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of human gut eMGEs, particularly plasmids.

Background: Elucidating the ecological and biological identity of extrachromosomal mobile genetic elements
(eMGEs), such as plasmids and bacteriophages, in the human gut remains challenging due to their high complexity

Results: Here, we show efficient identification of eMGEs as complete circular or linear contigs from PacBio long-read
metagenomic data. De novo assembly of PacBio long reads from 12 faecal samples generated 82 eMGE contigs
(2.5~666.7-kb), which were classified as 71 plasmids and 11 bacteriophages, including 58 novel plasmids and six
bacteriophages, and complete genomes of five diverse crAssphages with terminal direct repeats. In a dataset of 413
gut metagenomes from five countries, many of the identified plasmids were highly abundant and prevalent. The ratio
of gut plasmids by our plasmid data is more than twice that in the public database. Plasmids outnumbered bacterial
chromosomes three to one on average in this metagenomic dataset. Host prediction suggested that Bacteroidetes-
associated plasmids predominated, regardless of microbial abundance. The analysis found several plasmid-enriched
functions, such as inorganic ion transport, while antibiotic resistance genes were harboured mostly in low-abundance

Conclusions: Overall, long-read metagenomics provided an efficient approach for unravelling the complete structure

Background

Culture-independent metagenomics has provided a
powerful approach to comprehensively explore microbial
species and genes, which underlie an understanding of the
ecological and biological features of the human gut micro-
biome [1-4]. The metagenomes of microbial communities
mainly comprise bacterial chromosomes and the associ-
ated extrachromosomal mobile genetic elements (eMGEs),
such as plasmids and bacteriophages (phages). These
eMGEs play important roles in microbial evolution,
adaptation of the community to environmental changes,
and interaction with hosts by conferring a variety of
accessory functions on the community [5-8]. For the
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analysis of plasmid communities (plasmidome), several
specific procedures have been developed, including en-
richment of closed circular plasmids by selective DNase
treatment and CsCl-gradient ultracentrifugation from
samples containing large amounts of linearized chromo-
somal DNAs [9, 10]. For the bacteriophage community
(phageome or virome), a crucial step is the enrichment of
viral particles (VLPs) from samples containing vast num-
bers of microbial cells. VLP preparation requires several
laborious techniques, such as stepwise filtration with dif-
ferent pore sizes and centrifugation under adjusted gravity
conditions [11-17]. However, these practices have not
been well evaluated with respect to the quality and quan-
tity of output data regarding the whole community
structure.

It is also challenging to perform metagenomic se-
quencing of eMGE-enriched samples with short-read
sequencers (Ilumina and Ion Torrent) that can
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produce reads of only <500bp. For example, de novo
assembly of short reads generates notably short linear
contigs [3, 4], possibly due to existing homologous
sequences among eMGEs and between eMGEs and
chromosomes in a community. Such insufficient
assembly makes it difficult to reconstruct full eMGEs
as circular contigs (CCs), a structural hallmark of
eMGEs excepting rare linear plasmids from metage-
nomic data, though there have been informatics tools
that further connect the contigs to generate large bins
[3, 18]. Therefore, most metagenomic studies based
on short reads have analysed the whole community
structure with little emphasis on separating microbial
chromosomes and eMGEs [19, 20].

In contrast, long-read sequencers (Pacific Biosciences
and Oxford Nanopore Technology) can produce long
reads of ~ 10 kb or more. De novo assembly of long reads
facilitates the generation of longer contigs and bins than
those of short-read assembly by distinguishing among
homologous sequences [21-26]. In addition, PacBio long-
read metagenomics can also provide links between de-
tected plasmids and their hosts using DNA methylation
information [27]. However, to date, there have been no in-
tensive long-read metagenomic studies of eMGEs [19, 20],
indicating that human gut eMGEs remain to be explored.
Therefore, we performed long-read metagenomics of
whole faecal DNA samples to efficiently recover eMGEs
as complete CCs from the assembled contigs and evalu-
ated the diversity in human gut plasmids in this study.

Results

Metagenomic sequencing of human faecal samples with
the PacBio SMRT system

We sequenced 13 faecal DNA samples from 12 healthy
Japanese adults, including one biological duplicate
(ES1-2 and ES9-1). A total of ~11 Gb per sample with
an average subread length of 8 kb was obtained from 10
individuals (excluding two subjects with poor subread
lengths) with the PacBio RS II system. We also gener-
ated short reads from six of the 12 subjects with three
short-read sequencers (Illumina, 454 and Ion PGM)
and obtained them from a previous publication for the
other six subjects [20]. The sequencing statistics are
summarised in Additional file 2: Table S1.

We, therefore, conducted de novo assembly of the PacBio
and short reads by using FALCON and MEGAHIT as as-
semblers, respectively (see the “Methods” section). We
compared the two assembly outcomes from the data of
three samples (apr34, apr38, and FAKOO02) with similar se-
quence amounts in PacBio and short-read sequencing. The
comparison revealed that PacBio reads boosted assembly
statistics, with an N50 contig length reaching ~ 202 kb,
while those of the short reads were ~ 4 kb (Fig. 1a). The re-
sults of the long-read assemblies showed that the N50
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contig length ranged from 24.6 to 279.2 kb for all the sam-
ples (Additional file 2: Table S2). We then evaluated the
accuracy of the PacBio contigs based on the sequence simi-
larity between PacBio and the corresponding short-read
contigs of the same samples. The results revealed that
PacBio contigs with 5, 10, 20, and =40 read depths were
aligned with short-read contigs with 99.4, 99.7, 99.8, and >
99.9% identities, respectively (Fig. 1b). Assuming the accur-
acy of the aligned short-read contigs to be sufficiently high,
the accuracy of PacBio contigs with read depths > 5 could
be estimated to be >99.4%, accounting for ~99.8% of the
total contig length (Additional file 2: Table S3).

Microbial and gene composition in PacBio metagenomic
data

We compared the microbial abundance estimated
from the PacBio and MiSeq reads. Taxonomic as-
signment of PacBio data was performed by similarity
search of genes predicted in PacBio contigs for the
reference genomes, followed by counting the number
of PacBio reads mapped to the genes to quantify
their abundance (see the “Methods” section), while
that of the MiSeq data was performed by direct
mapping to the reference genomes as described
previously [20]. The estimated microbial abundances
between the two data points in each subject were
significantly similar at the genus level, with a median
Pearson’s correlation coefficient of ~0.99, which was
significantly higher than that among the 12 individ-
uals (Fig. 1c, d).

The mean gene length in the PacBio contigs was 847 bp,
longer than the 662 bp in the short-read contigs and closer
to the 957 bp of mostly full-length genes in the reference
genomes (Additional file 1: Figure Sla). In addition, an
average of 27.6 genes was identified per PacBio contig,
which was ~ 10 times more than the 2.4 per short-read
contig on average (Additional file 1: Figure S1b).

Circular contig generation from PacBio read assembly

In the assembly, we set the minimum overlap length be-
tween two subreads to 2200 bp (see the “Methods” section),
though circular contigs (CCs) smaller than the cutoff (2.2
kb) cannot be identified by this method. The assembly gen-
erated a total of 82 CCs ranging from 2.8- to 666.7-kb in
length (Additional file 2: Table S4). To test whether these
CCs were eMGEs, we classified them as plasmids and
phages using several classification assessments, such as
searching phage orthologous groups (POGs, Add-
itional file 1: Figure S2) [28], VirSorter [29], and PlasFlow
[30], checking the presence or absence of known plasmid-
enriched genes, such as mobilisation- and conjugation-
related genes, and a similarity search of the public database.
Because the POG and VirSorter assessments classified 11
CCs (302 to 989kb in size) as phages with high
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Fig. 1 Statistics of metagenomic sequencing of 13 faecal samples with the PacBio SMRT system and short-read sequencers. a To show the length
distribution of the contigs of long and short reads, we selected three samples (apr34, apr38, and FAKOO02) that had similar sequence amounts in
both PacBio long-read and short-read sequencing (see the “Results” section). The y-axis shows the Nxx contig length, an indicator of measuring
the quality of genome assembly such that xx% of all bases in the assembled contigs of the three selected samples are found in contigs of the
Nxx contig length or more, while the x-axis shows the value of xx, which measures coverage of bases by contigs. b Sequence similarity between
PacBio and short-read contigs. The y-axis shows the sequence similarity of the PacBio contigs with the reciprocally best-matched short-read
contigs, and the plots show the average value for every five units of read depth of the PacBio contigs on the x-axis. PacBio and short-read
contigs of the 12 samples were aligned using NUCmer with a > 95% identity and a > 95% length coverage. ¢ Genus-level microbial compositions
estimated from the PacBio and MiSeq data of the 13 samples. Taxonomic assignment and quantification of microbial abundance from the PacBio
and MiSeq data were described in the “Methods” section. d Pearson’s correlation coefficients (PCCs) between the microbial compositions
estimated from PacBio and MiSeq data. PCCs (left) between the same samples, excluding the biological replicates (ES1-2 and ES9-1), and PCCs
(right) between different samples are shown. The boxes represent the inter-quartile range (IQR), and the lines inside represent the median. The
whiskers show the lowest and highest values within 1.5 times the IQR. Asterisks represent P < 0.01 (Wilcoxon rank-sum test)

100.0%

wwMW'
99.6% —

99.2%

98.8%

short-read contigs

7
f
98.4%- /

T
&

Sequence similarity with O

T 1
® H @

T
o
& &

7 7/ 7

& &

Q/Q/
Read depth of PacBio contig

I
»
0’\0
N

d

® Ruminococcus
Escherichia
Other genera
1.00 -
0.75 ~
0.50 -

0.25

Pearson’s correlation

0.00 A

consistency, we classified the remaining 71 CCs as plasmids
(2.8 to 666.7 kb). A similarity search of the public plasmid/
phage database revealed that 17 of the 71 plasmid CCs were
highly similar to 10 known plasmids, and five of the 11
phage CCs were highly similar to a genome of a crAssph-
age, NC_024711.1 [31].

To further confirm the accuracy of the classifications,
we blasted the CCs against the virome databases VirSorter
and IMG/VR [32, 33]. The five CCs assigned to

crAssphage and a putative novel phage CC (FAKOO05_
000032F) hit several sequences in the virome databases,
consistent with the present classification. However, five
plasmid-classified CCs (FA1-2_2760, FAKOO05_2268,
FAKOO05_2271, FAKO27_6410, and FA1-2_000589F)
matched sequences in the virome databases (Add-
itional file 2: Table S4), showing disagreement with the
present classification (see the “Discussion and conclu-
sions” section).



Suzuki et al. Microbiome (2019) 7:119

We clustered the 71 plasmid CCs with 114 known
plasmids relatively abundant in the human gut based on
overall sequence similarity (Fig. 2a, see the “Methods”
section). The results revealed that many of the 71 CCs
had high sequence diversities for the known plasmids.
Based on the host taxa of the known plasmids, most of
the 71 CCs aggregated in Firmicutes and Bacteroidetes
plasmids, and many of the novel CCs aggregated in
Firmicutes plasmids, while only four novel CCs aggre-
gated in Proteobacteria plasmids.

We also identified two highly homologous but dis-
tinct plasmid CCs in the assemblies of long reads
from three subjects (apr34, FAKOO03, and FAKOO05).
The two homologous CCs in each subject had a
sequence alignment of length >1kb with >99% iden-
tity between them, but in the short-read assembly,
either the corresponding sequences were fragmented
into multiple contigs or only one of the two CCs
was generated (Additional file 1: Figure S3). These
results demonstrated that homologous plasmids hard
to distinguish in short-read assembly can be pre-
cisely reconstructed as independent contigs in long-
read assembly. Overall, we identified 82 CCs and
classified them as 71 plasmids and 11 phages, of
which 58 plasmid and six phage CCs are likely to be
novel eMGEs (Additional file 1: Figure S4).

We further performed the functional annotation of
genes in the 71 plasmid CCs using the Clusters of
Orthologous Groups (COG) database. The data revealed
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that ~ 47% of the genes identified were novel, and genes
assigned to COG category X, “Microbiome”, were most
enriched in the functionally annotated genes, as ex-
pected (Additional file 2: Table S5).

Structure of contigs assigned to the crAssphage genome

Mapping of PacBio and short reads to the five
crAssphage CCs suggested that these CCs had a lin-
ear genome with terminal direct repeats (TDRs) of
length ~2kb. This was supported by several lines of
evidence, e.g., ~twofold higher coverage of both
PacBio and short reads mapped to the TDR region
than other regions in the circular genome, absence
of PacBio reads spanning the TDRs, and higher fre-
quency of both PacBio and short reads starting from
both ends of the TDRs than reads from other posi-
tions (Additional file 1: Figure S5). Both TDRs in
each genome were almost identical, while the se-
quence similarity and length slightly varied among
TDRs in the five crAssphages (Additional file 2:
Table S6 and Additional file 1: Figure S6). The linear
genomes of six crAssphages, including NC_024711.1,
encoded 89 to 91 putative genes, of which 61 were
highly conserved with >80% amino acid identity
among them; the number of genes unique to each
genome ranged from O to 16 with an average of 6.3
per genome, and other conserved genes numbered
between two and five (Fig. 2b). Additionally, the ge-
nomes exhibited a clear transition in GC skew of the
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coding strand at approximately 30 kb away from the
right TDR (Additional file 1: Figure S7). Similarly,
two phage CCs (FAKOO05_000032F and FAKO27_
000271F) were found to have linear genomes by
mapping the reads to the CCs (Additional file 1:
Figure S8). Our data indicated that linear phage ge-
nomes with TDRs were erroneously assembled as
CCs. The TDRs are the source of this mis-assembly,
which could be corrected by mapping the reads to
CCs as described previously [34].

Reconstruction of microbial chromosomes from PacBio
contigs

The assembly of PacBio reads also yielded seven large
CCs from 2 to 3 Mb in length, which were considered
to be bacterial chromosomes. We additionally recon-
structed 94 high-quality (HQ) chromosome bins (com-
pleteness >90%, contamination <5%) with putative
genome sizes ranging from 1.88 to 6.83 Mb, in which
multiple rRNA genes were consistently allocated
(Additional file 2: Table S7). Of these chromosome
bins, 17 might be phylogenetically novel, because their
identities with known genomes were lower than the
threshold (96.5%) [35]. Phylogenetic tree analysis
indicated that 69 bins, including the 17 novel bins,
were taxonomically classified as Firmicutes, 18 as
Bacteroidetes, 13 as Actinobacteria, and one as
Proteobacteria (Additional file 1: Figure S9).

Host prediction of eMGEs

Host prediction of the 82 eMGEs was performed by sev-
eral methods: sequence similarity search for publicly
available draft genomes [36], co-occurrence profile based
on abundance (CO) [31], methylation motif (MM) simi-
larity [27], and CRISPR spacer similarity to only the
phage’s host [37, 38].

A similarity search of the 71 plasmid CCs for the draft
genomes showed that 36 CCs hit the draft genomes of vari-
ous strains, which were taxonomically well-matched with
those assigned by the similarity search for known plasmids
(Additional file 2: Tables S8 and S9). In the host prediction
by CO analysis, we used the IGC] dataset composed of 413
faecal metagenomic data from Japan (JP), the US (US),
Spain (ES), Denmark (DK), and China (CN) (see the
“Methods” section) [19, 20]. We identified nine CCs that
had Spearman’s correlation coefficients [31] of >0.7 for
variance in abundance with several genomes/hosts across
the samples (Additional file 2: Table S9). The MM similar-
ity search using the present JP PacBio dataset found 19
plasmid CCs that shared 26 different MMs with 14 HQ
chromosome bins (Additional file 1: Figure S10 and
Additional file 2: Table S9).

As shown in Fig. 2a, many of the plasmids, including
the host-predicted plasmid CCs, tended to be grouped
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by host taxa, except for the five Actinobacteria-predicted
novel CCs that segregated from the known Actinobac-
teria plasmids.

We further constructed a host-plasmid network from
the host-predicted plasmid CCs and found many shared
plasmids between various Bacteroides species and several
Parabacteroides and Prevotella species, forming a large
network distinct from others in the human gut micro-
biomes of the 12 subjects (Additional file 1: Figure S11).

In the host prediction of phages, because no host candi-
date was identified in the CO analysis and the similarity
search, we used three different datasets (JP PacBio, IGC],
and the public genome database) for CRISPR spacer
similarity search and the JP PacBio dataset for the MM
similarity search. Four phage contigs (FAKO27_000271F,
YS1-2_2434, FAKO27_000238F, and apr34_1784) had
nearly perfect matches with CRISPR spacers in several ge-
nomes of the three datasets (Additional file 2: Table S10)
and concurrently shared 13 MMs with four genomes in the
JP PacBio dataset (Additional file 1: Figure S10). The hosts
of the four phages as predicted by the two methods were
consistent taxonomically. In the host prediction of seven
other phage contigs by CRISPR spacer similarity alone, six
including the five crAssphages had similarity to CRISPR
spacers in the genomes of Bacteroides and Porphyromonas,
both of which belong to the order Bacteroidales, in at least
two datasets. The host for one phage (apr34_1792) was
predicted to be Bifidobacterium in only the IGC] dataset
(Additional file 2: Table S10). Overall, hosts for 50 plasmid
and 11 phage CCs were predicted, while no host was pre-
dicted for 21 plasmid CCs by the methods used. In this host
prediction, we cannot exclude the possibility that hosts of
eMGEs can also be extended to phylogenetically different
taxa close to the predicted tax.

Quantification of gut eMGEs using 413 metagenomic
datasets from five countries

For quantification of gut eMGEs in the IGC] dataset,
we constructed and used eMGE clusters composed of
563 plasmid and seven phage clusters to which the
IGC] metagenomic reads were mapped. For construc-
tion of the eMGE clusters, we first mapped all the
plasmids publicly available by IGC] metagenomic
reads with a > 95% identity and excluded the plasmids
with mapped coverages < 60% because many of them
included plasmids unevenly mapped by non-specific
reads containing conserved genes such as transposases
and very low-abundance plasmids that were consid-
ered to be negligible for quantification. Clustering of
the plasmids with mapping coverages > 60%, 11 phage
CCs and all publicly available crAssphages generated
the eMGE clusters, each of which was composed of
highly homologous eMGEs with a >90% identity and
>70% alignment coverage. Mapping of 10 million (M)
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short reads per sample to these eMGE clusters re-
vealed that ~ 1.1% of the total reads on average were
mapped to the plasmid clusters and ~ 0.38% to the
crAssphage cluster (Fig. 3a and Additional file 2: Table
S$11). Our novel plasmid CCs accounted for ~ 60% of
the total reads mapped to the plasmid clusters, indi-
cating that many of them were highly abundant in the
IGCJ dataset (Fig. 3b). The inter-country variability in
the average abundance of crAssphages (0.03 to 1.4%)
was remarkable compared with that of plasmids (0.56
to 1.54%) (Fig. 3a, Additional file 1: Figure S12a, and
Additional file 2: Table S11). The increased abundance
of crAssphages in the US dataset was largely due to
the existence of several subjects having extremely
high-abundance crAssphages (up to ~21%) but not
due to extensive prevalence (Additional file 1: Figure

S12b and c). Indeed, the proportion of crAssphage-
positive subjects in the US dataset was ~ 53%, slightly
lower than the average (~60%) of the five countries
(Additional file 1: Figure S12c).

In the top 20 highly abundant eMGE clusters, 12 in-
cluding the top four plasmid clusters were associated
with Bacteroidetes as putative hosts (Fig. 3c). Likewise,
analysis of the host taxon distribution of plasmids re-
vealed that Bacteroidetes-associated plasmids had
higher abundance than plasmids associated with other
phyla (Fig. 4a). This Bacteroidetes dominance was ob-
served in all the countries, varying from a minimum of
61% in the JP dataset, with 17% Bacteroidetes, to a
maximum of 93% in the US dataset, with 66% of the
total microbial abundance representing Bacteroidetes
(Fig. 4b). The top 20 eMGE clusters included two phage
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clusters (crAssphage [Cluster F1] and Bacteroides did not outnumber the microbial cells in the IGC] data-
phage [Cluster_F2]). Notably, the latter (FAKOO5_ set. Only in the US dataset were crAssphages close in
000032F) had higher average mapped reads than the number to microbial cells, with an average ratio of 0.69.
crAssphages in the DK dataset and slightly higher aver-  There was no significant correlation between the abun-
age prevalence (~ 71%) than the crAssphages (~ 60%) in  dance of crAssphages and subjects’ age, BMI, and sex
the IGC] dataset (Additional file 2: Table S11). (Additional file 1: Figure S13).

We next estimated the ratio of gut plasmids and crAs-
sphages to microbial cells for each of the five countries.  Functional profiles of gut plasmids in 413 metagenomic
The estimation was based on the number of reads datasets
mapped to the plasmid and crAssphage clusters and the  Functional annotation of 315 plasmids and 249 chromo-
average sizes of microbial chromosomes, plasmids, and  somes relatively abundant in the IGC] dataset revealed that
crAssphages. The results revealed that the average ratio 360 COGs had significant differences (Q values < 0.05) in
of eMGEs to microbial chromosomes ranged from 1.2 to  abundance between them, and 233 COGs were significantly
4.3 for plasmids (3.0 on average) and from 0.01 to 0.7 enriched in plasmids (Additional file 2: Table S13, see the
for crAssphages (0.18 on average) (Additional file 2: “Methods” section). In particular, eight were detected only
Table S12). These data showed that gut plasmids out- in the plasmids; two were related to inorganic ion transport
numbered microbial cells on average, but crAssphages (COG4264 and COG2370), one was a type IV secretory
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pathway VirB6 component (COG3704), and the remaining
five were uncharacterized. At the higher category level, func-
tions related to the mobilome, including transposase; inor-
ganic ion metabolism, such as iron, cadmium, and copper;
defence mechanisms, including restriction-modification, ef-
flux pump, and toxin-antitoxin module; and secretion, such
as the type IV secretory pathway, were significantly enriched
in the plasmids compared with the chromosomes (p < 0.05,
Fisher’s exact test). In contrast, functions involved in carbo-
hydrate metabolism were significantly higher (p <0.05) in
the chromosomes than in the plasmids (Fig. 5 and Add-
itional file 2: Table S13).

We further investigated antibiotic resistance genes
(ARGs) using the Resfams database [39] and found that
a total of 86 plasmids, including four novel plasmid CCs,
were positive for ARG-related genes (Additional file 2:
Table S14). Many of the hosts were Proteobacteria,
accounting for ~76% of the ARG-positive plasmids,
Firmicutes with ~20%, and a very few Bacteroidetes, but
no plasmid was associated with Actinobacteria (Fig. 2a,
and Additional file 1: Figure S14a). The frequency of
ARGs was similar between the plasmids and chromo-
somes of Proteobacteria and Firmicutes but lower in the
plasmids than in the chromosomes of Bacteroidetes
(Additional file 1: Figure S14b). A comparison of ARG-
positive and ARG-negative plasmids found that ARGs
were more frequently encoded by lower-abundance
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plasmids (p =2.1e-08, Wilcoxon rank-sum test, Fig. 6).
Overall, the present study found several specific func-
tions more frequently harboured by plasmids than by
chromosomes in the IGC] dataset.

Discussion and conclusions

The present study demonstrated that long-read meta-
genomic sequencing was useful for the identification
of eMGEs as complete contigs and for the exploration
of plasmidome entities in the human gut. The plasmid
CCs identified by long-read metagenomics included
several highly homologous but distinct plasmids,
which were hard to distinguish by standard short-read
metagenomics. This outcome may be the typical case
for insufficient assembly of short reads in the metage-
nomics of communities containing highly similar
sequences longer than the read length. The efficient
and accurate reconstruction of eMGEs by long-read
metagenomics was achieved by two major steps: we
first assembled long reads into contigs using the
FALCON assembler, which was originally developed
for the assembly of diploid genomes with structural
variations without dividing contigs, in a more conser-
vative manner [40], and then processed the assembled
contigs with the output binning results of the contigs
(see the “Methods” section). Additionally, a remark-
able characteristic of the present approach is its ability
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Fig. 5 Comparison of COG categories between plasmids and chromosomes. The frequency of COGs (clusters of orthologous groups) is compared
between 315 relatively high-abundance plasmid clusters and 249 chromosomes (= 0.1% average abundance) in the IGCJ dataset. COG categories
with significant differences in enrichment between plasmids and chromosomes are marked with asterisks (p < 0.05, Fisher's exact test). Biological
functions are abbreviated by letters; X: Mobilome: prophages, transposons; S: function unknown; P: inorganic ion transport and metabolism; V:
defence mechanisms; U: intracellular trafficking, secretion, and vesicular transport; L: replication, recombination and repair; R: general function
prediction only; K: transcription; O: posttranslational modification, protein turnover, chaperones; M: cell wall/membrane/envelope biogenesis; G:
carbohydrate transport and metabolism; T: signal transduction mechanisms; J: translation, ribosomal structure and biogenesis; N: cell motility; H:
coenzyme transport and metabolism; C: energy production and conversion; Q: secondary metabolite biogenesis; W: extracellular structures; D: cell
cycle control, cell division, chromosome partitioning; E: amino acid transport and metabolism; I: lipid transport and metabolism, transport and
catabolism; F: nucleotide transport and metabolism
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Fig. 6 Analysis of antibiotic resistance genes (ARGs) in plasmids. The left dot plot shows the prevalence and abundance of 86 ARG-positive
(Additional file 2: Table S14) and 229 ARG-negative plasmids according to the Resfams database. The y-axis shows the number of mapped reads
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shows the abundance distributions of plasmids with or without ARGs, and their difference is significant as ** denotes p < 0.01 (Wilcoxon'’s
rank-sum test)

to identify relatively high-abundance gut eMGEs
independent of their sizes, as demonstrated by the re-
construction of two large plasmid CCs with > 600 kb,
thereby resulting in the efficient discovery of many
novel eMGEs (64/82, 78%).

The 82 CCs were classified as 71 plasmids and 11 phages
using several classification assessments (Additional file 2:
Table S4). However, one plasmid CC (FA1-2_000589F in
Cluster_256) hit a viral contig shorter than the CC, and
four homologous plasmid CCs in Cluster_461, which were
plasmid-positive by PlasFlow and had partial similarity to a
known plasmid pBFUK]1, hit several viral contigs. Consider-
ing the relatively high abundance of these CCs and the lack
of typical structural characteristics of prophages in these
CCs, these discrepancies could be explained by contamin-
ation of non-viral DNA in the VLPs; hence, these CCs are
likely to represent plasmids.

The mapping analysis of IGC] metagenomic reads
showed that the ratio of novel eMGEs was ~ 60%, more
than twice the coverage (~ 20%) of known eMGEs alone
(Fig. 3b). As described above, because we excluded the
plasmids unevenly mapped by non-specific reads from
quantification, the observed coverage of the three types
of eMGEs may be slightly affected by potential overesti-
mation based on shared genes. The analysis also re-
vealed low coverage of the known plasmid clusters
alone, although they represented a large proportion of
the plasmid clusters (509/563, 90%). This is probably
because they are composed mostly of the plasmids of
Proteobacteria species with relatively low abundance in
the human gut. In other words, the present study effi-
ciently identified many plasmids hitherto unknown but
abundant in the human gut.

It was reported that crAssphages were identified as cir-
cular genomes [31, 41]. However, our analysis provided
evidence suggesting that the five crAssphages had linear
genomes with TDRs (Fig. 2 and Additional file 1: Figure
S5). In a previous study, a circular crAssphage genome
was validated by gap closing between fragmented contigs
by PCR, followed by sequencing of PCR products [31].
However, PCR amplification between unconnected
TDRs in the linear genome is also feasible by duplex for-
mation via annealing between downstream TDRs in the
extended DNAs primed from the flanking regions of
TDRs, similar to the mechanism for extended primer
dimer formation or template switching [42], although we
cannot exclude the possibility of coexistence of both cir-
cular and linear crAssphage genomes.

Although crAssphages were also reported to be highly
abundant in the human gut, the ratio of mapped reads
varied from 0.03% (JP) to 1.4% (US) among the five
countries (Fig. 3 and Additional file 1: Figure S12). In
addition, the proportion of crAssphage-positive subjects
was as low as 60% on average in the 413 individuals
(Additional file 1: Figure S12). These data suggest high
variability in crAssphages at both the individual and
country levels and the presence of two types of gut
microbiomes: those with high and low abundance of
crAssphages. However, we could not link the abun-
dance and prevalence of crAssphages to the overall
microbial composition or the host’s genetic back-
ground, age, BMI, and sex (Additional file 1: Figure
S13). There are several questions that arise from these
data. For example, what is the real role of crAssphages
in the gut ecosystem? and what is the factor affecting
this dominant phage?
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The ratio of plasmids to microbial chromosomes in
the human gut metagenome has not previously been re-
ported. Our first estimation suggested that plasmids out-
number the microbial cells in IGC] gut microbiomes.
On the other hand, the estimated ratio of crAssphages
to microbial cells is approximately consistent with previ-
ous estimations of gut phages to microbial cells, ranging
from 0.1:1 to 1:1 [6, 43]. The present estimate remains
tentative because yet-unidentified eMGEs should exist
and will need to be confirmed with more samples.

Host prediction is a challenging issue in eMGE study
[9, 38]. A similarity search for the draft genomes of indi-
vidual cultured species containing unidentified plasmid
sequences is a simple but solid method for host assign-
ment of plasmids, once plasmids are identified as
complete CCs. Indeed, in this study, hosts for 36 of the
71 plasmid CCs were assigned by a similarity search for
draft genomes, of which 13 hosts were also predicted by
CO and/or MM to taxonomically close species assigned
by the similarity search. In addition, the hosts of two
plasmid CCs predicted by both CO and MM and those
of four phage CCs predicted by both MM and CRISPR
spacer were taxonomically consistent between the two
methods (Additional file 2: Tables S9 and S10). Thus,
there was almost no inconsistency in host prediction be-
tween at least two different methods, and many of the
predicted hosts were taxonomically assigned at the spe-
cies and genus levels, demonstrating the practical useful-
ness of the three methods and their combined use for
host prediction of eMGEs, as well as the Hi-C method
recently developed [44]. In addition, the overall sequence
similarity shown here could also be a useful index for
host prediction of plasmids, because plasmids from taxo-
nomically similar hosts tended to have relatively high se-
quence similarities between them (Fig. 2a).

In host prediction of phages, YS1-2_2434 and
FAKO27_000271F may be novel phages of putative hosts
Bifidobacterium and Faecalibacterium, respectively, be-
cause they differed from the recently reported prophages
of these two taxa [45, 46]. FAKO27_000238F may also
be a novel phage and the first associated with Phasco-
larctobacterium as a putative host.

The present analysis also revealed the largest host-
plasmid network and the highest abundance of plasmids
in Bacteroidetes, which was nearly independent of the
overall microbial composition. These results may accord
with the previous findings that there was no profound
association between the dominant species and its mobile
genes and the extensive DNA transfer between Bacteroi-
dales species in the human gut [8, 47]. Taken together,
our data strongly suggest that Bacteroidetes-associated
plasmids are the major players and mediators in
modulating human gut microbiome structure and func-
tion toward improving the adaptability of the host to
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environmental changes such as an increase in heavy
metal ions.

The functional analysis identified several plasmid-
enriched functions, such as transposase, toxin-antitoxin,
type IV secretion system (conjugation), and inorganic
ion transport (Fig. 5 and Additional file 2: Table S13).
Among the genes in category X, transposase-related
COGs were exclusively identified as plasmid-enriched
genes, which may be partly because category X is biased
toward many transposases in its composition. While the
former three functions were known to be plasmid-
enriched [48, 49], we also found the dissemination of
resistance and efflux systems for metal ions such as cop-
per, arsine, tellurium, and cadmium in gut plasmids,
suggesting that gut plasmids are determinants of metab-
olism for toxic metal ions [50]. Our data also revealed
that antibiotic functions were strongly linked to
relatively low-abundance Proteobacteria plasmids, par-
ticularly Enterobacteriaceae, in the human gut (Fig. 2a
and Additional file 2: Table S14), suggesting associations
between nosocomial Enterobacteriaceae species and the
human gut microbiome [51]. However, at present, we do
not know the biological significance of the tendency to
carry plasmids encoding antibiotic functions more fre-
quently in low-abundance species than high-abundance
plasmids.

In conclusion, long-read metagenomics provides an ef-
ficient method for the exploration of uncharted eMGEs
in the human gut, and the accumulated data represent
an alternative resource useful for a deeper understanding
of human gut microbial ecology.

Methods

Subjects, samples, and faecal DNA preparations

We recruited 12 Japanese volunteers, of whom six sub-
jects were the same as those who donated faecal samples
in a previous study [20] and six other subjects were
members of a family: two parents, two children, and two
grandparents. No subjects were treated with antibiotics
during faecal sample collection.

Faecal samples were transferred under anaerobic condi-
tions at 4 °C to the laboratory within 36 h after defecation,
immediately frozen with liquid nitrogen, and stored at -
80 °C until use. We collected 13 faecal samples from the 12
individuals, including a second sample (biological replicate)
from an individual (denoted by ES) 2 months after the col-
lection of the first sample. High-molecular-weight DNA
samples were prepared by the enzymatic lysis method [52,
53]. Prior to DNA extraction, each faecal sample suspended
in PBS buffer was filtered with a 100-pm-mesh nylon filter
(Corning Inc., New York, NY, USA) to remove human and
eukaryotic cells and other debris from the faecal sample.
The debris on the filter was washed twice using a glass or
plastic bar with PBS buffer. The bacteria-enriched pellet
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was obtained by centrifugation of the filtrate at 5000 rpm
for 10 min at 4. °C [53].

Sequencing of faecal DNA samples

For SMRTbell library preparation, faecal DNA was sheared
using a g-TUBE device (Covaris Inc., Woburn, MA, USA)
at 4300 rpm and purified using a 0.45x volume ratio of
AMPure beads (Pacific Biosciences, Menlo Park, CA, USA).
SMRThbell libraries for sequencing were prepared using the
“20-kb Template Preparation using BluePippin™ Size
Selection System (15-kb Size Cutoff)” protocol. Briefly, the
steps included (1) DNA repair, (2) blunt ligation with
hairpin adapters with the SMRTbell template Prep Kit 1.0
(Pacific Biosciences), (3) 7-kb size cutoff size selection using
the BluePippin DNA Size Selection System by Sage Science,
and (4) binding to polymerase P6 using DNA Sequencing
Reagent 4.0 (Pacific Biosciences). SMRTbell libraries were
sequenced on SMRT Cells (Pacific Biosciences) using
magnetic bead loading and P4-C2 or P6-C4 chemistry.
Sequence data were collected according to the magnetic
bead collection protocol, 10-kb insert size, stage start, and
360-min movies in PacBio RS Remote. Primary filtering
was performed on the PacBio RS II Blade Center server.
The sequences mapped to the human genome (hgl9) were
removed prior to submission of PacBio reads to the NCBI
Sequence Read Archive (SRA) using DAMAPPER (https://
github.com/thegenemyers/DAMAPPER), a modified ver-
sion of DALIGNER [54].

For short-read sequencing of seven newly collected sam-
ples in this study with the MiSeq platform, DNA libraries
were prepared using the SPARK DNA sample Prep Kit
(Qiagen, Beverly, MA, USA). Quality control of the meta-
genomic reads was conducted as described previously
[20]. Briefly, low-quality bases and reads were filtered
using the FASTX tool kit (http://hannonlab.cshl.edu/
fastx_toolkit/). Host-derived reads were excluded by map-
ping the reads to the reference human genome (hgl9)
using Bowtie2 (v.2.2.1) software [55]. The ratio of reads
mapped to the human genome was <0.1% in both the
long- and short-read sequencing (Additional file 2: Table
S1). The very low ratio of human reads in our metage-
nomic data can be explained by the efficient removal of
human cells from the faecal samples by filtration prior to
DNA extraction [53], as described above. Additional meta-
genomic short reads (Roche 454, Ion PGM, and Illumina
MiSeq) publicly available from the five countries [19, 20]
were downloaded from the NCBI SRA.

Assembly of PacBio reads and short reads

For assembly of the PacBio metagenomic reads, we used
FALCON v0.2 software (https://github.com/PacificBios-
ciences/FALCON) [40]. Because FALCON tended to ex-
tend contigs to merge DNA sequences from distinct
microbial species to generate erroneous contigs, we used
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unitigs, basic blocks of contigs that are shorter but more
reliable contiguous sequences than contigs.

To reconstruct circular contigs after FALCON as-
sembly, we used the binning results of MetaBAT [56]
as external guiding information with a single criter-
ion: if a node in the assembly graph had only one in-
edge and one out-edge that belonged to the same
MetaBAT bin ID, then we merged the two edges
representing unitigs to generate circular contigs. Note
that a distinct bin ID was assigned to each unbinned
unitig to avoid self-loops in the graph. This is the
first attempt to map external binning information
onto an assembly graph to untangle chimeric nodes
in the graph. This method achieved reliable elong-
ation of contigs by using the binning information to
produce a more conservative layout of contigs than
the original FALCON assembly did. To reconstruct
relatively small circular contigs representing eMGEs,
we used the cutoff values 2000bp and 2200bp for
overlaps between raw subreads and between error-
corrected subreads (technically, “preads”), respectively.
These parameters influence the minimum length of
the CCs generated by the assembly. After polishing
the contigs with long reads using Quiver from the
SMRT Pipe (v.1.87) software, the standard pipeline
provided by Pacific Biosciences, we further corrected
errors in the contigs using Pilon (v.1.12) [57], a
software for error correction by short reads. The read
depth of the assembled contigs was determined by
PacBio’s standard software. De novo assembly of the
metagenomic short reads (Roche 454, Ion PGM, and
[lumina MiSeq) was performed by MEGAHIT
(v1.1.1) [58].

Alignment of PacBio and short-read contigs

PacBio and short-read contigs were aligned using NUCmer
(v3.1) software. Alignments with length coverage < 95% or
sequence similarity < 95% were removed, and then, the se-
quence similarity of the alignments was calculated.

Estimation of microbial composition from PacBio and
MiSeq data

To obtain the microbial composition from the PacBio
data, we first predicted protein-coding genes in the PacBio
contigs using Prodigal software [59]. The genes were
aligned to the 6149 reference genomes [20] using
BLASTN with a > 95% identity and > 90% length coverage
to assign the taxa [60]. The relative abundance of the ge-
nomes/taxa was calculated by counting the number of
genes aligned, multiplying the number of genes by the
read depth of the contig, and normalising by gene length.
Estimation of microbial composition from the MiSeq data
was conducted by mapping the reads to the reference
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genomes using Bowtie2 with a 95% identity threshold and
normalising the number of mapped reads by genome size
[20]. The similarity between the microbial compositions
obtained from PacBio and MiSeq data was assessed with
Pearson’s correlation coefficient.

Classification of CCs as plasmids and phages

In the classification assessment using POGs [29], we
determined the threshold of identity and length cover-
age to perform the highest confidence (Additional file 1:
Figure S2) using reference phages (1 =1957) as positive
data and reference plasmids (n = 6589) as negative data
available from NCBI on June 2016. By aligning the
genes to POGs with BLASTP, the threshold (>90%
length coverage) for classification of CCs as phages was
determined. For classification of CCs as phages, VirSor-
ter (v1.0.3) [30] was also employed with the virome
database and default options in the CyVerse environ-
ment [61]. Categories 1, 2, 4, and 5 were considered to
classify CCs as phages, while categories 3 and 6 were
excluded because these categories included false posi-
tives [62]. PlasFlow (v1.1) was used with the default op-
tions for classification of CCs as plasmids [30].

Functional annotation of genes in the CCs was con-
ducted using Prokka [63] and the COG database (BLASTP
with the e value <0.00001). The presence and absence of
known plasmid-enriched COGs related to plasmid replica-
tion, toxin-antitoxin system, and type IV secretion system
(COG1475, COG2026, COG2126, COG2336, COG2948,
COG3077, COG3451, COG3505, COG3704, COG3736,
COG3843, COG5527, and COG5655) were investigated
for CCs.

A similarity search of CCs for the public plasmid/
phage database and phage sequences in the IMG/VR
[33] and VirSorter [29] databases was conducted using
NUCmer [64], in which CCs with sequence similarity >
90% and length coverage >70% to the references were
assigned to the corresponding plasmids and phages,
respectively.

The whole sequence comparison of the 71 plasmid
CCs and 114 known/reference plasmids relatively abun-
dant in the human gut was performed using TBLASTX
[65]. The 114 known/reference plasmids used in this
analysis had average mapped reads of >5 per kb in the
IGC] dataset. The obtained dendrogram was visualised
using iTOL software [66].

Analysis of crAssphage genomes

PacBio subreads and MiSeq reads were aligned to the five
CCs assigned to crAssphage. To assess the alignments,
they were visualised using IGV [67]. The sequences of the
terminal direct repeats (TDRs) of the five CCs were ob-
tained by reassembling subreads starting/ending at either
side of the TDRs. MiSeq reads were further aligned to the
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TDR sequences using Bowtie2 to manually determine the
exact ends of TDRs. To convert the circular genome of
the crAssphage (NC_024711) in GenBank [31] to a linear
genome, the TDRs were determined by aligning the TDRs
of the five crAssphage CCs to the circular genome with
BLASTN. Protein-coding genes in the linear crAssphage
genomes were predicted using MetaGeneMark [68], and
the conserved genes in the six crAssphage genomes were
investigated using Roary software [69] with the “-p 80” op-
tion. The structures of the six crAssphage genomes were
visualised using the genoPlotR package [70] in R software
and custom Perl scripts. GC skew was calculated for a
100-bp sliding window with a 50-bp step size.

Quantification of eMGEs including the 82 CCs in the IGCJ
dataset
We obtained all metagenomic reads from a total of 413
healthy faecal samples of Japanese (n=106) [20], Danish
(n=84) and Spanish (n =59) [3, 19, 71], American (n = 90)
[4], and Chinese (n=74) [72] people from http://public.
genomics.org.cn, HMP DACC (http://www.hmpdacc.org),
and/or the NCBI SRA to construct the IGC] dataset. This
dataset did not include data from patients with inflamma-
tory bowel disease and type 2 diabetes. The metagenomic
reads in the IGC]J dataset were subjected to quality control
under the same conditions as described previously [20].
The eMGE clusters composed of 563 plasmid and
seven phage clusters were constructed as follows.
The IGC] metagenomic reads (10 M reads per sam-
ple) were first mapped to all the publicly available
plasmids and the 71 plasmid CCs using Bowtie2 with
a 95% identity threshold. The reads hit >3000
plasmids, from which plasmids with map coverages
<60% were excluded (see the “Results” section). The
1162 plasmids with mapped coverages >60% were
then clustered with a >90% identity, =70% align-
ment coverage, and 20.7 ratio of shorter to longer
sequences using NUCmer to generate 563 plasmid
clusters. The breakdown of the plasmid clusters was
509 clusters of known/reference plasmids alone, 47
clusters of the novel plasmid CCs alone, and seven
clusters of both plasmid CCs and homologous
known plasmids (Additional file 2: Table S11).
Similarly, we obtained a cluster of crAssphages and
six unique clusters from the 11 phage CCs. The
mapping of 10 M metagenomic reads per sample to
the eMGE clusters was conducted with a >95% iden-
tity. The number of reads mapped to the clusters
was normalised to the length of the longest repre-
sentative eMGE in the cluster.

Host prediction of eMGEs
For host assignment of plasmids by similarity search,
plasmid CCs were aligned to 5353 draft genomes
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publicly available with NUCmer [64], and draft genomes
having a >90% identity and >70% length coverage with
the CCs were assigned as the hosts of the corresponding
plasmids.

For co-occurrence (CO) analysis, we mapped metage-
nomic reads of the IGC] dataset to reference genomes
and eMGEs with a 95% identity threshold to obtain the
abundance normalised by genome size. Spearman’s cor-
relation coefficients (SCCs) were then calculated for
variance in the abundance of chromosomes and eMGEs
across the samples, and the genomes having SCCs of >
0.7 with the eMGEs were predicted to be putative hosts
of the corresponding eMGEs.

For host prediction of phages by CRISPR spacer similar-
ity, we used three datasets of host genomes: the public
genome database, contigs with > 500 bp generated from as-
sembly of metagenomic reads in the IGC] dataset using
MEGAHIT (v1.1.1) [58], and contigs generated from the
assembly of PacBio subreads in the JP PacBio dataset using
Pilercr (version 1.06) [73]. CRISPR spacers (=20 bp) in mi-
crobial genomes and contigs were detected using Pilercr
with the default options. The detected CRISPR spacers
were aligned to the phage genomes using BLASTN with
the following options: -e 1 -G 10 -E2 —-q 1 -W 7 -F F;
this served to identify microbial genomes and contigs con-
taining CRISPR spacers with 0 or one mismatch and > 95%
alignment coverage between them. The microbial taxa of
the genomes and contigs were determined by their align-
ment using NUCmer to the reference genomes with a >
90% identity and > 50% alignment coverage.

The PacBio SMRT system can detect modified bases,
such as 6-methyladenine (m6A) and 4-methylcytosine
(m4C), because inter-pulse duration (IPD) between
neighbouring bases is likely to be longer when the first
bases are modified [65], and the modification is detect-
able by monitoring the IPD ratios of modified bases to
those of unmodified ones. According to the process de-
scribed previously [27], we first determined the optimal
parameters of “methylation fraction” (percentage of
motif sequences methylated), “mean coverage” (average
sequencing read-depth per strand on the motif sites),
and “mean IPD ratio” to 0.6, 25, and 2.5 as the thresh-
olds, respectively, from PacBio reads from a mock com-
munity composed of eight bacteria with and without
plasmids (Lactobacillus paralimentarius JCM 10707,
Natronolimnobius baerhuensis JCM 12253, Bacillus
cereus ATCC 14579, Variovorax sp. JCM 16519,
Clostridiales bacterium ACSP 3, Staphylococcus aureus
HSAUI10, Bifidobacterium longum IBLI, and Escherichia
coli SE11). We then filtered for methylation motifs
(MMs) in the HQ chromosome bins with the optimised
methylation fraction and mean coverage. In this
process, we excluded the motif G™ATC from host
prediction because this motif was ubiquitous among
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bacteria. Using the filter-passed chromosomal MMs as
baits, we calculated the mean IPD ratio values of the
MMs in each eMGE and HQ chromosome bin and
binarized the values according to the threshold (i.e.,
IPD ratios higher than the threshold were defined as 1
to indicate methylation, and the others were defined as
0 to indicate nonmethylation). Finally, we linked the
eMGEs and the HQ chromosome bins, between which
at least one MM was shared, and the binarized IPD ra-
tio values were equivalent except missing values.

The results of host prediction of the plasmid CCs were
summarised and visualised as a host-plasmid network
using Cytoscape. In this analysis, taxonomically un-
defined bacterial species (e.g., Bacteroides sp.) were
changed to taxonomically defined bacterial species of
which the 16S rRNA gene sequence had > 99.8% identity
with that of the undefined species.

Comparison of functions between plasmids and
chromosomes

For comparison of the frequency of COGs between plas-
mids and chromosomes, we used 315 relatively abundant
plasmids (>1 average mapped reads per 10kb) and
complete chromosomes of 249 microbial species with >
0.1% average abundance in the IGC] dataset. The genes
were functionally annotated by BLASTP to the COG
database with the e value <0.00001 using Prodigal [59].
Statistical significance was calculated using Fisher’s exact
test, and p values were transformed to g values [74].
Antibiotic resistance genes were identified by searching
Resfams database [39] using the hmmscan function of
HMMERS3 [75] with the gathering thresholds. The abun-
dances of the ARG-positive and ARG-negative plasmids
were compared using the Wilcoxon rank-sum test.

Reconstruction and analysis of HQ chromosome bins
For reconstruction of chromosome bins from the PacBio
contigs in the 12 JP samples, metagenomic short reads (10
M reads per sample) of 106 JP individuals [20] were
mapped to PacBio contigs by Bowtie2. Based on read depth
and tetranucleotide frequency, contigs were clustered to
chromosome bins using MetaBAT (v.0.26.3) [56] with the
“--minMapQual 4 --verysensitive” options. The complete-
ness and contamination were calculated by the presence or
absence of single-copy marker genes using CheckM
(v.1.0.5) [76], and high-quality (HQ) chromosome bins with
>90% completeness and < 5% contamination were defined.
We deposited the sequences of 101 HQ chromosome bins
tagged with the ‘long-read metagenome-assembled genome
(LMAG)’ in a public database (Additional file 2: Table S7).
Taxonomic assignment of the HQ chromosome bins was
conducted as previously described [36]. Briefly, the protein-
coding genes predicted by Prodigal were aligned to 40
single-copy marker genes using BLASTP with an e value <
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0.00001. The marker genes identified in the HQ chromo-
some bins were then aligned to those of the reference ge-
nomes using glsearch (v.36.3.5e) [77]. The HQ chromosome
bins having length-weighted average identity >96.5% with
the reference genomes were assigned the same taxa as the
reference genomes.

The phylogenetic tree of 101 HQ chromosome bins and
181 reference genomes with >0.05% relative abundance in
the 12 subjects was constructed based on the similarity of
amino acid sequences of the 40 marker genes using the
neighbour-joining method in MEGA (v.6.06) [78] and visua-
lised with iTOL [66]. The similarities of the marker genes
were calculated by MAFFT (v.7.043b) [79] with the “--local-
pair --maxiterate 1000” options.

Additional files
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prediction by methylation motif similarity between eMGEs and HQ
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