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Introduction

The rapid development of molecular biology and genomics 
has enabled new plant breeding technologies, such as marker- 
assisted selection (MAS), to emerge. MAS is a method of 
crop genetic improvement that synergizes phenotypic and 
genetic values to realize genetic direct selection and maxi-
mize genetic gain (Stuber et al. 1999). However, MAS has 
two flaws when the traits targeted for improvement are com-
plex and controlled by multiple genes. First, quantitative 
trait locus (QTL) mapping is normally used to begin selec-
tion in the progeny population. However, QTL mapping 
based on bi-parental populations is not universal for all germ
plasms of a crop and is sometimes not the most accurate 
for use in breeding (Moose and Mumm 2008). Second, im-
portant traits are often controlled by many genes with small 
effects and require appropriate statistical methods and 
breeding technologies to improve complex quantitative 

traits (Bernardo 2008). Thus, a new kind of MAS technolo-
gy, genomic selection (GS), has emerged to address these 
shortcomings.

Meuwissen et al. (2001) first put forward the genomic 
selection (GS) breeding strategy, which uses a training pop-
ulation of individuals that have been genotyped and pheno-
typed. In Best Linear Unbiased Prediction (BLUP), the 
training population is comprised of genotyped individuals 
and their breeding values (mean performance of crosses 
with same tester). The breeding value of the candidate pop-
ulation is estimated by BLUP using genotypic data without 
testcross and phenotype information. The BLUP model pro-
duces genomic estimated breeding values (GEBVs) from 
the genotypic information for untested individuals. These 
GEBVs do not take into account the functions of the under-
lying genes, which would be an ideal selection criterion 
(Jannink et al. 2010). The genomic selection with GEBVs is 
superior to traditional breeding for increasing gains per unit 
time even if both models have equal efficiencies. In princi-
ple, the phenotypic values of the candidate individuals are 
not essential for selection, which shortens the length of the 
breeding cycle (Heffner et al. 2011).

Genomic selection has several advantages over traditional 
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percentage of the inbred line Qi319 using genome-wide se-
lection. The responses to genome-wide selection of other 
important traits were analyzed at the same time.

Materials and Methods

Germplasm
Inbred line Qi319 was developed at Shandong Academy 

of Agricultural Sciences (SAAS) in the 1990s. It is an elite 
inbred line from which a series of approved fine maize 
crosses such as Ludan50 and others have been developed. 
However, Qi319 has low shelling percentage and the ker-
nels dry slowly. The long-kerneled inbred line LK1 was in-
troduced into China from the International Wheat and 
Maize Improvement Center (CIMMYT). LK1 has several 
merits including high shelling percentage, a high volume-
to-weight ratio, and rapid rate of decrease in grain moisture 
after harvest. We thought that LK1 could be used to im-
prove shelling percentage and the rate of decrease in grain 
moisture in Qi319.

The LK1 × Qi319 cross was made at Jinan in the sum-
mer of 2014. The resulting F1 individuals were selfed to 
form the F2 generation at Sanya in the winter of 2014. Ran-
dom F2 plants were then selfed to form 159 F3 families at 
Jinan in the summer of 2015. The tester line lx03-2, from 
the Tangsipingtou heterotic group, a different heterotic 
group than Qi319, was used in this experiment.

Genotypic data and phenotypic data
DNA was extracted from leaves of individual F2 plants. 

Individual F2 plants were analyzed using 55K maize gene 
chips Affymetrix® Axiom™ at the Beijing Boao Jingdian 
Company. The maize 55K SNP array includes 55,229 SNPs 
evenly distributed across the maize genome (Cheng et al. 
2017).

Testcrosses were made at Sanya in the winter of 2015 by 
crossing bulked pollen of 10–12 plants from each F3 family 
to the tester lx03-2. These 200 testcrosses were planted for 
evaluation at Jinan and Xinxiang on 30 May 2016 and 8 
June 2017. A randomized complete block design with three 
replications was used at both locations. Each plot was 5 m 
in length and contained four rows that were 0.6 m apart. 
Data were collected from only the center two rows. Plant 
population density at both locations was 60,000 plants ha–1. 
Testcrosses were evaluated for eight traits including tassel 
branch number, grain moisture at harvest, grain yield, shell-
ing percentage, ear length, kernel depth, kernels per spike, 
and hundred-grain weight (Table 1). Most traits were exam-
ined at both locations (e.g., Supplemental Data 1), except 
for grain moisture at harvest, which was assessed at only one 
location. Testcrosses were harvested by hand on 5 October 
2016 and 10 October 2017.

Data analysis and population set
The performance of each entry was calculated using 

PROC GLM in SAS software version 9.1.3 for Windows 7 

MAS. (1) QTL mapping is not necessary for GS. Genomic 
selection differs from previous strategies such as linkage 
and association mapping in that it abandons mapping the 
effects of single genes and instead of focuses on the effi-
cient estimation of breeding values with a large number of 
molecular markers that ideally cover the entire genome 
(Jannink et al. 2010). (2) Genomic selection is more precise, 
especially for early selection. Genotyping uses high-density 
molecular markers to estimate all of the QTL effects and 
explain the genetic variance for most of the traits. But MAS 
uses only a few markers for trait selection, genomic selec-
tion is more accurate than MAS (Heffner et al. 2009). (3) 
Genomic selection can shorten the generation interval, ac-
celerate genetic progress, and reduce production costs. The 
genetic progress achieved with GS is generally 4–25% than 
with phenotypic selection. GS can also cost 26–56% less 
than traditional breeding (Mayor and Bernardo 2009). (4) 
The efficiency of selection for low-heritability traits is higher 
with GS than with MAS. (5) Breeding values, sum of all of 
the allele genetic effects for each individual, are the selec-
tion criteria for GS. Because breeding values assess the 
mean performance of cross progeny, rather than the perfor-
mance of the parents themselves, GS is more accurate 
(Massman et al. 2012).

Bernardo and Yu (2007) studied the application GS to 
maize breeding in the US (Bernardo and Yu 2007) using 
both simulations and empirical experiments. Piepho (2009) 
in Germany and Fritsche-Neto et al. (2012) in Brazil have 
also studied the use of GS in maize breeding. The step was a 
segregating maize population (F2 population) is genotyped 
and the testcross performance of the F3 generation is evalu-
ated. Based on genotypic and phenotypic data, breeding 
values associated with a large set of markers (e.g., from 256 
to 512 markers) are calculated for the traits of interest. Sig-
nificance tests for markers are not used, and the effects of all 
markers are fitted as random effects in a linear model by 
best linear unbiased prediction (BLUP). Second, two or three 
generations of selection based on all markers are conducted 
in a year-round nursery (e.g., Hawaii or Puerto Rico) or 
greenhouse. Trait values are predicted as the sum of marker 
values across all markers for an individual plant, and selec-
tion is subsequently based on these genome-wide predic-
tions. Using these methods, Combs and Bernardo (2013b) 
was able to introgress semi-dwarf germplasm into a U.S. 
Corn Belt inbred and found that genome-wide selection from 
Cycle 1 through Cycle 5 could either maintain or improve 
on the gains from phenotypic selection achieved in Cycle 1.

Shelling percentage is a key factor affecting the grain 
yield in maize. Although maize breeders have devoted 
themselves to improving shelling percentage, in China 
(Wang et al. 2011), there is a large performance gap be-
tween local hybrids and foreign hybrids for this trait. Maize 
shelling percentage is a typical quantitative trait that is con-
trolled by genes with minor effects and is difficult to im-
prove using traditional maize breeding approaches (Lu et al. 
2011). Here, we demonstrate improvement in the shelling 
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Among the 159 F3 testcrosses, we randomly selected 
80% crosses as a training population set and used the left-
over 20% as validation population for each trait. The set 
program run 1000 times. Basing on the 1000 times running 
result, we calculated the average value as the final accuracy 
prediction for each trait.

Results and Discussion

ANOVA of testcrosses
ANOVA revealed significant differences between two 

locations, two years for all traits analyzed. The weather con-
ditions of two years were great different, especially high 
temperature influencing grain development of miaze in 
2017 in Jinan. Thus, all the traits were markedly different 
between the two years, as well as the two locations. Differ-
ences in trait means among crosses were also significant 
(Table 2). F3 families were early generation, remaining well 
separated. Thus, the testcrosses were markedly affected by 
environments between F3 families. There were no significant 
differences among replications for all traits except tassel 
branch number. The interaction between testcrosses and lo-
cations was also not significant for any trait except tassel 
branch number. The tassel development was markedly affect-
ed by weather conditions. High temperature reduced the tas-
sel branches number. Therefore, there were significant differ-
ences in tassel branch number, not only among testcrosses, 

(SAS Institute. Cary. NC. 2009) to obtain means and stan
dard errors for each trait. The genetic variance (VG) of test-
crosses and heritability on an entry mean basis (h2) of each 
trait was estimated from ANOVA. F-tests were used to test 
whether VG and h2 were differed significantly among test-
crosses for each trait.

Genome-wide marker effects for each cross were esti-
mated based on the performance of the testcrosses for each 
trait and the SNP genotypes of the progenitors of F2 plants. 
Markers effects were estimated by ridge regression-best lin-
ear unbiased prediction (RR-BLUP) using R software ver-
sion 3.4.2 (R Development Core Team 2017) for Windows 
7. The accuracy of genome-wide predictions for each trait 
was estimated as the correlation between marker-predicted 
genotypic values and phenotypic values (rMP) of the test-
crosses.

The RR-BLUP model was based on the phenotypic data 
of testcrosses and genotypic data of F2 individual plant:

y = Xb + Zu + e

Where y is an N × 1 vector of BLUEs obtained in the phe-
notypic analysis, b is a vector of F fixed effects and X its 
corresponding N × F design matrix. Z is a N × M matrix, 
which coded the M makers as either +1 or –1 for homo
zygous loci and 0 for heterozygous loci. Random marker 
effects were assumed to follow a normal distribution u~N 
(0, Iδ2

u) with variance δ2
u and e~N(0, Iδ2

e).

Table 1.	 Traits and measurement methods
Trait Measurement Number Stage
Tassel branch number Primary branches number of tassel 10 plants Filling stage to maturity
Grain moisture at 
harvest

During head sprouting stage, 10 spikes were bagged before silking. All 
bags were removed at the same time after silking. The 10 spikes were 
naturally pollinated. The grain moisture was measured by portable 
moisture meter during harvest

10 plants At harvest

Weight of dry ears Total weight of all dry ears per whole plot Whole plot After harvest
Grain yield per plot Total grain yield per whole plot Whole plot After harvest
Shelling percentage Grain yield/dry ear weight Whole plot After harvest
Ear length Length from the base to the tip of an ear 10 ears After harvest
Ear width Width at the middle of an ear 10 ears After harvest
Cob width Width of the cob at the middle of an ear 10 ears After harvest
Kernel depth (Ear width–Cob width)/2 10 ears After harvest
Ear rows Row number per ear 10 ears After harvest
Grains per row Kernel number of a row per ear 10 ears After harvest
Kernels per spike Ear rows × Grains per row 10 ears After harvest
Hundred-grain weight Weight of 100 kernels 3 replications After harvest

Table 2.	 Mean square of yield, shelling percentage, kernel depth, ear length, tassel branch number, hundred-grain weight, and kernels per spike 
for testcrosses, locations, years and replications in ANOVA

Sources of variance Grain yield 
(Kg/mu)

Shelling 
percentage (%)

Kernel depth 
(cm)

Ear length  
(cm)

Tassel branch 
number

Hundred-grain 
weight (g) Kernels per spike

Location 576.59** 868.96** 10.05** 178.27** 194.02** 162.33** 482.77**

Year 224.36** 413.23** 24.08**   56.78**   74.39**   12.34** 213.54**

Replication     0.02     0.25   0.24     0.53   10.03**     1.48     0.67
Testcross     1.77**     1.27*   1.51**     1.35*     5.06**     1.42**     1.49**

Testcross*Location     0.41     0.43   0.87     0.92     1.49**     0.39     1.07

* significance at 0.05, ** significance at 0.01.
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markers used (Chen and Sullivan 2003, Poland and Rife 
2012), linkage disequilibrium (Habier et al. 2007), the rela-
tionship between calibration and test set (TS) (Albrecht 
et al. 2011, Clark et al. 2011, Pszczola et al. 2012), and 
population structure (Guo et al. 2014, Saatchi et al. 2011, 
Windhausen et al. 2012). We analyzed three factors affect-
ing predication accuracy, including the heritability of the 
trait, the number of molecular markers, and the size of the 
calibration population.

We made the regression analysis on the genomic selec-
tion accuracy and the heritability for all the traits (Table 3). 
The result indicated that the correlation coefficient between 
trait heritability and prediction response was 0.77. Regres-
sion analysis between trait heritability and prediction re-
sponse indicated a regression coefficient (b) of 0.556 and a 
decision coefficient of 0.597 (Fig. 1). This reveals that pre-
diction response increases with trait heritability, consistent 
with the result of Combs and Bernardo (2013a). For an in-
crement in trait heritability of 1%, rMP increases by 0.556%.

Simulations indicated that the size of the calibration pop-
ulation is crucial for prediction accuracy in genome-wide 
selection (Habier et al. 2007). We compared the prediction 
accuracy with different numbers of individuals in the train-
ing populations (from 10% to 90% of total individuals) for 

but also among replications and locations, and the genotype 
by environment interaction for this trait was significant.

Prediction of response to genome-wide selection
Testcross genetic variance (VG) and heritability (h2) was 

significant for all of the traits. Shelling percentage exhibited 
the lowest h2, only 16.26%. Shelling percentage was a quan-
titative trait, controlled by minor polygene. Therefore, 
genome-wide selection would be more suitable than con-
ventional breeding and traditional molecular breeding for 
improving shelling percentage. Hundred-grain weight ex-
hibited the highest heritability, 74.5%, among traits studied 
here. Tassel branch number and kernel depth each had rela-
tively higher heritability, 64.51% and 61.42%, respectively. 
Grain yield, kernel number per ear, and ear length exhibited 
moderate heritability.

The accuracy of prediction for testcrosses ranged from 
18.6 to 66.2% among all the traits. Although the h2 of shell-
ing percentage was only 16.76%, lower than those of grain 
yield and kernel number per ear, the prediction accuracy for 
shelling percentage (33.7%) was higher than for grain yield 
(29.6%) and kernel number per ear (28.7%). This result in-
dicated that genome-wide selection is more suitable than 
other methods for improving shelling percentage. The rMP 
of grain yield was lower than in previous studies (Combs 
and Bernardo 2013b, Zhao et al. 2012). Grain yield was a 
complex trait, and the prediction accuracy was not stable 
among different experiments. Here, the accuracy of predic-
tion of grain moisture in testcrosses was only 18.6%, which 
was lower than those for other traits. However, Combs and 
Bernardo (2013b) determined the prediction of response for 
grain moisture at harvest as 57%. The testcrosses in the 
present study were harvested late on 5 October 2016 after a 
growing season of 127 days. There was little difference in 
grain moisture among testcrosses. The rMP for hundred-grain 
weight and tassel branch number were higher, 63.9% and 
66.2%, respectively. Thus, we confirmed that higher trait 
heritability improves prediction of the response to selection.

Analysis of the factors affecting genome-wide selection
Factors known to affect prediction accuracy of GS in-

clude trait heritability (Heffner et al. 2009), calibration pop-
ulation size (Jannink et al. 2010), statistical model used 
(Heslot et al. 2012), the number and type of molecular 

Table 3.	 Trait means, testcross genetic variance (VG), heritability on an entry-mean basis (h2), and correlation between marker-predicted geno-
typic values and phenotypic values (rMP) during cross-validation of testcrosses

Trait Mean VG VE h2 rMP

Grain yield (Mg ha–1) 8.48 390.35** 1033.10 27.42%** 29.6%
Shelling percentage (%) 82.02 1575.43* 8109.85 16.26%* 33.7%
Kernel depth (cm) 0.98 1.64** 1.03 61.42%** 32.5%
Tassel branch number 11.82 1416.04** 779.09 64.51%** 66.2%
Ear length (cm) 18.04 484.51* 736.20 39.69%** 39.1%
Kernel number per ear 473.73 259,708.83** 717,038.2 26.59%** 28.7%
Grain moisture at harvest (%) 31.33 – – – 18.6%
100 kernels weight (g) 34.99 2538.43** 752.22 74.5%** 63.9%

* significance at 0.05, ** significance at 0.01.

Fig. 1.	 Regression analysis on the genomic selection prediction accu-
racy and the heritability for all the traits.
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testcrosses for each trait and SNP genotypes for the progen-
itors of F2 plants. The accuracy of genome-wide predictions 
was estimated as the correlation between marker-predicted 
genotypic values and phenotypic values of the testcrosses 
for each trait. Our results indicate that the selection response 
of shelling percentage is 33.7%, which was greater than that 
for grain yield, kernel number per ear, and grain moisture at 
harvest. The selection responses of tassel branch number 
and weight per 100 kernels were both above 60%. Higher 
trait heritability and larger training population sizes lead to 
better prediction accuracy. However, prediction accuracy 
did not significant change from with SNP densities ranging 
from 1000 to 55,000 bp. The results of this research will 
improve genomic selection breeding technology in maize 
and lay the groundwork for improvement of other traits in 
this important crop by GS.
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