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Abstract

Electroconvective flow between two infinitely long parallel electrodes is investigated via a 

multiphysics computational model. The model solves for spatiotemporal flow properties using 

two-relaxation-time Lattice Boltzmann Method for fluid and charge transport coupled to Fast 

Fourier Transport Poisson solver for the electric potential. The segregated model agrees with the 

previous analytical and numerical results providing a robust approach for modeling 

electrohydrodynamic flows.
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III. INTRODUCTION

Electro-hydrodynamics (EHD) studies the interaction of the fluid with electric field [1]. As a 

subset of EHD, electroconvection (EC) is a phenomenon where convective transport is 

induced by unipolar discharge into a dielectric fluid [2-21]. Felici first performed a stability 

analysis of EC using a non-linear hydraulic model [22, 23]. Linear stability analysis was 

investigated by Schneider & Watson [24, 25] and Atten & Moreau [26], who showed that, in 

the weak-injection limit, C ≪ 1, where C is the charge injection, the flow stability is 

determined by the criterion TcC2, where Tc is the linear stability threshold for the electric 

Rayleigh number (T) – a ratio between electric force to the viscous force. In the space-

charge-limited (SCL) injection (C→∞), the flow stability is determined by Tc. 

Experimental observations of Lacroix et al. [27] and Atten et al. [28] showed that, in the 
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SLC limit, Tc = 100 [28], while linear stability analysis suggests Tc=160.45 for the same 

conditions [26]. Authors suggest that the discrepancy is due to the omission of the charge 

diffusion term in the analysis [29]. The effect of charge diffusion was investigated by Zhang 

et al., who performed a linear stability analysis [12] followed by a non-linear analysis using 

the multiscale method [17]. Zhang et al. found that the charge diffusion has a non-negligible 

effect on Tc, but their analysis could not bridge the discrepancy between the experimental 

and theoretical values.

To gain insight into the flow-charge interaction, the EC problem has been investigated by 

numerical methods. Castellanos and Atten used a finite difference model, concluding that 

large numerical diffusivity can contaminate the model [3]. Other numerical models used to 

study EC phenomena include the particle-in-cell method [30], finite volume method with 

flux-corrected transport [31], total variation diminishing scheme [5, 8, 14-16], and the 

method of characteristic [4]. Recently, Luo et al. showed that a unified Lattice Boltzmann 

model (LBM) matches the linear and finite amplitude stability criteria of the subcritical 

bifurcation in EC flow [18-21] for both 2D and 3D flow scenarios. This unified LBM 

transforms the elliptic Poisson equation to a parabolic advection-diffusion equation and 

introduces artificial coefficients to control the evolution of the electric potential, which 

requires additional sub-iterations at each time step.

In this paper, we demonstrate an alternative approach to modeling EC flow; our segregated 

solver combines (i) a two-relaxation-time (TRT) LBM [32-41] for modeling fluid transport 

and charged species, (ii) a Fast Fourier Transform (FFT) [42-45] Poisson approach for 

solving for the electric field directly. The TRT model introduces two relaxation parameters 

aiding the numerical algorithm stability without sacrificing computational efficiency. The 

TRT model is parameterized with physical units without rescaling to lattice units.

IV. NUMERICAL METHOD

1. Governing Equations

The governing equations for EHD flow include the Navier-Stokes equations (NSE), with the 

addition of an electric forcing term Fe = ρc ∇ φ to the momentum equation, the charge 

transport equation, and the Poisson equation for electric potential.

∇•u = 0, (1)

ρDu
Dt = − ∇P + μ∇2u − ρc∇φ, (2)

∂ρc
∂t + ∇• (u − μb∇φ)ρc − Dc∇ρc = 0, (3)
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∇2φ = −
ρc
ε , (4)

where ρ is the density, μ - dynamic viscosity, u = (ux, uy) - velocity vector field, P - static 

pressure, μb - mobility, Dc - ion diffusivity, ρc - charge density, ε - electric permittivity, φ - 

electric potential. The electric force provides a source term in the momentum equation (Eq. 

2). The unknown properties are velocity field u, pressure P, charge density ρc, and electric 

potential φ.

2. Lattice Boltzmann Method

The TRT-LBM is applied to NSE (Eq. 1-2) and the transport equation for charge density 

(Eq. 3). The mesoscopic solutions of the LBM yield a discrete distribution function of 

velocity fi(x, t) and charge density gi(x, t). The values of ρ, ρc, and momentum density ρu 
can be evaluated by weighted sums.

ρ(x, t) = ∑
i

f i(x, t), (5)

ρc(x, t) = ∑
i

gi(x, t), (6)

ρu(x, t) = ∑
i

ci f i(x, t) +
FeΔt

2 = ∑
i

ci f i(x, t) −
ρc∇φΔt

2 , (7)

The discrete normalized velocity, ci = (cix, ciy) at position - x and time - t depends on a 

specific discretization scheme; here, we use the D2Q9 model (two spatial dimensions and 

nine discrete velocities). The spatial discretization is uniform (∆x = ∆y ), and the temporal 

discretization - ∆t. The ci parameters (i=0~8) are shown in the Supplementary Material. 

Keeping the temporal discretization term allows for temporal accuracy control and to 

perform dynamic analysis. For example, in the analysis of electroconvection stability using 

Dynamic Mode Decomposition (DMD), it was found that the model performance is 

dependent on temporal discretization value [47]; thus it can be beneficial to explicitly 

include the ∆t in the formulation. The SI units are used for macroscopic variables and 

discretization, e.g., ∆x is given in meters and ∆t in seconds.

The Lattice Boltzmann Equations (LBEs) for flow field and charge density are:
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f i(x + ciΔt, t + Δt) = f i(x, t)−Δt ω+ f i
+ − f i

eq + + ω− f i
− − f i

eq −

TRT collision operator

+ Δt 1 − ω+Δt
2 Fi

+(x, t) + 1 − ω−Δt
2 Fi

−(x, t)

TRT source operator

,

(8)

gi(x + ciΔt, t + Δt) = gi(x, t)−Δt ωg
+ gi

+ − gi
eq + + ωg

− gi
− − gi

eq −

TRT collision operator

, (9)

f i
eq and gi

eq are the equilibrium distributions for flow field and charges respectively, which 

are given by

f i
eq(x, t) = wiρ 1 +

u•ci

cs
2 +

(u•ci)
2

2cs
4 − u•u

2cs
2 , (10)

gi
eq(x, t) = wiρc 1 +

(u − μb∇φ)•ci

cs
2 +

(u − μb∇φ)•ci
2

2cs
4 −

(u − μb∇φ)•(u − μb∇φ)
2cs

2 , (11)

Fi is the forcing term accounting for the electric force

Fi = wi
ci − u

cs
2 +

(ci•u)ci

cs
4 •Fe’ (12)

where cs
2 = P ∕ ρ = (1 ∕ 3)(Δx ∕ Δt)2 is the speed of sound [32, 33, 35, 36, 48], which is 

commonly set to be cs
2 = 1 ∕ 3 in lattice units (∆x = ∆y = ∆t = 1); however, since the model 

is parameterized, and the ∆t is explicitly included in the formulation, cs
2 has to be scaled 

depending on the choice of ∆x and ∆t as shown in the supplementary materials. τ± = 1 ∕ ω±

and τg
± = 1 ∕ ωg

± are the times at which the distribution functions relax to equilibrium, and wi 

is the weight for the velocity component ci, the values are provided in the supplementary 

materials. The values of cs are tunable, especially in Eq. 11 [37, 39, 40]; they are set to be 

the same because of the adopted equilibrium form. The values of wi (Eq. 11) are not 

restricted to the choice of wi in Eq. 10. Since Eq.3 is isotropic and in the case of simple 

rectangular geometry, the reduced coordinate stencil D2Q5 can be appealing [40, 41]. The 

use of the coordinate stencil may be also beneficial for implementation of bounce-back 
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Neumann condition at the walls. However, as noted by Ginzburg, the full-weight stencils are 

attractive because of their stability and anisotropy [41, 49]. As suggested by Luo et al., the 

D2Q9 model is used in the current work to model the charge transport equation [18]. Since 

the isotropic hydrodynamic weight is used to enable the isotropy of the high-order 

corrections [37, 39], D2Q9 can be reduced to D2Q5 to enhance the performance [40, 41].

The TRT approach has been previously used to model the collision operators [32-34, 37-41] 

and the momentum source operator [50, 51]. Alternatively, to SRT operators, TRT is more 

robust for EC problems, as it provides additional relaxation parameter, improving the 

numerical stability [48]. The terms specified in the TRT collision operators and the source 

operator are

f i
+ =

f i + f i‒

2 , f i
− =

f i − f i‒

2 , f i
eq + =

f i
eq + f i‒

eq

2 , f i
eq − =

f i
eq − f i‒

eq

2 (13)

gi
+ =

gi + gi‒

2 , gi
− =

gi − gi‒

2 , gi
eq + =

gi
eq + gi‒

eq

2 , gi
eq − =

gi
eq − gi‒

eq

2 (14)

Fi
± =

Fi ± Fi‒

2 (15)

Subscript i  denotes the velocity component opposite to i , such that ci = − ci . Symmetric 

relaxation parameters ω+ and antisymmetric ωg
− are determined by the viscosity and 

diffusivity respectively [35, 36, 52]:

v = cs
2 1

ω+ − Δt
2 , Dc = cs

2 1
ωg

− − Δt
2 . (16)

ω− and ωg
+ need to satisfy

Λ = Λ+Λ− = 1
ω+Δt

− 1
2

1
ω−Δt

− 1
2 , Λg = Λg

+Λg
− = 1

ωg
+Δt

− 1
2

1
ωg

−Δt
− 1

2 , (17)

where Λ and Λg are free factors used to control the algorithm stability [48]. Here, Λ = 1/12 

and Λg = 10−6; the large difference accounts for the mismatch between the neutral molecule 

and charge diffusivity. The Λ = 1/12 is chosen for the accuracy in solving the flow equation, 

and the choice of Λg = 10−6 is used for the accuracy of solving the electric properties in the 
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domain; error analysis is included in the supplementary materials. Ginzburg and colleagues 

also suggested that the choice of Λg
+ = Λg

− = 1 ∕ 12 suppresses the third-order error in 

advection-diffusion equations[36, 37, 39, 49].

3. Fast Poisson Solver

The Poisson equation (Eq. 4) is directly solved by a fast Poisson solver using a 2D FFT 

algorithm. This solver does not use an artificial time-stepping term in solving the elliptical 

equation as previously proposed by the unified LBM model [18-21]. The discretized grid 

function can be written as:

[Dx
2 + Dy

2]φx, y = sx, y (18)

where Dx
2 and Dy

2 are 2nd order derivatives operators in x - y coordinates; sx,y - source term 

representing space charge effect. Fourier spectral method is used in the x-direction and 2nd 

order finite difference scheme in the y-direction. In x-direction, the FFT algorithm is used to 

implement the standard Discrete Fourier transform (DFT).

DFTx[φx, y] = ∑
x = 1

NX
φx, y exp −i

2π(kx − 1)
NX (x − 1) , 1 ≤ kx ≤ NX . (19)

where kx is the wavenumber and NX is the number of grid points in the x-direction. The 2nd 

derivative in the x-direction can be calculated in the Fourier domain

DFTx Dx
2φx, y = DFTx

∂2φx, y

∂x2 = − kx
2DFTx φx, y . (20)

Fourier transform in the y-direction uses an odd extension of the domain to satisfy the 

Dirichlet boundary conditions.

φx, yext
ext = 0, φx, 1, φx, 2, ⋯, φx, Ny, 0, − φx, Ny, ⋯, φx, 1 , (21)

sx, yext
ext = 0, sx, 1, sx, 2, ⋯, sx, Ny, 0, − sx, Ny, ⋯, sx, 1 , (22)

where NY is the number of grid points in the y-direction. The size of the extended matrices 

is NX×NE, where NE = 2NY + 2 ; the yext is the extended y indices, ranging from 1 to NE.

From the definition of DFT (Eq.19), we have:
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DFTy φx, y + 1
s = exp(ikyΔy)DFTy φx, y , (23)

where φs is a periodically shifted vector by ∆y of φ in y-direction. Applying a central 

differencing operator in yext direction gives:

DFTyext
Dyext

2 φx, yext
ext =

exp(ikyext
Δy) + exp( − ikyext

Δy) − 2

Δy2 DFTyext
φx, yext

ext

=
−4sin2 kyext

Δy ∕ 2

Δy2 DFTyext
φx, yext

ext .

(24)

Therefore, the Fourier transform of Eq.18 is

− kx
2 +

4 sin2 kyext
Δy ∕ 2

Δy2 DFTx, yext
φkx, kyext

ext = DFTx, yext
skx, kyext

ext (25)

The Inverse Fast Fourier Transform (IFFT) algorithm transforms DFTx, yext
φkx, kyext

ext  into the 

spatial domain. Then, the electric potential in the original domain is obtained by retaining 

the first half (1 ≤ y ≤ Ny) of the extended solution matrix. In principle, TRT solver can 

replace the Poisson solver by employing the sub-iterations within each time step [53, 54], 

which may be beneficial for problems with complex geometries. However, in the case with 

periodic boundaries, the FFT method is a more efficient choice of solving for the electric 

potential.

4. Boundary Conditions and Method Implementation

The numerical method is implemented in C++ using CUDA GPU computing. The number of 

threads in the x-direction in each GPU block is equal to NX; the number of GPU blocks in 

the y-direction is equal to NY. FFT and IFFT operations are performed using the cuFFT 

library. All variables are computed with double precision to reduce truncation errors. The 

numerical method was shown to be 2nd order accurate in space. Error analysis is provided in 

supplementary materials. To reduce computational cost while maintaining accuracy, the grid 

of NX = 122, NY = 100 is used throughout this work. Macroscopic and mesoscopic 

boundary conditions are specified in Table I.

The full-way bounce-back is used for Dirichlet boundary conditions for fluid flow [18, 19, 

55]. The bounce-back method for Neumann boundary conditions applied to impermeable 

solid walls can introduce spurious boundary layer because of the diagonal velocity-weights 

[40, 41]. Nevertheless, The Neumann boundary condition for gi is an outflow boundary 
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condition for charge density transport [18, 19, 48]. The choice of small Λg ⊄ can improve 

accuracy because of the horizontal boundaries [40, 41].

V. RESULT AND DISCUSSION

1. Non-dimensional Analysis and Solution for Hydrostatic State

Governing equations yield four non-dimensional parameters that describe the system’s state 

[12, 17-21].

M = (ε ∕ ρ)1 ∕ 2

μb
, T =

εΔφ0
μμb

, C =
ρ0H2

εΔφ0
, Fe =

μbΔφ0
De

, (26)

where H is the distance between the electrodes (distance between the two infinite plates), ρ0 

is the injected charge density at the anode, and ∆φ0 is the voltage difference applied to the 

electrodes. The physical interpretation of these parameters are as follows: M- the ratio 

between hydrodynamic mobility and the ionic mobility; T- the ratio between electric force to 

the viscous force; C- the charge injection level; and Fe- the reciprocal of the charge 

diffusivity coefficient [12, 17]. For electroconvection system considered in this paper, these 

four non-dimensional parameters can characterize the flow. Velocity is not explicitly 

included; however, for the scenarios with strong advection, a different set of scaling 

parameters can be more attractive [46, 56].

FIG. 1 shows that our hydrostatic solutions for electric field and charge density agree well 

with the model of Luo et al. [18, 19] and the analytical solution [30, 57]. The analytical 

solution is based on a reduced set of equations for the electric field in one-dimensional 

coordinates.

ρc = ρa(y + ya)−1 ∕ 2, (27)

Ey =
2ρa

ε (y + ya)1 ∕ 2, (28)

where ρa and ya are parameters that depend on the boundary conditions and geometry. For 

the hydrostatic state, parameter C dominates the system [12, 17].

Table II shows the dimensional parameters used for the analytical solution and the L2 norm 

error between numerical results and analytical solutions. The numerical errors are lower than 

reported for the unified SRT LBM simulation (eL2 =0.0076) [18].

2. Electroconvection Instability

To model electro-convective instability, the steady-state hydrostatic solution is perturbed 

using waveform functions that satisfy the boundary conditions and continuity equation:
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ux = Lxsin(2πy ∕ Ly)sin(2πx ∕ Lx) × 10−3

uy = Ly cos(2πy ∕ Ly) − 1 cos(2πx ∕ Lx) × 10−3 .
(29)

The physical domain size is Lx = 1.22m and Ly = 1m limits the perturbation wavenumber to 

λx = 2π/Lx ≈ 5.15(1/m) -- the most unstable mode under the condition, where C = 10, M = 

10, Fe = 4000 [19]. The electric Nusselt number Ne0 = I1 / I0 acts as a criterion of flow 

stability, where I1 is the cathode current at a specific condition, I0 is the cathode current for 

the hydrostatic solution [5]. For cases where EC vortices exist, Ne0 > 1. For a strong ion 

injection, the EC stability largely depends on T; so, in this analysis, T is varied, while other 

parameters are held constant: C = 10, M = 10 and Fe = 4000.

For T ≥ Tc and the perturbation is given by Eq. 29, the flow becomes unstable developing 

EC vortices which are maintained by an electric force acting on the ionized fluid -- a 

combination of applied electric field and the space charge effect. The space charge effect can 

alter the applied electric field in the area of high charge density [56]. FIG. 2 (a) shows the 

formation of counter-rotating vortices; the charge density contour plotted with streamlines. 

In an upward fluid motion, the local charge transport is enhanced as indicated by the higher 

charge density in the center of the domain. In downward flow motion, the charge transport 

decreases, see the darker blue in the edges of the domain. FIG. 2 (b) shows the x-directional 

velocity contour. High x-velocity regions are located near the top and bottom walls; the flow 

is symmetric, which indicates that the steady-state solution has the same wavelength in x 

and y directions as the perturbation equations (Eq. 29).

FIG. 3 (a) shows the EC flow stability analysis, demonstrated by Ne0 as a function of T. 

When T < Tc the perturbation does not trigger the flow instability, the perturbed flow 

reverses to the hydrostatic state. If T decreases after the EC vortices are formed, they are 

maintained until T = Tf when the system returns to the hydrostatic state. The model predicts 

the bifurcation points at Tc = 163.4 and Tf = 108.7 agreeing Luo et al. [19] (Tc = 163.1, Tf = 

108.7 ), the linear stability analysis [12, 19] (Tc = 163.5), and the finite volume method [16] 

(Tf = 108.2 ) under the same conditions. Neither numerical model or linear stability analysis 

agree with the experimental data. The proposed segregated TRT-LBM approach is consistent 

with the previous research; however, it does not modify governing equations by introducing 

artificial terms needed for numerical stability and yields fast convergence of the elliptical 

Poisson equation enabled for the FFT approach.

VI. CONCLUSIONS

This work presents a numerical investigation of electroconvection phenomena between two 

parallel plates. The numerical approach combines (i) TRT-LBM for solving the transport 

equation of flow field and charged species, and (ii) Fast Poisson Solver. The TRT model 

allows for the use of two relaxation parameters, accounting for the difference between the 

transport properties of neutral molecules and charged species. The choice of relaxation 

parameters allows for both accuracy and stability over a wide variety of conditions. FFT 

algorithm for Poisson’s equation directly solves for electric field enabling fast overall 
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algorithm convergence. The numerical method is 2nd order accurate; it shows robust 

performance and agrees with previous results for the hydrostatic solution and for the 

solution where EC vortices are present.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Hydrostatic solution comparison of the TRT LBM and Fast Poisson solver, unified SRT 

LBM [18], and the analytical solution [30, 57] for C = 0.1 and C = 10, Fe = 4000. (a) 

Electric field and (b) charge density;
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FIG. 2. 
Charge density and ux contours for EHD convection with vortices.
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FIG. 3. 
Electric Nusselt number Ne0 depends on electric Rayleigh number T
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Table I.

Boundary conditions used in the numerical simulations.

Boundary Macro-variables Conditions Meso-variables Conditions

x direction boundaries Periodic Periodic

Upper wall u = 0, φ = 0 and ∆ρc = 0
Bounce-back for fi [32, 38, 40, 41,48]
Bounce-back for gi [32, 38, 40, 41, 48]

Lower wall u=0, φ=φ0 and ρc = ρ0

Bounce-back for fi
∂gi
∂z = 0
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Table II.

Dimensional parameters for the analytical model and L2 norm errors eL2 for weak ion injection C = 0.1 and 

strong ion injection C = 10.

C 0.1 10

ρa (Coulomb / m5/2) 0.218 0.75

ya (m) 4.8 0.003

eL2 of Ey 0.0031 0.0030

eL2 of ρc 0.0035 0.0031
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