relationship is likely much more complex. The

surprising decreasing relationship between precipitation and

spillover probability in the boosted regression tree

(figure 5d) may be due to the influence of precipitation on

human activities in and around forests, and therefore its influ-

ence on human–vector contact [96]. Additionally, while vector

contacts depend on biting rate of the vector, and mosquito

biting rates are known to depend on temperature for other

species [107,135], we assume constant biting rate in the

mechanistic model owing to a lack of empirical evidence.

While beyond the scope of this paper, the most influential

mechanisms in the model could be further identified through

sensitivity analyses of specific submodel components.

Additionally, associations between model components and

spillover probability could be estimated using the framework

of percolation models [17]. Finally, a thorough uncertainty

analysis could highlight the model components most in need

of further study to improve prediction of spillover.

Yellow fever is an ancient, historically important human

disease that played a central role in the discovery of mosquito

transmission of pathogens and the subsequent development

of vector control as a public health measure [136]. The

wealth of existing knowledge about the ecology of yellow

fever virus and its sylvatic reservoir hosts and vectors

allowed us to synthesize data from 71 published papers to

mathematically formalize our ecological understanding of

sylvatic transmission and spillover. Although spillover is a

stochastic process that is expected to be difficult to predict,

the mechanistic model which integrates vector, human host,

non-human reservoir and virus ecology allowed us to predict

spillover with surprising accuracy. Historically in the Ameri-

cas and presently in other regions such as sub-Saharan

Africa, yellow fever regularly has entered urban transmission

cycles that lead to major human epidemics. The model frame-

work presented here could be extended to include the

ecology of different vectors, hosts and environments, includ-

ing urban Ae. aegypti and more human immune interactions

with other flaviviruses, to ask intriguing questions such as:

What prevents yellow fever from entering urban transmission

cycles in the Americas, where other flavivirus epidemics

regularly occur? Why has urban transmission occurred recently

in Africa and not in South America? What prevents yellow

fever circulation and spillover in Southeast Asia, where sylvatic

vectors and non-human primate hosts are present and the cli-

mate is suitable? Answers to these questions would further

our understanding of the ecology of (re)emerging diseases in

different parts of the world. More fundamentally, this work

provides clear evidence for the predictive power of mechanistic,

ecological models—even for rare events like pathogen spil-

lover—and can provide useful information to enhance public

health interventions of zoonotic diseases.
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Jerônimo SMR, Silva VPME, De Melo Ximenes
MFFM. 2009 Seasonal variation of potential
flavivirus vectors in an urban biological reserve in
northeastern Brazil. J. Med. Entomol. 46,
1450 – 1457. (doi:10.1603/033.046.0630)

61. Alencar J et al. 2014 A comparative study of the
effect of multiple immersions on Aedini (Diptera:
Culicidae) mosquito eggs with emphasis on sylvan
vectors of yellow fever virus. Mem. Inst. Oswaldo Cruz
109, 114 – 117. (doi:10.1590/0074-0276130168)
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