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ABSTRACT We applied metagenomic next-generation sequencing (mNGS) to detect
Zaire Ebola virus (EBOV) and other potential pathogens from whole-blood samples
from 70 patients with suspected Ebola hemorrhagic fever during a 2014 outbreak in
Boende, Democratic Republic of the Congo (DRC) and correlated these findings with
clinical symptoms. Twenty of 31 patients (64.5%) tested in Kinshasa, DRC, were EBOV
positive by quantitative reverse transcriptase PCR (qRT-PCR). Despite partial degrada-
tion of sample RNA during shipping and handling, mNGS followed by EBOV-specific
capture probe enrichment in a U.S. genomics laboratory identified EBOV reads in 22
of 70 samples (31.4%) versus in 21 of 70 (30.0%) EBOV-positive samples by repeat
qRT-PCR (overall concordance � 87.1%). Reads from Plasmodium falciparum (malaria)
were detected in 21 patients, of which at least 9 (42.9%) were coinfected with EBOV.
Other positive viral detections included hepatitis B virus (n � 2), human pegivirus 1
(n � 2), Epstein-Barr virus (n � 9), and Orungo virus (n � 1), a virus in the Reoviridae
family. The patient with Orungo virus infection presented with an acute febrile ill-
ness and died rapidly from massive hemorrhage and dehydration. Although the pa-
tient’s blood sample was negative by EBOV qRT-PCR testing, identification of viral
reads by mNGS confirmed the presence of EBOV coinfection. In total, 9 new EBOV
genomes (3 complete genomes, and an additional 6 �50% complete) were assem-
bled. Relaxed molecular clock phylogenetic analysis demonstrated a molecular evo-
lutionary rate for the Boende strain 4 to 10� slower than that of other Ebola lin-
eages. These results demonstrate the utility of mNGS in broad-based pathogen
detection and outbreak surveillance.
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Ebola virus (EBOV) is an infectious RNA filovirus primarily transmitted to humans by
close contact with body fluids from infected patients or animals and consists of 5

species, including the prototype Zaire ebolavirus (EBOV) strain discovered in 1976 (1).
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Ebola virus disease (EVD), often fatal in its most severe manifestation of viral hemor-
rhagic fever, has remained a major public health concern in many parts of sub-Saharan
Africa since its first appearance in 1976 in Zaire (now the Democratic Republic of the
Congo [DRC]) (2). Symptoms of EVD include sudden onset of fever, muscle pain,
headache, and sore throat, followed by vomiting, diarrhea, rash, and both internal and
external bleeding (e.g., blood in stools and bleeding in the gums) (3). In addition to
EVD, viral hemorrhagic fever has been associated with a range of pathogens, including
flaviviruses (yellow fever and dengue virus), arenaviruses (Lassa fever), bunyaviruses
(Rift Valley fever and Crimean-Congo hemorrhagic fever virus), and other filoviruses
(Marburg virus) (4).

Between December 2013 and January 2016, West Africa, particularly, Guinea, Liberia,
and Sierra Leone, experienced the largest EVD epidemic in history. More than 28,000
people were infected with EBOV, with more than 11,000 people dying from the disease
(5). While the world focused on the West Africa outbreak, the World Health Organiza-
tion (WHO) was notified of a separate but concurrent outbreak in the vicinity of Boende
town, Équateur province, located in western Democratic Republic of the Congo (for-
merly Zaire). The index case was recorded on 26 July 2014 in a pregnant woman
married to a bushmeat hunter living in Inkanamongo village, close to the town of
Boende (6). The 2014 Boende outbreak marked the seventh Ebola outbreak in the
Democratic Republic of the Congo since the discovery of the virus in 1976 and ended
by October 2014. A previous analysis of the 2014 Boende outbreak reported a total of
69 patients diagnosed with suspected, probable, or confirmed EVD of 128 screened,
with 49 (71.0%) deaths (6). Several reasons have been proposed for the significantly
smaller size of the Boende outbreak (and other outbreaks in the Democratic Republic
of the Congo) compared to the large epidemic that occurred in West Africa around the
same time. These include the remote and isolated location of the Boende area, limiting
the number of human contacts and potential exposure of the population, and the quick
and effective responses by DRC public health agencies following the 6 previous EVD
epidemics in the country.

In this study, we applied metagenomic next-generation sequencing (mNGS) as a
tool for pathogen detection and genomic surveillance to identify EBOV and other
infections in whole-blood samples obtained from patients during the 2014 Boende
outbreak. In addition, we performed molecular clock and phylogenetic analyses of
EBOV genomes to reconstruct the evolution of the 2014 Boende outbreak strain and its
relationship to previous outbreak lineages.

MATERIALS AND METHODS
Ethics, consent, and permissions. This study was approved by the Ministry of Health in the

Democratic Republic of the Congo. Patients (n � 70) were enrolled from 13 August 2014 to 8 September
2014, during the middle of the 2014 Boende epidemic, and provided oral consent for enrollment in the
study and collection and analysis of their blood. Consent was obtained at the homes of patients or in
hospital isolation wards by a team that included staff members of the Ministry of Health. Coded
whole-blood samples were analyzed at University of California, San Francisco (UCSF) under a protocol
approved by the Institutional Review Board (protocol 11-05519).

Sample collection and case definitions. Epidemiologic and clinical data were collected using the
World Health Organization (WHO) clinical investigation form for viral hemorrhagic fever according to
standard case definitions (7). Samples from suspected cases were independently assayed for EBOV
infection using up to 3 different molecular tests: (i) EBOV quantitative reverse transcriptase PCR
(qRT-PCRDRC) performed at Institut National de Recherche Biomédicale (INRB), the national reference
laboratory for viral hemorrhagic fever in Kinshasa, DRC (8), (ii) EBOV qRT-PCR (qRT-PCRUS) performed
subsequently at UCSF after transfer to the United States (9), and (iii) mNGS followed by EBOV probe
enrichment, performed at UCSF in parallel with the qRT-PCRUS testing. Confirmed EVD cases (“confirmed
EVD”) were defined as positive by at least 2 of the 3 molecular tests, whereas probable EVD cases
(“probable EVD”) were defined as positive by a single test. Given sample degradation during shipment
to the United States (see below), cases negative by all 3 molecular tests were defined as EBOV negative
(“non-EVD”) if qRT-PCRDRC testing had been performed; otherwise, they were classified as indeterminate
(“indeterminate EVD”).

Nucleic acid extraction. Whole-blood samples were subjected to total nucleic acid extraction using
the QIAamp viral RNA kit (Qiagen) at INRB in the Democratic Republic of the Congo. Following extraction,
RNA was preserved using RNAstable (Biomatrica, Inc.) and shipped at room temperature to UCSF for
metagenomic sequencing and PCR analysis. Partial degradation of the RNA occurred during shipment,

Li et al. Journal of Clinical Microbiology

September 2019 Volume 57 Issue 9 e00827-19 jcm.asm.org 2

https://jcm.asm.org


as the RNAstable matrix was inadvertently not fully dried prior to shipment per the manufacturer’s
recommendations. Upon receipt, RNA samples were resuspended in 20 �l water. RNA integrity was
assessed using the Agilent Bioanalyzer RNA 6000 Pico kit.

qRT-PCRDRC EBOV assay. The qRT-PCRDRC EBOV assay, run in the Democratic Republic of the Congo,
was performed as previously described (8). Briefly, qRT-PCR was performed using the LightCycler 480
RNA Master Hydrolysis Probes kit (Roche) by adding 5 �l of RNA to 20 �l of master mix containing 9.25 �l
of reaction buffer, 1.6 �l of activator, 1 �l of enhancer, 7.85 �l of nuclease-free water, and 0.3 �l of a mix
of primers and probes targeting the EBOV polymerase (L) gene (EBOVLF, 5=-GCGCCGAAGACAATGCA;
EBOVLR, 5=-CCACAGGCACTTGTAACTTTTGC; EBOVLP, 5=-6FAM-TGGCCGCCAGCCT-MGBNFQ). The qRT-
PCR assay was run on a SmartCycler (Cepheid) real-time PCR instrument using the following cycling
conditions: 61°C for 300 s, 95°C for 30 s, followed by 45 cycles of 95°C for 15 s and 60°C for 40 s, with a
fluorescence measurement at the end of each cycle. A threshold cycle (CT) value of 41 or less was
considered positive.

qRT-PCRUS EBOV assay. The qRT-PCRUS EBOV assay, run in the United States, was performed as
previously described (9). Briefly, qRT-PCR was performed using a Stratagene MX300P real-time PCR
instrument and the QuantiTect reverse transcription kit (Qiagen) in a 25-�l total reaction volume (6.25 �l
2� QuantiScript, 0.125 �l of reverse transcriptase, 1 �l sample extract), with 0.125 �M each primer (F565,
5=-TCTGACATGGATTACCACAAGATC-3=; R640, 5=-GGATGACTCTTTGCCGAACAATC-3=). Conditions for the
qRT-PCR were modified as follows: 50°C for 30 min and 95°C for 15 min, followed by 40 cycles of 95°C for
15 s, 57°C for 30 s, and 72°C for 30 s, with a fluorescence measurement at the end of each cycle. EBOV
loads in genome copies per milliliter of sample were determined using standard curve analysis of an
EBOV amplicon (see Fig. S1 in the supplemental material).

RT-PCR confirmation by PCR and Sanger sequencing. Confirmatory RT-PCR assays were performed
using the Qiagen one-step RT-PCR kit in a 25-�l reaction volume. Conditions for the RT-PCR were as
follows: 50°C for 30 min and 95°C for 15 min, followed by 40 cycles of 95°C for 30 s, 54°C (EBOV-GP-1F/
EBOV-GP-1R), 57°C (primers by Trombley et al. [9]), or 50°C (nested PCR primers) for 30 s, 72°C for 30 s,
and a 5-min final extension. PCR amplicons were purified with the DNA Clean & Concentrator-5 kit (Zymo
Research) and visualized by 2% gel electrophoresis. Amplicons were cloned using the TOPO TA Cloning
kit (Thermo Fisher Scientific), and Sanger sequencing of the cloned inserts was performed by Elim
Biopharmaceuticals, Inc. (Hayward, CA). The primer sequences for the confirmatory RT-PCR assays and
expected amplicon sizes are given in Table S1.

Metagenomic next-generation sequencing. For each whole-blood sample, 10 �l of resuspended
extract was treated with 1 unit of Turbo DNase (Ambion) at 37°C for 30 min and inactivated with 1.1 �l
of DNase inactivation reagent for 5 min. RNA was reverse transcribed with SuperScript III reverse
transcriptase (Life Technologies) using a random primer attached to a linker adapter (Sol-PrimerA,
5=-GTTTCCCACTGGAGGATA-N9-3=), followed by second-strand DNA synthesis with Sequenase DNA
polymerase (Affymetrix), as previously described (10). Metagenomic next-generation sequencing (mNGS)
libraries were constructed from amplified cDNA using the Nextera XT DNA library preparation kit
(Illumina). Dual-indexed barcodes were employed to enable pooling of libraries and to assign reads to
individual samples after sequencing. Multiplexed barcoded mNGS libraries were sequenced as 150-bp
(bp) paired-end (PE) runs on a HiSeq 2500 instrument (Illumina), with up to 14 sample libraries
multiplexed per lane.

Capture probe enrichment of EBOV. To enhance genome recovery, we enriched select mNGS
libraries for EBOV sequences using XGen biotinylated lockdown capture probes (IDT Technologies),
followed by Illumina MiSeq sequencing of the enriched libraries, with up to 10 enriched multiplexed
sample libraries per lane. Clinical samples were chosen for enrichment if (i) at least 1 EBOV read was
identified in the initial mNGS run by BLASTn alignment to a 2014 Boende outbreak viral reference
genome (KP271018) at an E value cutoff of 1 � 10�8 and (ii) the sequenced EBOV reads yielded
incomplete (�99%) viral genome coverage, as samples with �99% genome recovery did not require
enrichment. The 223 capture probes were designed to tile across all fully sequenced EBOV genomes in
the National Center for Biotechnology Information (NCBI) GenBank database as of 18 December 2014
(see Table S2). Enrichment was performed using the XGen lockdown protocol and SeqCap EZ Hybrid-
ization and Wash kit (Roche Molecular Systems) according to the manufacturer’s instructions with a 24-h
incubation time for hybridization, followed by 150-bp PE sequencing on a MiSeq instrument (Illumina).
A separate no-template control (NTC) sample consisting of extraction buffer was used to assess for
cross-contamination.

Metagenomic sequencing analysis. Metagenomic sequencing data were analyzed for pathogens
using the sequence-based ultrarapid pathogen identification (SURPI) bioinformatics pipeline (11). Both
read 1 and paired-end read 2 were analyzed independently for purposes of SURPI analysis. A 75-bp
segment from base positions 10 to 75 was used for nucleotide alignment, followed by recovery of the
entire 150-bp read length for viral genome assembly. After preprocessing to exclude low-quality,
low-complexity, and adapter sequences, human sequences were computationally subtracted from the
mNGS data. This was followed by nucleotide alignment using an edit distance of 12 to identify reads from
viruses, bacteria, fungi, or parasites. Microbial references in NCBI GenBank corresponding to false-positive
alignments were filtered out by high-stringency BLAST alignment of candidate reads, one per unique
GenBank identifier or accession number, at an E value of 1 � 10�8. Remaining reads were then
taxonomically classified to the species, genus, or family level using the lowest common ancestor
algorithm. Potentially novel viruses with divergent sequences were searched for by translated nucleotide
alignment against known reference sequences present in the GenBank viral protein database (June 2013
build). No reads to EBOV, Plasmodium falciparum, or other blood-borne viral pathogens were detected
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in the 4 negative UCSF patient samples processed in parallel with the primary mNGS run nor were reads
to EBOV detected in the NTC sample during the subsequent capture probe enrichment sequencing run.

RT-PCR confirmation of Orungo virus. Qualitative RT-PCR testing was performed to confirm the
finding of Orungo virus in a patient sample (n � 1), using a newly designed primer set that targeted
segment 1 of the virus (F, 5=-ATGGAACGGGAAAAGACGGG-3=; R [2,253 to 2,273 bp], 5=-CCGCGCGATGA
TTCTTCCTA-3=). The RT-PCR assay was performed using the Qiagen one-step RT-PCR kit (Qiagen) in a
25-�l total reaction volume and with 10 �M each primer, according to the manufacturer’s instructions.
Conditions for the RT-PCR were as follows: 50°C for 30 min and 95°C for 15 min, followed by 40 cycles of
94°C for 15 s, 55°C for 30 s, and 72°C for 1 min, followed by a final incubation at 72°C for 10 min. PCR
products were evaluated by 2% agarose gel electrophoresis. Bands of the expected size (311 bp) were
purified prior to sequencing using the Invitrogen PureLink Quick Gel Extraction kit (Thermo Fisher
Scientific) according to the manufacturer’s protocol. Purified PCR products were Sanger sequenced in
both forward and reverse orientations using the same primer sequences as used for PCR at 2 nM
concentration.

Statistical analyses. Two-sided Fisher’s exact test was used to compare clinical characteristics
between probable or confirmed EVD and non-EVD cases and between EVD/malaria coinfected and singly
infected EVD cases. A P value of �0.05 was used as the cutoff for statistical significance.

Genome assembly and phylogenetic analysis. Genome assembly was performed using the Ge-
neious v10.2.2 software package (12) and a 2014 DRC Ebola strain reference (KP271018). We mapped all
reads aligning to EBOV from each patient sample to generate individual consensus EBOV genomes, of
which those with coverage of �50% were retained for phylogenetic analysis. All complete EBOV genome
sequences as of August 2017 were downloaded from GenBank. As more than 1,000 genome sequences
were available for the 2013 to 2016 West Africa epidemic, we selected 36 representative sequences
comprising up to 5 sequences per year and per outbreak location (i.e., Guinea, Sierra Leone, or Liberia)
for phylogenetic analysis. For each EBOV reference genome, the coding protein sequences were
extracted and then concatenated (NP-VP35-VP40-GP-VP30-VP24-L) to yield complete coding genome
sequences. These concatenated coding sequences were aligned together with the new EBOV coding
sequences from the 2014 DRC outbreak generated here, using MAFFT version 5.0 (13). We inferred a
maximum likelihood (ML) phylogeny from this alignment using RAxML version 8 (14) under a general
time reversible nucleotide substitution model and a gamma-distributed model of among site rate
variation (GTR��), as determined by jModelTest2 (15, 16). Statistical support for nodes in the ML
phylogeny was evaluated using a bootstrapping approach with 100 replicates.

Next, we evaluated the temporal molecular clock signal of the alignment using TempEst (17), which
regresses the sample collection dates against the root-to-tip genetic distances from the ML phylogeny.
The plot indicated that the data set contained a sufficient temporal signal for a molecular clock analysis.
A molecular clock phylogeny was estimated from the alignment using the Bayesian Markov chain Monte
Carlo (MCMC) approach implemented in BEAST v1.8.4 (18). We computed an MCMC for 100 million steps,
with sampling of parameters and trees every 10,000 steps. For the MCMC analysis, we used the SRD06
nucleotide substitution model, an uncorrelated log-normal relaxed molecular clock model (with a
noninformative continuous-time Markov chain reference prior placed on the molecular clock rate
parameter), and a Bayesian SkyGrid coalescent tree prior. The program Tracer v1.6 was used to check
MCMC convergence, and the program TreeAnnotator as implemented in BEAST v1.8.4 was used to
compute a maximum clade credibility tree, after removal of 20% of the chain as burn-in.

Accession number(s). The 14 complete and partial EBOV genomes recovered in this study have been
submitted to NCBI GenBank under accession numbers MK044558 to MK044571. The mNGS reads with
human sequences removed have been submitted to the NCBI Sequence Read Archive (BioProject
accession number PRJNA557303).

RESULTS
Clinical and epidemiological analysis. From 13 August to 8 September 2014, 37 of

70 patients with suspected EVD were documented as either confirmed (n � 22) or
probable (n � 15) EVD cases, of which 5 were male and 32 were female with an average
age of 35.4 (� 16.1) years. Overall, 38 of 70 patients who presented during the outbreak
died. Excluding the established non-EVD cases with negative EBOV qRT-PCRDRC testing
(n � 7, all survivors), this yielded an outbreak case fatality rate of 60.3% (38 of 63
confirmed, probable, or indeterminate EVD cases). Among the 37 cases defined as
confirmed or probable EVD, 23 patients died, yielding a comparable fatality rate of
62.2% (23 of 37) when adjusted for EBOV-attributable cases. These 23 patients included
3 who were males and 20 who were female, including a child �1 year of age.

Among the 37 confirmed or probable EVD patients, reported clinical data were
available for 35; 91.4% had fever, 34.3% headache, 68.6% diarrhea or vomiting, 37.1%
abdominal pain, 48.6% fatigue, 37.1% myalgia, and 37.1% with at least one bleeding
manifestation (see Table S3 in the supplemental material). EVD patients (n � 35) were
more likely than non-EVD patients (n � 7) to present with symptoms of fatigue (P �

0.03) and to die from their acute illness (P � 0.001) (Table 1). No significant differences
in clinical characteristics were found when comparing EBOV-malaria coinfected to EBOV
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singly infected cases (see Table S4). The majority of the 37 total probable and confirmed
EVD cases were reported in local clinics from Lokolia (24 cases) or Watsi Kengo (6 cases).
Four cases were from Boende town, and the remaining 3 cases were from other areas
in the district.

Metagenomic next-generation sequencing of EBOV samples. Among the 70
patients in the study, 31 were initially tested for EBOV in the Democratic Republic of the
Congo by qRT-PCRDRC testing from whole-blood samples, of which 20 (64.5%) were
positive (Table 2). RNA extracts from all 70 patients were then shipped to the United
States at room temperature in a Biomatrica RNAstable matrix for mNGS testing, but
were not fully dried prior to shipment as recommended by the manufacturer. Partial
RNA degradation occurred during shipment to the United States, as analysis of RNA
integrity numbers (RIN) for 8 of 12 available sample extracts, selected due to discrepant
qRT-PCR results between DRC and U.S. assays (i.e., 12 EBOV qRT-PCRDRC-positive/qRT-
PCRUS-negative samples), revealed evidence of RNA degradation in all 8 (100%) (see
Table S5). Thus, EBOV qRT-PCRUS of the shipped RNA extracts yielded positive results for
only 7 of 20 (35.0%) previously positive samples but also identified an additional 14
positive samples that had either tested negative (n � 3) or not been tested (n � 11) in
the Democratic Republic of the Congo. In total, 34 samples (48.6%) were EBOV positive
by qRT-PCRDRC and/or qRT-PCRUS testing, but only 21 samples were positive by
qRT-PCRUS testing alone.

We attempted to confirm the qRT-PCRUS results (21 of 70 positive) with a series of
follow-up RT-PCRs and Sanger sequencing of amplicons of the expected size visualized
by gel electrophoresis (see Fig. S2A). First, 56 available samples out of 70 were
independently screened for EBOV positivity using a de novo designed primer set
directed against the glycoprotein gene (EBOV-GP-1F/EBOV-GP-1R). Five samples tested
positive and were confirmed as EBOV by Sanger sequencing, all 5 of which had
previously tested qRT-PCRUS positive. Among the 16 remaining positive qRT-PCRUS

samples, 11 had a sufficient amount of RNA remaining for repeat RT-PCR testing using
the primers designed by Trombley, et al. (9); 10 of the 11 were tested by repeat RT-PCR,
of which an additional 6 samples were found to be positive and confirmed as EBOV by

TABLE 1 Cases of Ebola virus disease (probable or confirmed) according to reported signs and symptoms

Symptom

No. (%) of patientsa P valueb

Non-EVD cases
(n � 7)

Probable EVD
cases (n � 13)

Confirmed EVD
cases (n � 22)

Probable vs.
non-EVD

Confirmed vs.
non-EVD

Confirmed/probable
vs. non-EVD

Fever 6 (86) 12 (92) 20 (91) 0.48 0.44 0.41
Headache 0 (0) 4 (31) 8 (36) 0.15 0.07 0.08
Diarrhea 2 (29) 11 (85) 13 (59) 0.02 0.13 0.05
Abdominal pain 0 (0) 5 (39) 8 (36) 0.08 0.07 0.06
Vomiting 2 (29) 11 (85) 12 (55) 0.02 0.18 0.07
Fatigue 0 (0) 8 (62) 9 (41) 0.01 0.05 0.02
Anorexia 0 (0) 6 (46) 4 (18) 0.04 0.31 0.12
Muscle pain 0 (0) 5 (39) 8 (36) 0.08 0.07 0.08
Dysphagia 0 (0) 5 (39) 5 (23) 0.08 0.22 0.12
Dyspnea 0 (0) 1 (8) 4 (18) 0.65 0.31 0.38
Cough 0 (0) 0 (0) 2 (9) 1.00 0.57 0.69
Skin rash 0 (0) 0 (0) 2 (9) 1.00 0.57 0.69
Bleeding from injection site 0 (0) 0 (0) 2 (9) 1.00 0.57 0.69
Gingival bleeding 0 (0) 0 (0) 2 (9) 1.00 0.57 0.69
Conjunctival bleeding 0 (0) 1 (8) 2 (9) 0.65 0.57 0.57
Melena 0 (0) 5 (39) 5 (23) 0.08 0.22 0.12
Hematemesis 0 (0) 2 (15) 4 (18) 0.41 0.31 0.31
Epistaxis 0 (0) 1 (8) 3 (14) 0.65 0.42 0.47
Vaginal bleeding 0 (0) 0 (0) 2 (9) 1.00 0.57 0.69
Other types of bleeding 0 (0) 0 (0) 2 (9) 1.00 0.57 0.69
Deceased 0 (0) 8 (62) 15 (68) 0.01 2.20E�03 1.87E�03
aFrom the 70 patients in the study, 65 had clinical information to perform statistical testing.
bP values using Fisher’s exact test were calculated using patients with probable or confirmed EVD cases compared to negative EVD patients. Significant symptom
severity measured at a P value of �0.05 is marked in boldface font.

mNGS of the 2014 DRC Ebola Virus Outbreak Journal of Clinical Microbiology

September 2019 Volume 57 Issue 9 e00827-19 jcm.asm.org 5

https://jcm.asm.org


TA
B

LE
2

RT
-P

C
R

re
su

lt
s,

m
N

G
S

re
ad

s,
an

d
vi

ra
l

ge
no

m
e

al
ig

nm
en

t
co

ve
ra

ge
fr

om
EB

O
V

te
st

in
g

fo
r

70
p

at
ie

nt
sa

m
p

le
s

fr
om

th
e

ou
tb

re
ak

Sa
m

p
le

m
N

G
S

m
N

G
S

w
it

h
p

ro
b

e
en

ri
ch

m
en

t
PC

R
re

su
lt

s

m
N

G
S

re
su

lt
fo

r
ZE

B
O

V
b

Fi
n

al
cl

as
si

fic
at

io
n

c
C

lin
ic

al
ou

tc
om

e
To

ta
l

n
o.

of
re

ad
s

N
o.

of
re

ad
s

to
ZE

B
O

V
%

co
ve

ra
g

e
to

ZE
B

O
V

To
ta

l
#

of
re

ad
s

N
o.

of
re

ad
s

to
ZE

B
O

V
Fo

ld
en

ri
ch

m
en

t
%

co
ve

ra
g

e
to

ZE
B

O
V

%
in

cr
ea

se
in

co
ve

ra
g

e
q

RT
-P

C
R

(D
RC

)
q

RT
-P

C
R

(U
S)

C
on

fir
m

at
or

y
RT

-P
C

R
(U

S)
C

T
a

C
al

cu
la

te
d

vi
ra

l
lo

ad

BO
E_

00
7

13
,5

30
,5

34
10

4.
2

14
9,

26
1

1,
45

9
14

6
51

.3
47

.1
�

�
�

36
.2

6.
25

E�
04

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
01

1
21

,0
29

,4
50

18
4,

92
5

99
.8

N
Td

�
�

26
.4

3.
31

E�
07

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
01

3
13

,2
17

,4
28

2,
05

8
52

.2
8,

90
6,

94
5

30
2,

81
6

14
7

84
.4

32
.2

�
�

�
33

.3
4.

00
E�

05
�

C
on

fir
m

ed
EV

D
A

liv
e

BO
E_

01
5

14
,0

40
,1

76
53

0
11

.5
31

4,
03

3
11

4,
99

0
21

7
62

.4
50

.9
N

T
�

–
34

2.
55

E�
05

�
C

on
fir

m
ed

EV
D

A
liv

e
BO

E_
01

6
11

,6
44

,6
02

5
1.

4
87

,3
98

86
0

17
2

40
.6

39
.3

�
–

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
01

7
19

,5
19

,0
18

4,
18

1
54

.2
26

2,
01

1
20

7,
16

8
50

76
.2

22
.0

N
T

�
–

32
9.

18
E�

05
�

C
on

fir
m

ed
EV

D
D

ec
ea

se
d

BO
E_

02
1

14
,3

05
,2

56
2

1.
1

49
,8

14
1,

29
8

64
9

49
.7

48
.7

N
T

�
–

36
.3

5.
86

E�
04

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
02

3
22

,0
32

,4
48

14
,0

57
10

0.
0

N
T

�
�

25
.3

6.
69

E�
07

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
03

4
8,

53
7,

19
2

2
0.

6
20

,5
73

1,
57

4
78

7
49

.8
49

.2
�

�
–

38
1.

97
E�

04
�

C
on

fir
m

ed
EV

D
A

liv
e

BO
E_

03
5

13
,8

74
,4

16
1

0.
4

20
3,

97
6

97
97

17
.2

16
.8

�
–

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
03

6
18

,9
21

,7
52

28
6,

72
3

10
0.

0
N

T
�

�
23

.4
2.

26
E�

08
�

C
on

fir
m

ed
EV

D
D

ec
ea

se
d

BO
E_

03
7

9,
99

2,
37

8
1

0.
4

97
,2

27
52

52
10

.7
10

.3
N

T
�

�
35

.7
8.

60
E�

04
�

C
on

fir
m

ed
EV

D
D

ec
ea

se
d

BO
E_

03
9

9,
19

0,
33

8
1

0.
4

10
7,

13
3

85
85

18
.3

17
.9

�
�

N
T

36
.2

6.
25

E�
04

�
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
04

5
16

,3
21

,8
90

0
�

–
–

C
on

fir
m

ed
EV

D
D

ec
ea

se
d

BO
E_

04
6

13
,6

83
,2

44
0

�
–

–
C

on
fir

m
ed

EV
D

D
ec

ea
se

d
BO

E_
06

3
17

,4
69

,2
66

0
�

�
N

T
35

.1
1.

26
E�

05
–

C
on

fir
m

ed
EV

D
A

liv
e

BO
E_

06
4

15
,3

68
,2

02
1

0.
4

10
0,

42
0

80
16

.1
15

.7
–

�
N

T
40

.9
3.

08
E�

03
�

C
on

fir
m

ed
EV

D
A

liv
e

BO
E_

06
5

19
,3

20
,1

18
20

7.
7

14
0,

15
5

2,
68

5
27

.6
19

.9
–

�
�

29
.1

5.
88

E�
06

�
C

on
fir

m
ed

EV
D

A
liv

e
BO

E_
06

9
26

,9
24

,5
16

85
5

5.
6

80
,7

60
29

,1
74

12
.2

6.
6

�
�

�
33

.6
3.

30
E�

05
�

C
on

fir
m

ed
EV

D
D

ec
ea

se
d

BO
E_

07
0

19
,7

49
,8

30
73

,1
47

95
.5

1,
49

4,
38

4
1,

46
6,

17
4

97
.9

2.
4

�
�

�
24

.4
1.

19
E�

08
�

C
on

fir
m

ed
EV

D
D

ec
ea

se
d

BO
E_

07
8

26
,9

36
,9

26
1

0.
4

5,
81

7
86

3
63

.4
63

.0
–

�
�

36
.5

5.
15

E�
04

�
C

on
fir

m
ed

EV
D

A
liv

e
BO

E_
08

4
18

,7
60

,9
62

41
9

39
.1

35
,5

36
9,

80
5

84
.3

45
.2

N
T

�
�

27
.6

1.
53

E�
07

�
C

on
fir

m
ed

EV
D

U
nk

no
w

n
BO

E_
00

6
13

,8
61

,4
66

0
�

–
–

Pr
ob

ab
le

EV
D

A
liv

e
BO

E_
01

2
17

,1
21

,1
18

0
�

–
–

Pr
ob

ab
le

EV
D

A
liv

e
BO

E_
02

0
13

,1
28

,1
06

0
�

–
–

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
03

0
17

,9
42

,0
78

0
N

T
�

N
T

38
.1

1.
85

E�
04

–
Pr

ob
ab

le
EV

D
D

ec
ea

se
d

BO
E_

03
3

16
,1

94
,7

94
0

�
–

–
Pr

ob
ab

le
EV

D
A

liv
e

BO
E_

04
8

18
,7

87
,6

56
5

1.
2

68
,4

49
21

1
42

19
.5

18
.3

N
T

–
�

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
05

3
12

,2
28

,4
68

0
N

T
�

N
T

35
.4

1.
04

E�
05

–
Pr

ob
ab

le
EV

D
A

liv
e

BO
E_

05
5

19
,5

28
,9

04
0

N
T

�
N

T
34

.8
1.

53
E�

05
–

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
06

0
19

,2
74

,4
40

0
�

–
–

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
06

1
17

,8
77

,3
56

0
�

–
–

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
06

2
18

,4
06

,9
40

0
�

–
–

Pr
ob

ab
le

EV
D

A
liv

e
BO

E_
06

7
20

,9
92

,3
54

0
�

–
–

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
06

8
18

,6
85

,6
02

0
�

–
–

Pr
ob

ab
le

EV
D

D
ec

ea
se

d
BO

E_
07

3
20

,3
08

,5
34

1
0.

4
34

,8
80

2,
04

4
72

.8
72

.4
N

T
–

�
Pr

ob
ab

le
EV

D
U

nk
no

w
n

BO
E_

07
9

24
,9

25
,1

48
1

0.
4

11
,0

30
2,

67
4

75
.3

74
.9

–
–

�
Pr

ob
ab

le
EV

D
D

ec
ea

se
d

BO
E_

00
1

22
,5

33
,0

96
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

00
5

24
,9

18
,4

44
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

00
8

21
,7

23
,6

30
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

00
9

18
,8

07
,2

90
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

01
0

15
,5

23
,4

96
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

01
4

24
,1

53
,0

28
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

02
6

30
,8

14
,9

80
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

02
7

24
,4

90
,5

00
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

02
9

15
,5

45
,6

30
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

03
8

13
,5

75
,7

40
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

04
0

10
,0

43
,5

88
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

04
1

14
,1

52
,3

64
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

04
2

14
,5

62
,2

48
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

04
3

14
,9

59
,3

30
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

04
4

21
,8

93
,5

86
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

(C
on

tin
ue

d
on

ne
xt

p
ag

e)

Li et al. Journal of Clinical Microbiology

September 2019 Volume 57 Issue 9 e00827-19 jcm.asm.org 6

https://jcm.asm.org


TA
B

LE
2

(C
on

tin
ue

d)

Sa
m

p
le

m
N

G
S

m
N

G
S

w
it

h
p

ro
b

e
en

ri
ch

m
en

t
PC

R
re

su
lt

s

m
N

G
S

re
su

lt
fo

r
ZE

B
O

V
b

Fi
n

al
cl

as
si

fic
at

io
n

c
C

lin
ic

al
ou

tc
om

e
To

ta
l

n
o.

of
re

ad
s

N
o.

of
re

ad
s

to
ZE

B
O

V
%

co
ve

ra
g

e
to

ZE
B

O
V

To
ta

l
#

of
re

ad
s

N
o.

of
re

ad
s

to
ZE

B
O

V
Fo

ld
en

ri
ch

m
en

t
%

co
ve

ra
g

e
to

ZE
B

O
V

%
in

cr
ea

se
in

co
ve

ra
g

e
q

RT
-P

C
R

(D
RC

)
q

RT
-P

C
R

(U
S)

C
on

fir
m

at
or

y
RT

-P
C

R
(U

S)
C

T
a

C
al

cu
la

te
d

vi
ra

l
lo

ad

BO
E_

04
9

15
,6

98
,6

64
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

05
0

19
,8

56
,2

36
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

05
1

19
,5

60
,6

68
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

05
2

13
,6

83
,9

24
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

05
4

5,
55

1,
49

4
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

05
6

16
,0

11
,8

50
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

05
7

18
,3

24
,5

16
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
A

liv
e

BO
E_

05
8

17
,4

18
,2

64
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
D

ec
ea

se
d

BO
E_

05
9

18
,7

28
,8

30
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
U

nk
no

w
n

BO
E_

08
6

18
,8

49
,3

66
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
U

nk
no

w
n

BO
E_

08
7

18
,1

83
,4

44
0

N
T

–
–

In
de

te
rm

in
at

e
EV

D
U

nk
no

w
n

BO
E_

02
2

17
,2

45
,4

20
0

–
–

–
N

on
-E

VD
A

liv
e

BO
E_

02
8

20
,6

92
,6

50
0

–
–

–
N

on
-E

VD
A

liv
e

BO
E_

06
6

15
,4

92
,2

74
0

–
–

–
N

on
-E

VD
A

liv
e

BO
E_

07
4

18
,1

21
,6

52
0

–
–

–
N

on
-E

VD
A

liv
e

BO
E_

07
5

6,
75

6,
32

8
0

–
–

–
N

on
-E

VD
A

liv
e

BO
E_

07
6

11
,6

15
,7

28
0

–
–

–
N

on
-E

VD
A

liv
e

BO
E_

07
7

15
,5

69
,0

22
0

–
–

–
N

on
-E

VD
A

liv
e

a
C T

,c
yc

le
th

re
sh

ol
d.

b
ZE

BO
V,

Za
ire

Eb
ol

a
vi

ru
s.

c C
as

es
w

er
e

cl
as

si
fie

d
as

“c
on

fir
m

ed
EV

D
”

if
p

os
iti

ve
b

y
at

le
as

t
2

of
th

e
3

fo
llo

w
in

g
m

ol
ec

ul
ar

te
st

s:
m

N
G

S,
qR

T-
PC

R D
R

C
,a

nd
qR

T-
PC

R U
S
;“

p
ro

b
ab

le
EV

D
”

if
p

os
iti

ve
b

y
1

of
th

e
3

te
st

s;
“n

on
-E

VD
”

if
ne

ga
tiv

e
b

y
al

l
3

te
st

s
(a

nd
qR

T-
PC

R D
R

C
te

st
in

g
ha

d
b

ee
n

p
er

fo
rm

ed
);

or
“i

nd
et

er
m

in
at

e
EV

D
”

ot
he

rw
is

e.
d
N

T,
no

t
te

st
ed

.

mNGS of the 2014 DRC Ebola Virus Outbreak Journal of Clinical Microbiology

September 2019 Volume 57 Issue 9 e00827-19 jcm.asm.org 7

https://jcm.asm.org


Sanger sequencing (Fig. S2B). Finally, we tested the available remaining RNA from 3
low-titer samples also with only 1 or 2 mNGS reads (BOE_021, BOE_034, and BOE_037)
using nested PCR with primers designed from these few mNGS reads (Fig. S2C). Among
these 3 samples, we recovered one additional positive (BOE_037), subsequently con-
firmed as EBOV by Sanger sequencing. In summary, from 16 of 21 initial qRT-PCRUS

samples with sufficient RNA remaining, we confirmed 12 of the 16 as positive for EBOV
by repeat RT-PCR and Sanger sequencing.

An average of 17,267,003 (�4,727,295 standard deviation [SD]) raw mNGS reads
were generated per whole-blood sample, with at least one EBOV read identified in 22
of 70 samples (31.4%) (Table 2). Although the RNA was degraded, we only kept
preprocessed reads with an average quality score of 30 or higher for the downstream
pathogen identification and viral genome assembly steps. The number of recovered
EBOV reads per sample was on average 8,099 (�41,246 SD), with a range of 1 to
286,723. The proportions of qRT-PCRUS-positive and mNGS-positive samples following
partial RNA degradation during shipment were similar overall (21 of 70 [30.0%] versus
22 of 70 [31.4%], respectively), with a concordance of 87.1%. To enhance viral genome
recovery, subsequent enrichment using EBOV-specific probes was performed on 19 of
the 22 (86.4%) samples containing EBOV reads that had yielded incomplete (�99%)
viral genome coverage; the remaining 3 EBOV samples had 	99% coverage from mNGS
alone and so did not need additional enrichment. On average, probe enrichment
increased EBOV coverage by 34.3%, yielding an additional 11 EBOV genomes, 6 with
coverage of �50%.

Reads corresponding to P. falciparum were detected in 21 of 70 patient samples
(30.0%), with an average of 4,548 (�29,980 SD) and range of 1 to 248,696 reads per
sample (see Table S6 and Fig. S3). Additional viral reads detected in the mNGS data
corresponded to human pegivirus 1 (HPgV1) (n � 10, 14.3%), hepatitis B virus (HBV)
(n � 2, 2.9%), and Epstein-Barr virus (EBV) (n � 9, 12.9%), In total, 15 of 37 (40.5%)
patients with confirmed or probable EBOV infection had additional reads from infec-
tious agents, of which 9 of 37 (24.3%) were coinfections with P. falciparum.

One EBOV qRT-PCRUS-negative sample had identifiable mNGS reads for Orungo
virus, a rarely reported orbivirus in the Reoviridae family (Table S6 and Fig. S4).
Confirmatory PCR and Sanger sequencing of the resulting amplicon confirmed the
presence of Orungo virus in the patient sample. Although qRT-PCRUS negative, EBOV
reads were detected in the Orungo virus sample by mNGS.

Genome assembly and phylogenetic analysis of EBOV. We aligned the concat-
enated coding genome sequences of the 14 newly assembled whole and partial EBOV
genome sequences generated in this study with 71 publicly available EBOV genomes,
including 5 previously published sequences from the 2014 outbreak and a curated set
of 36 representative sequences from the 2013 to 2016 West Africa epidemic. The
maximum likelihood phylogeny consisted of many well-supported nodes and exhibited
a general topology that agreed with previous studies (see Fig. S5) (19, 20). All of the
2014 Boende outbreak sequences formed a monophyletic clade that was most closely
related to EBOV strains isolated in Gabon and the Democratic Republic of the Congo in
1994 to 1996 with branch bootstrap supports of 100% (Fig. S5).

A regression analysis of genetic divergence versus sequence sampling dates re-
vealed that the branch immediately ancestral to the 2014 DRC sequences was shorter
than expected, with genetic distances from the root comparable to those of viruses
sampled in the 1990s. Consequently, the 2014 Boende EBOV sequences fell below the
regression line (Fig. 1), implying a markedly lower rate of molecular evolution on the
branch leading to the 2014 outbreak. The estimated molecular clock tree (Fig. 1) was
also well supported and exhibited a tree topology similar to that of the ML phylogeny
(Fig. S5) and previous studies (19, 20). The estimated mean rate of molecular evolution
across all branches in the phylogeny was 4.7 � 10�4 substitutions per nucleotide site
per year (95% highest posterior density [HPD] interval � 3.4 � 10�4 to 5.7 � 10�4). The
evolutionary rate estimated for the long branch leading to the 2014 Boende outbreak
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was approximately four times lower (at 1 � 10�4 substitutions/site/year, 95% HPD
interval � 8 � 10�5 to 1.6 � 10�4) than the mean branch rate. In contrast, the
evolutionary rate estimated for the long branch ancestral to the 2013 to 2016 West
Africa epidemic was 1 � 10�3 substitutions/site/year (95% HPD interval � 5.6 � 10�4

to 1.4 � 10�3). These estimated branch rates most likely represent EBOV evolution in
one or more animal reservoir species and are distinct from the evolutionary rates
estimated for individual lineages in human outbreaks (see reference 19 for more
detailed discussion of this issue). Unlike the West Africa epidemic, which was unusually
long lived, it was not possible to reliably estimate an evolutionary rate specific to the
2014 Boende outbreak because of the limited timescale over which samples were
obtained.

DISCUSSION

A metagenomic sequencing approach is attractive for outbreak surveillance, given
that all infectious pathogens are simultaneously detected on the basis of uniquely
identifying RNA and/or DNA sequences. Previous studies using multiple different
sequencing platforms have shown the ability to detect EBOV reads from whole-blood
or plasma samples by mNGS (6, 21, 22). Here, we demonstrate that mNGS analyses of
field-collected samples can be used to (i) recover 9 genomes from the 2014 Boende
outbreak exceeding 50% coverage (the minimum threshold proposed as the standard
for a sequenced draft viral genome [23]), (ii) detect EBOV with high sequencing depth
(17.3 � 4.7 SD million reads) with comparable sensitivity to PCR, and (iii) identify
coinfections from both well-recognized (P. falciparum) and novel/uncommon (e.g.,
Orungo virus) pathogens. Our results also indicate that useful sequencing data can still
be extracted from RNA samples collected in the field, despite partial degradation from
inadequate handling, storage, and/or loss of cold chain (24).

The overall topology of the EBOV phylogeny and relative placement of the 2014
Boende lineage characterized here is consistent with prior reports (6, 19, 20). Analysis
of a larger data set consisting of 9 viral genomes strengthens a previously described
finding (based on 4 genomes [20]) of a markedly lower evolutionary rate for the 2014
Boende strain, or more precisely, for the phylogenetic branch immediately basal to the
2014 outbreak clade. Here, we used a relaxed molecular clock approach to quantify this
rate and found it to be on average 
5 to 
10 times lower than the rate estimated for
other long internal branches in the EBOV phylogeny, such as those immediately
ancestral to the 2013 to 2016 West Africa, 2007 to 2008 DRC, and 2001 to 2005 Gabon
outbreak clades (Fig. 1). Thus, the lineage that gave rise to the 2014 Boende outbreak
appears to exhibit different molecular evolutionary dynamics than other EBOV lineages.
Little is known about the maintenance of Ebola viruses in nonhuman reservoir species,
although a novel Ebola virus was recently discovered in a fruit bat (25). It is possible that
Ebola virus circulation among one or more animal reservoir species will result in long
viral generation times or altered selective pressures compared to those for direct
transmission among humans. An alternative hypothesis is that the 2014 Boende strain
has an intrinsically lower rate of spontaneous mutation (20). Current molecular se-
quence data alone cannot discriminate between these two nonmutually exclusive
hypotheses; thus, further comparative experimental studies of these EBOV strains in
vitro are likely required.

Following shipment to the United States, similar numbers of samples were found to
be EBOV positive by qRT-PCRUS (21 of 70 [30.0%]) and mNGS (22 of 70 [31.4%]), with
high (87.1%) concordance. We were able to confirm 11 of the 15 qRT-PCRUS-positive
samples with remaining RNA available for repeat RT-PCR and Sanger sequencing. The
remaining 4 were not positive on confirmatory RT-PCR testing, likely due to sample
degradation from multiple rounds of aliquoting and freeze-thaw cycles. The compara-
ble sensitivity of mNGS relative to single-target PCR at relatively high sequencing
depths (an average of 17.3 � 4.7 SD million reads for the present study) was demon-
strated previously (26–28), albeit not with field-collected partially degraded samples. In
addition, among the 63 cases examined with suspected Ebola hemorrhagic fever, 26
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were negative by both mNGS and PCR testing in the United States (and had not been
tested on site in the Democratic Republic of the Congo) and were thus classified as
“indeterminate EVD” (Table 2). The failure to detect EBOV in these patients is most likely
due to sample degradation during shipment to the United States, although low EBOV
copy number remains another possible explanation.

Using mNGS, multiple infectious agents other than Ebola were detected in patient
samples with suspected viral hemorrhagic fever. Among the infectious agents detected,
only P. falciparum infection (malaria) is an established cause of hemorrhagic fever with
symptoms that can overlap those of EVD. In total, 15 coinfections and 9 standalone
infections with P. falciparum out of 70 with suspected EVD were identified. Previous
studies of the impact of coinfection with EBOV and P. falciparum have been conflicting.
In one study, the concurrent presence of malaria in EVD patients had a higher mortality
rate than standalone infections by either malaria or EBOV (29). This contrasts with
findings from another study in which EVD patients with the highest levels of P.
falciparum parasitemia had the highest survival rate. In this study, we observed no
significant differences in disease severity or mortality rates between malaria/EVD
coinfected and singly infected EVD patients. There may have been insufficient statistical
power to detect an association given the relatively small sample size of the 2014
Boende cohort compared to the West Africa epidemic cohorts studied in the afore-
mentioned reports. Alternatively, the patients in the study may have been treated
recently or concurrently for malaria, although these data were not available. The
detection of other coinfections from HBV (30), EBV (31), and HPgV1 (32) is likely
incidental to the acute illness in the 70 EVD-suspected cases in our cohort.

Orungo virus is a mosquito-borne arbovirus that is known to infect humans, as
antibodies to the virus have been reported in human samples (33). Isolated case reports
of acute febrile illness and neurological disease (34), but not hemorrhagic fever, were
also previously described in association with Orungo virus infection. In the present
study, the whole-blood sample positive for Orungo virus was collected from a patient
presenting with an acute febrile illness who subsequently died from massive hemor-
rhage and dehydration. The Orungo virus sample was negative for EVD by initial RT-PCR
screening done in the Democratic Republic of the Congo and the United States;
however, probe-enriched mNGS testing yielded positive results for EBOV. Unfortu-
nately, as samples were collected primarily for diagnostic purposes, repeat blood
samples, including for the patient with Orungo virus infection, were not available. We
believe that mNGS cross-contamination is unlikely to explain these discrepant results,
as 	75% of the viral genome was ultimately recovered by probe enrichment and
phylogenetic analysis positioned the EBOV strain on a unique branch. This suggests
that EVD may indeed be the proximate cause of the patient’s death, although we
cannot rule out an additive effect from concurrent Orungo virus infection.

In summary, mNGS testing for investigating viral outbreaks such as EBOV casts a
broad net for detection of potential pathogens and thus may be particularly useful
given that a large proportion of suspected patients during a viral outbreak may in fact
be infected with a different pathogen. Even at the height of the West Africa epidemic
(October 2014 to March 2015), 23% of patients in Liberia were diagnosed with
laboratory-confirmed Plasmodium infection (malaria) alone and not EVD, similar to the
percentage of patients with documented PCR-positive EBOV infection (24.5%) (35).
Identification of infections other than EBOV and/or coinfections using mNGS can
facilitate more timely differential diagnosis and early triaging of patients in an outbreak
setting. Indeed, findings suggest that EBOV in West Africa negatively affected the
treatment of malaria cases as a result of reduced health care capacity (36), likely
increasing the morbidity caused by the 2014 to 2016 epidemic. The utility of mNGS
analyses in the field may likely lie in early investigation of unknown outbreaks, in which
only a few cases may need to be examined in order to identify the etiologic agent.
Genome recovery of the outbreak virus facilitates tracking of evolution and spread, as
demonstrated here and in other studies (37, 38). Our results suggest that mNGS can
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serve as a front-line surveillance tool for informing clinical and public health responses
to disease outbreaks such as that caused by the 2014 Boende EBOV strain.
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