Skip to main content
. Author manuscript; available in PMC: 2020 Oct 1.
Published in final edited form as: J Magn Reson Imaging. 2019 Feb 27;50(4):1260–1267. doi: 10.1002/jmri.26693

Table 3.

Performance of automated classical machine learning (ML) and deep leaning (DL) methods for image quality assessment.

Reference Image type Multi-center data? Learning algorithm (number of features) Sensitivity Specificity Accuracy PPV NPV AUC
(4) T1w, Brain Yes ML (2) 0.87 0.85 - - - 0.93
(7) T1w, Brain No ML (6) 0.70 0.88 0.80 - - -
(27) T1w, Brain Yes ML (64) 0.28 0.95 0.76 - - 0.70
(5) T1w, Brain Yes ML (190) 0.91 0.84 0.84 0.09 0.99 -
(14) T1w, head No DL - - 0.92±0.08 - - -
(14) T1w, upper abdomen No DL - - 0.72±0.05 - - -
(15) T2w, Liver No DL 0.47 – 0.67 0.80 – 0.81 0.73 – 0.79 0.36 0.86 – 0.94 -
(16) T1w, Brain No DL - - 0.88 - - -
This work T1w, Brain Yes DL 0.77 0.85 0.84 0.42 0.96 0.90

Empty cells indicate values were not reported.