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Introduction

Closed related species of domesticated crop possesses po­
tentially valuable genetic resources that are not present in 
the gene pools of cultivated species. Harlan and de Wet 
(1971) suggested three sources of gene pools, which they 
called primary (via intraspecific hybridization among culti­
vated species: GP1), secondary (via interspecific hybridi­
zation with closely related compatible species: GP2), and 
tertiary (via interspecific hybridization with more distantly 
related species through radical artificial treatment such as 
embryo rescue: GP3). A breeder has made extensive efforts 
to exploit wild genetic resources, mainly for pest and dis­
ease resistance; more than 80% of the favorable traits con­
ferred by gene transfer from wild species involve resistance 
to pests and diseases in major crops (reviewed by Hajjar and 
Hodgkin 2007, Prescott-Allen and Prescott-Allen 1988). 
Genes that improve drought and salinity tolerance, yield 
components, and grain and fruit quality also have been in­
trogressed from wild germplasms (Dandan et al. 2007, 
Lippman et al. 2007, Nevo and Chen 2010, Zhang et al. 
2014). However, unfavorable traits or genes, selected out 
through domestication and breeding, are frequently trans­

ferred also. Therefore, the utility of wild germplasm as a 
genetic resource has both benefits and drawbacks.

Cultivated rice, Oryza sativa L., a staple food in much of 
the world, was domesticated from the ancestral species 
O. rufipogon Griff. The AA genome consist of two culti­
vated species, O sativa L. and O. glaberrima Steud., and six 
wild species, O. rufipogon, O. nivara Sharma et Shastry, 
O. barthii A. Chev., O. longistaminata A. Chev. et Roehr., 
O. glumaepatula Steud., and O. meridionalis Ng (Vaughan 
et al. 2008). Although chromosome pairing in F1 hybrids 
among AA genome species is normal and gene exchange is 
possible in hybrid progeny, interspecific hybrids show re­
productive isolation. With the progress of Next Generation 
Sequencing, public databases have rapidly accumulated ref­
erence sequences (Reuscher et al. 2018, Sakai et al. 2014, 
Schatz et al. 2014, Stein et al. 2018), haplotype maps 
(Alexandrov et al. 2015, Huang et al. 2012, McCouch et al. 
2016, Meyer et al. 2016, Wang et al. 2014), and RNA tran­
scription profiles (Childs et al. 2011, Sato et al. 2013, Tian 
et al. 2015). However, the use of wild genetic sequences in 
hybrid progeny is hindered by many unfavorable traits in­
cluding seed dormancy, short-day requirement, lodging, 
seed shattering at harvest, and various maladaptive phenom­
ena such as hybrid sterility, lethality, and breakdown. So far, 
genes conferring tolerance or resistance to abiotic and biotic 
stresses from wild species have been incorporated into culti­
vated species (Khush 1997, Sanchez et al. 2013). However, 
the vast array of allelic variations in wild germplasm has not 
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Materials and Methods

Plant materials
The O. glaberrima, O. rufipogon, and O. nivara acces­

sions were kindly provided by the International Rice 
Research Institute (IRRI), Manila, the Philippines (‘IRGC’ 
accessions), and the National Institute of Genetics, Mishima, 
Japan (‘W’ accessions). Line IRGC 103777 (O. glaberrima) 
originated from Mali, IRGC 105715 (O. nivara) from 
Cambodia, and W1962 (O. rufipogon) from China. Their de­
rived isolates were respectively designated WK18, WK56, 
and WK1962. F1 hybrids carrying either T65 or O. glaberrima 
cytoplasm were obtained from reciprocal crosses between 
T65 and WK18. F1 hybrids carrying T65 cytoplasm were 
also obtained by pollination with either O. rufipogon or 
O. nivara pollen. T65 was used as the recurrent male parent 
to develop BC1F1, BC2F1, BC3F1, and BC4F1 plants. F1, 
BC1F1, and BC2F1 plants were grown in pots under short-
day treatment (10 h dark, 14 h light) to promote heading and 
the later generation were grown in paddy field at the 
Harumachi farm of Kyushu University, Fukuoka, Japan.

Genotyping
Genomic DNA was extracted from freeze-dried leaves 

according to Dellaporta et al. (1983) with minor modifica­
tions. Simple-sequence-repeat (SSR) markers were used for 
genotyping of the whole genomic region (Supplemental 
Tables 1–3). PCR reaction mixtures (15 μL) contained 
50 mM KCl, 10 mM Tris·HCl (pH 9.0), 1.5 mM MgCl2, 
200 μM each dNTP, 0.2 μM each primer, 0.75 units of 
GoTaq polymerase (Promega), and template DNA (~5 ng) 
in a GeneAmp PCR system 9700 (Applied Biosystems, CA, 
USA). Thermal cycling for PCR started with 95°C for 
5 min, followed by 35 cycles of 95°C for 30 s, 55°C for 
30 s, and 72°C for 30 s. PCR products were run in 4% 

been exploited to accelerate rice breeding and to deepen our 
understanding of the genetic architecture of wild species.

A chromosome segment substitution line (CSSL) is a line 
carrying several chromosome segments derived from a do­
nor parent in the genetic background of a recurrent parent. A 
full set of CSSLs covers the whole genome. Using CSSLs, 
we can evaluate minor allelic differences conferred by addi­
tive quantitative trait loci (QTLs) in a uniform genetic back­
ground. Their high detection power makes it possible to 
manipulate a QTL as a simple Mendelian factor, subse­
quently allowing gene isolation by positional cloning. In 
addition, they offer the potential for favorable genes hidden 
in the genetic background of related species to be dis­
covered in the genetic background of cultivated species 
(Arbelaez et al. 2015, Bessho-Uehara et al. 2017, Cheema 
et al. 2008, Doi et al. 1997, Furuta et al. 2014, Gutiérrez et 
al. 2010, He et al. 2017, Hirabayashi et al. 2010, Qiao et al. 
2016, Ramos et al. 2016, Rangel et al. 2008, Shim et al. 
2010, Tian et al. 2006, Yang et al. 2016). Therefore, the ge­
netic resources of related species in GP1 or GP2 could be 
transferred into the genetic background of cultivated species 
to form a foundation for studies of genetic variation of 
closed related rice.

We have created chromosome segment substitution lines 
(CSSL) of O. glumaepatula, designated GLU-ILs, and 
O. meridionalis, designated MER-ILs, using the term ‘intro­
gression lines’ (ILs) to refer to CSSLs based on intraspecific 
hybridization (Yoshimura et al. 2010). Here we offer new 
ILs of O. rufipogon, O. nivara, and O. glaberrima in the 
genetic background of the O. sativa ssp. japonica type culti­
var Taichung 65 (T65). Applications for seed sharing are 
accepted through Oryzabase (https://shigen.nig.ac.jp/rice/
oryzabase/).

Fig. 1.	 Development of introgression lines of Oryza glaberrima, O. rufipogon, and O. nivara in the genetic background of O. sativa ssp. 
japonica cv. Taichung 65. (A, B) Breeding of WK18ILs for O. glaberrima with (A) T65 and (B) WK18 cytoplasm. (C) Breeding of WK1962ILs 
for O. rufipogon. (D) Breeding of WK56ILs for O. nivara.
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genome genotyping using 121 SSR markers evenly distrib­
uted across the 12 chromosomes (Supplemental Table 1) 
with 136 plants of all 31 BC4F1 lines from both crosses. 
From these 31 BC4F1 lines, we selected 11 BC4F1 plants 
with T65 cytoplasm and 15 with O. glaberrima cytoplasm 
so as to select the minimum set of ILs that covers the whole 
genomic region (Fig. 2A, Supplemental Fig. 1). We grew 
BC4F2, BC4F3, and BC4F4 plants and genotyped the targeted 
chromosome regions so as to fix them as homozygous for 
O. glaberrima (red lines in Fig. 2A and Supplemental 
Fig. 1). Chromosome segments of O. glaberrima were not 
retained in the WK18 ILs on Chr. 1 (markers RM246, 
egt710, RM3709, RM265, RM1361, RM3362), Chr. 4 

agarose gels (Amresco, OH, USA) in 0.5× TBE buffer to 
separate polymorphic DNA bands.

Results and Discussion

WK18ILs (O. glaberrima)
We developed 3 BC1F1, 23 BC2F1, 52 BC3F1, and 11 

BC4F1 lines with T65 cytoplasm from an F1 of T65 × WK18 
by recurrent backcrossing with T65 pollen (Fig. 1A). We sim­
ilarly developed 2 BC1F1, 9 BC2F1, 43 BC3F1, and 20 BC4F1 
lines with O. glaberrima cytoplasm from an F1 of WK18  
× T65 (Fig. 1B). To develop the ILs of O. glaberrima in the 
T65 genetic background (WK18ILs), we conducted whole- 

Fig. 2.	 Graphical representation of chromosome introgression of Oryza glaberrima, O. rufipogon, and O. nivara in genetic background of 
O. sativa ssp. japonica cv. Taichung 65. Blue, green, and purple represent introgression of O. glaberrima, O. rufipogon, and O. nivara on homo­
zygous condition. Missing genotypes at markers showing heterozygous genotypes at BC4F1 generations are indicated by grey. Heterozygous 
genotypes are indicated by yellow. The chromosome region for a minimal set of introgression for alien chromosomes indicated in red underlines 
were target for population maintenances. Blue circles and white circles represent the lines with WK18 and T65 cytoplams, respectively.

Breeding Science 
Vol. 69  No. 2



Yamagata, Win, Miyazaki, Ogata, Yasui and YoshimuraBS

362

and WK56ILs (O. nivara) are available through Oryzabase 
(https://shigen.nig.ac.jp/rice/oryzabase/).
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