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Abstract

The effect of wearing gloves on timely muscle reaction to stabilize handle perturbation was 

investigated. Thirteen adults gripped a horizontal overhead handle to which an upward force was 

applied at a random time. Muscle reaction time, integrated EMGs for eight muscles, and handle 

displacement were compared among three glove conditions affecting the coefficient of friction 

(COF=0.32, 0.50, and 0.74 for a polyester glove, a bare hand, and a latex glove, respectively). A 

lower COF increased the integrated EMGs and handle displacement until the perturbed handle was 

stabilized. The low-friction glove resulted in a 16% greater muscular effort (p = 0.01) and a 20% 

greater handle displacement (p = 0.002), compared with the high-friction glove. The muscle 

reaction time was not influenced by the glove condition. Spinal reflex eliciting forearm muscle 

activity in response to the change in pressure at the hand appears to depend on somatosensation. 

The spinal reflex with a short latency time may play an important role in the initial response to a 

perturbation. The latissimus dorsi muscles as well as the forearm muscles show a large activity 

level compared with other shoulder and upper arm muscles and may play a major role in the later 

stabilization of the perturbed handle. Therefore, low-friction gloves, sensory dysfunction, and 

weakened forearm and latissimus dorsi muscles may jeopardize persons’ ability to stabilize a grip 

of a handle after perturbation.
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1. Introduction

Gloves are frequently used in workplaces to protect workers’ hands (Kinoshita 1999). The 

way gloves affect a person’s biomechanical response to perturbation, however, has not been 

thoroughly studied despite myriads of practical applications. One such application is falls 

from ladders and scaffolds, which make up the biggest cause of fatal falls to lower levels 

(BLS 2009). When a person misses a step, the primary method of preventing a fall is to 

rapidly tighten the grip of a ladder or scaffold to support the body or to slow down the 
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body’s fall until safe footing is established. Upon a missed step, the sudden loading at the 

hand and handle is one of the cues that can be used to detect the initiation of a fall and to 

quickly respond. Gloves may influence the detection of the sudden loading at the hand and 

response to tighten the grip for the following reasons.

First, gloves may obstruct the cutaneous sensation of the hand, thereby slowing down one’s 

detection of, and response to perturbation. Wearing gloves reduced cutaneous sensitivity of 

the hand, likely by interfering with mechanoreceptors’ ability to obtain appropriate 

information (Shih et al. 2001). Consequently, gloves deteriorated the dexterity of the hand 

and slowed down hand movements (Bradley 1969; Plummer et al. 1985; Bensal 1993; 

Nelson and Mital 1995). Delayed detection of, and response to perturbation could be life-

threatening when a person has to recover from an initiated fall from a scaffold/ladder.

Second, gloves may increase the muscular effort to stabilize a grip of a handle after 

perturbation. Specifically, gloves with low friction led to excessive grip effort (Frederick and 

Armstrong 1995; Kinoshita 1999) and reduced hand strength (Enders and Seo 2011; Seo et 

al. 2011; Hur et al. 2012), causing early onset of muscular fatigue of the hand (Fleming et al. 

1997). These reports suggest that to stabilize a handle against a given load, greater muscle 

activity may be demanded if low-friction gloves are worn, compared with high-friction 

gloves.

Third, low-friction gloves may increase handle displacement until its stabilization after 

perturbation. A simulation study by Barnett and Poczynok (2000) projected that, compared 

with high-friction gloves, low-friction gloves would increase the falling distance of a person 

holding onto side rails of a fixed ladder upon a misstep.

The objective of this study was to determine the effect of gloves on a person’s timely upper 

limb muscular response to stabilize a grasped handle after a perpendicular load perturbation 

to the handle. The rationale of this study was to provide some insights on a person’s 

biomechanical response to a misstep from a scaffold/fixed vertical ladder. It is acknowledged 

that the hand may not always be in contact with horizontal scaffolds/rungs at the time of 

missteps. In addition, the sudden perturbation at the handle is just one of many cues that 

people can use to detect the initiation of a fall from a scaffold/ladder, including visual, 

vestibular, and proprioceptive cues, as well as the tactile cues at the foot. However, as an 

initial step toward understanding the critical ability to rapidly activate the upper limbs and 

stabilize a grip to prevent a fall and how this biomechanical response is compromised with 

gloves, the present study focused on a reduced scope of the effect of gloves on the upper 

limb’s biomechanical response to perturbation of a grasped handle.

Based on the previous knowledge on how gloves affect grip manipulations, it was 

hypothesized that wearing gloves would increase the reaction time to handle perturbation 

and a low-friction glove would lead to increased muscular efforts to stabilize the perturbed 

handle, as well as increased handle displacement until stabilization. To test this hypothesis, 

an experiment was conducted to examine the effect of a high- and low-friction glove as well 

as the bare hand on the muscle reaction time, the muscular effort over time, and the handle 
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displacement upon handle perturbation. The time course of muscular responses was 

additionally examined to elucidate the details of the event after the perturbation.

2. Methods

2.1. Participants

Thirteen right-handed healthy young adults participated in the study (9 males and 4 females, 

mean ± standard deviation of age, 25 ± 5 years; height, 171 ± 13 cm; weight, 69 ± 15 kg; 

body mass index (BMI), 24 ± 4 kg/m2). Healthy young adults with ages between 20 and 35 

years were included. Persons who had any of the following conditions were excluded from 

the experiment: 1) cognitive dysfunction that precludes comprehension of experimental 

tasks, 2) inability to understand English and 3) history or clinical signs of orthopedic or 

neurologic disorders. The subjects were found not to have engaged in physically strenuous 

activities prior to the experiment. The subjects’ nondominant hand was tested because 

people typically hold onto a rung of a vertical fixed ladder, scaffold, or hand rail with their 

nondominant hand even when they use their dominant hand for another task (e.g., reaching 

for something, painting) (Smith et al. 2006). The protocol was approved by the Institutional 

Review Board at the University of Wisconsin-Milwaukee. All subjects gave written 

informed consent before engaging in the research experiments.

2.2. Procedure

The subjects held a horizontal handle with the nondominant hand, using minimal effort 

while seated in the posture shown in Figure 1. Mimicking a rung holding posture, the initial 

upper limb posture was approximately 160° shoulder flexion, 10° elbow flexion and 0° wrist 

flexion. Subjects were asked to stabilize the handle when the handle was perturbed at a 

random time. The handle perturbation was administered by dropping a weight that was 

connected to the handle via cables (Figure 1). The weight was equivalent to 20% of the 

person’s hand strength to resist the handle (Hur et al. 2012) to not jerk subjects’ arms but to 

have strong enough perturbation to evoke muscular responses. Subjects were instructed to 

look to the front during the experiment so that they could not see the perturbation being 

applied in the back or above their head (Figure 1).

To describe the subjects’ responses to the perturbation, the time course of the force 

registered on the handle, the muscle activities, and the handle displacement were recorded. 

The handle force was computed as twice the force recorded on a load cell (SM-1000, 

Interface Inc. Scottsdale, AZ) measuring tension of the cable holding a movable pulley to 

which the handle was attached (Figure 1). The handle force data were sampled at 1 kHz.

For muscle activities, a surface electromyogram (EMG) (Bortec Biomedical Ltd., Calgary, 

AB, Canada) was recorded for the following 8 muscles: flexor digitorum superficialis 

(FDS), flexor carpi ulnaris (FCU), extensor digitorum communis (EDC), biceps, triceps, 

deltoid, pectoralis major, and latissimus dorsi. These 8 muscles were chosen for their 

important roles in moving and stabilizing the upper limb (Richardson 2011). Bipolar Ag/

AgCl surface electrodes (1 cm diameter with a 2.5 cm interelectrode distance) were placed 

on the skin overlying the muscle belly. The muscle was located by using the anatomical 
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landmarks following the literature (Basmajian 1989) and confirmed through palpation and 

visual observation of EMG signals from an oscilloscope while the subjects performed a 

muscle-specific movement (Smith et al. 1996). The skin was prepared by shaving the hair, if 

needed, and cleaning with alcohol swabs, to reduce the impedance before the electrodes 

were placed. All EMG signals were sampled at 1 kHz. The maximum voluntary contraction 

(MVC) of each muscle was recorded. For analysis, the root mean square (RMS) EMG with 

10 ms moving windows normalized by the MVC of each muscle was used. For handle 

displacement, the handle position was recorded by using the 3D Investigator™ Motion 

Capture System (Northern Digital Inc., Waterloo, ON, Canada) at 100 Hz.

The handle perturbation procedure was repeated three times for each glove condition to 

compute the mean. The following three glove conditions (Figure 2) that are frequently 

encountered at workplaces were used (OSHA 2003; Fix8 2011): (1) the polyester glove 

(HD55080/FACP, West Chester, Inc., Monroe, OH), (2) the bare hand, and (3) the latex 

glove (HD30503/L3P, West Chester, Inc., Monroe, OH). These three glove conditions have 

different coefficients of friction (COFs) against the aluminum handle of 0.32, 0.50, and 0.74 

(SD = 0.06, 0.08, and 0.12), respectively (Hur et al. 2012). The order of testing each glove 

condition was randomized across the subjects. A minimum of two minute breaks was given 

between consecutive tests to prevent muscle fatigue.

2.3. Data analysis

To test the hypothesis, the effect of the glove conditions on the muscle reaction time, the 

muscular effort over time, and the handle displacement upon handle perturbation were 

investigated. The onset of handle perturbation was determined as when the rate change of 

the handle force exceeded 50 N/s for more than 20 ms (Figure 3). The muscle reaction time 

was determined as the earliest muscle reaction time among the 8 muscles. The reaction time 

for a muscle was defined as the time interval between the handle perturbation and when the 

muscle’s RMS EMG exceeded 3 standard deviations above the baseline muscle activity (Seo 

et al. 2009). The muscular effort was determined by integrated EMG (%MVC-s) during the 

time period between when the handle was perturbed and when the handle stopped moving 

upward (Figure 3). The handle displacement was the distance that the handle traveled during 

the same period (Figure 3). In addition, the time at which the handle started moving up was 

determined to describe the event after the perturbation in detail. The onset of the handle 

movement was determined as when the rate change of the handle displacement was greater 

than 100 mm/s for more than 50 ms (Figure 3).

2.4. Statistical analysis

Three repeated measures analyses of variance (ANOVA) were performed for each of the 

three main responses using SPSS Statistics v17.0 (SPSS Inc., Chicago, IL). The first 

ANOVA determined if the earliest muscle reaction time was significantly affected by the 

glove condition. The second ANOVA determined if the integrated EMG was significantly 

affected by the glove condition and the muscle. The third ANOVA determined if the handle 

displacement significantly varied with the glove condition. The level of significance was p < 

0.05. Post-hoc tests used Fisher’s least significant difference. As secondary analysis, another 
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ANOVA determined if reaction time significantly differed by individual muscles. Values are 

presented as mean ± standard error throughout the paper unless otherwise specified.

3. Results

The overall time course of the muscle activity and the handle displacement after the handle 

perturbation was as follows (pooled for all glove conditions and subjects). The earliest 

muscle activation occurred 44 ± 2 ms after the handle perturbation. The handle started 

moving upward in 60 ± 6 ms after the handle perturbation. The handle was stabilized 304 

± 25 ms after the perturbation. A sample time course is shown in Figure 3.

The earliest muscle reaction time to the handle perturbation was not significantly affected by 

the glove condition (p > 0.05), although the trend of the shortest muscle reaction time for the 

bare hand was seen in Figure 4a. Among the 8 muscles, the forearm muscles reacted 

significantly earlier to the handle perturbation than the other muscles (Figure 4b).

The mean integrated EMG increased with a decreasing COF at the grip interface (Figure 5a). 

The mean integrated EMG for the polyester glove was 16% greater than for the latex glove. 

The ANOVA showed the significant main effect of the glove condition (p = 0.02). Post-hoc 

tests revealed that the integrated EMG for the polyester glove was significantly greater than 

that for the bare hand (p = 0.03) and the latex glove (p = 0.01). In addition, the magnitude of 

the integrated EMG significantly varied by the muscle (p < 0.001). Post-hoc tests showed 

that the integrated EMG was the highest for the FCU, followed by the latissimus dorsi, FDS, 

and EDC, then by the upper arm and shoulder muscles (Figure 5b).

Displacement of the perturbed handle also increased as the COF at the grip interface 

decreased (Figure 6). The handle displacement was 20% greater for the low-friction 

polyester glove compared with the high-friction latex glove. The ANOVA showed the 

significant main effect of the glove condition (p = 0.01). Post-hoc tests revealed that the 

handle displacement for the polyester glove was significantly greater than that for the latex 

glove (p = 0.002).

4. Discussion

4.1. Effects of Gloves in Stabilizing a Perturbed Handle

The results suggest that a decreased COF at the hand-handle interface with slippery gloves 

may be detrimental for stabilizing the grip of a handle after perturbation, due to the 

increased muscle effort required and the greater perturbed distance before stabilization. 

However, the muscle reaction time was not significantly affected by the two gloves 

investigated in this study. The detailed discussions are as follows.

The earliest muscle reaction time was not affected by wearing gloves although the trend of 

the shorter muscle reaction time for the bare hand was seen (Figure 4a). It is possible that 

since the gloved hand was already grasping the handle, the glove was preloaded by the 

weight of the subject’s arm and fully deformed at the time of perturbation. Thus, these 

gloves may not have significantly interfered with the transmission of the perpendicular 

perturbation load to the hand. If the glove was bulky, the transfer of the perturbation force 
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from the handle to the hand could have been dampened, delaying the detection of the handle 

perturbation.

The integrated EMG increased with a decreasing COF at the hand-handle interface (Figure 

5a). The low-friction polyester glove resulted in 12% and 16% greater integrated EMG to 

stabilize the perturbed handle, compared with the bare hand and the high-friction latex 

glove, respectively. Our results align with the previous finding where a decreased COF 

increased the muscular effort in twisting handles (Seo et al. 2008). The greater muscular 

effort needed for the low-friction polyester glove may be related to the reduced ability of the 

hand to apply force to a handle when the low-friction polyester gloves are worn, compared 

with the bare hand or the latex glove (Hur et al. 2012).

The handle displacement before stabilization also increased with a decreasing COF at the 

hand-handle interface (Figure 6). The low-friction polyester glove resulted in 13% and 20% 

greater handle displacement, compared with the bare hand and the high-friction latex glove, 

respectively. This result is in agreement with the simulation-based study that predicted that 

wearing gloves with low COFs increases the falling distance from a ladder (Barnett and 

Poczynck 2000). In summary, gloves resulting in low friction between the hand and the 

handle should be avoided because of the greater muscular effort needed to stabilize a handle 

as well as the greater falling distance expected after perturbation.

4.2. Role of somatosensation detecting pressure at the hand

The somatosensation of the hand detecting pressure applied to the hand skin and tissue, not 

the spindles of the upper limb muscles, appears to have detected the perturbation and 

triggered the earliest muscle activation in this study. Specifically, the handle started moving 

upward 60 ± 6 ms after the handle force increased (pooled for all glove conditions) (Figure 

3), indicating that changes in the joint angles (related to proprioception for detecting 

changes in the muscle length) occurred 60 ± 6 ms after the mechanoreceptors in the hand 

could register the force increase between the hand and the handle. In addition, before any 

changes in the joint angles, the earliest muscle was already activated 44 ± 2 ms after the 

mechanoreceptors detecting the force increase at the hand against the handle.

The earliest muscle reaction in this study appears to be a reflex response. The earliest muscle 

reaction time of 44 ± 2 ms appears to be too short for a voluntary response, given that the 

simple reaction time for healthy young adults is 135–220 ms for sound or visual stimuli 

(Brebner and Welford 1980; Welford 1980; Jaeger et al. 1982; Mojica et al. 1988; Anstey et 

al. 2005). The mechanism for the earliest forearm muscle reaction is potentially a spinal 

reflex triggered by the somatosensation detecting the increased pressure on the hand. Hagert 

et al. (2009) reported that the forearm muscles were activated within 40 ms after stimulation 

of a wrist ligament. The latency due to this wrist proprioceptive reflex (Hagert et al. 2009) as 

well as the latencies reported in other similar studies including cutaneous reflexes (33 to 

45ms) (Garnett and Stephens 1980; Jenner and Stephens 1982; Corden et al. 2000; Zehr et 

al. 2001) are similar to the latency of 44 ms in our study. This similar latency suggests that 

in the present study, the forearm muscles may have been activated through cutaneous and/or 

proprioceptive reflex mechanisms in response to the detection of the hand pressure increase 

after the rung perturbation. It is unlikely that the earliest forearm muscle activation was 
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mediated by a stretch reflex, since stretch reflex latencies for the upper extremity muscles 

are shorter than 40 ms (Corden et al. 2000) and no movement that could trigger a stretch 

reflex was detected before the earliest muscle reaction, as discussed in the previous 

paragraph. On the other hand, the reaction of the upper arm and shoulder muscles may have 

been mediated by different mechanisms. The upper arm and shoulder muscles were activated 

90 to 125 ms (Figure 4b) after the handle force increase, which may be still too early to be 

voluntary movements (Brebner and Welford 1980; Welford 1980; Jaeger et al. 1982; Mojica 

et al. 1988; Anstey et al. 2005), and too late to be polysynaptic propagation of the reflex for 

the same hand pressure stimulus that triggered the forearm muscle activation (Zehr et al. 

2001). Given that the upper arm and shoulder muscles were activated approximately 30–65 

ms after the handle started moving (Figure 3, 4b), the activation of the upper arm and 

shoulder muscles could possibly be due to stretch reflexes induced by sudden changes of 

muscle lengths at the elbow and shoulder joints in addition to reflexes involving 

mechanoreceptors.

4.3. Role of forearm and latissimus dorsi muscles

The forearm muscles and the latissimus dorsi muscle were activated with greater efforts than 

other muscles to stabilize the perturbed handle, as evidenced by greater integrated EMG 

(Figure 5b). In addition, the muscle reaction time was earlier for the forearm muscles than 

for other muscles (Figure 4b). These findings suggest that grasping with the forearm muscles 

and pulling the handle down via depression of the scapula with the latissimus dorsi 

(Richardson 2011) play important roles in responding to and stabilizing handle perturbation.

4.4. Functional implications

The present study demonstrates that one’s ability to stabilize a grip of a handle upon 

perturbation suffers from the use of slippery gloves such as the polyester glove. The present 

study also suggests that impaired somatosensation detecting pressure at the hand and weak 

forearm and latissimus dorsi muscles could deteriorate one’s ability to respond to and 

stabilize handle perturbation. If applied to the scenario of a misstep on a scaffold/ladder 

perturbing the grip of the handle/rung, this study suggests that the risk of unsuccessful 

recovery from the misstep, leading to fall and injury, may increase with slippery gloves or 

other conditions reducing COF, such as oily contamination. The risk of injury may also 

increase with sensory dysfunction and weakened forearm and latissimus dorsi muscles. High 

COF conditions at the hand-handle interface and strengthening of the forearm and latissimus 

dorsi muscles may help recovery. However, these predictions should be verified in studies 

simulating a whole-body fall from a misstep, since the present study had a reduced scope of 

investigation for only the upper limb response to handle perturbation.

4.5. Limitation and future study

While the present study provides preliminary evidence for how gloves affect a person’s 

ability to stabilize a grip of a handle in response to perturbation, in order for these findings 

to be applicable to the scenario of falling from scaffolds/ladders, further studies involving 

falls from a real scaffold/ladder are needed. Such studies would incorporate all senses, 

including the vestibular sensation, vision, and somatosensation of the lower limb. Such 

studies may dichotomize fallers and nonfallers depending on factors such as a person’s 
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reaction time, muscular strength, and somatosensory threshold. The upper extremity posture 

during the experiment was different from the posture when EMG electrodes were places. 

This posture difference may have affected EMG recordings. However, it may not change the 

conclusion of this experiment due to repeated measures within-subject research design. 

During the experiment, there was a small clicking sound associated with the application of 

the perturbation. Although this sound was present consistently for all glove conditions, the 

study found that muscle effort and handle displacement were still significantly affected by 

the glove condition. However, future studies may consider using devices such as noise-

cancelling headphones to eliminate any sound effects. The muscle reaction time reported in 

this study was obtained for young healthy adults only. It is to be noted that muscle reaction 

time may be different depending on age and BMI (Rein et al. 2010).

5. Conclusion

This study demonstrated that the low-friction polyester glove increased the muscular effort 

required to stabilize a grip of a handle after perturbation as well as increased the perturbed 

distance before stabilization, while not slowing the muscular reaction to perturbation. The 

present study suggests that spinal reflex eliciting forearm muscle activity in response to the 

change in pressure at the hand appears to depend on somatosensation. The spinal reflex with 

a short latency time may play an important role in the initial response to a perturbation. The 

latissimus dorsi muscles as well as the forearm muscles show a large activity level compared 

with other shoulder and upper arm muscles and may play a major role in the later 

stabilization of the perturbed handle. The results of this study have implications for reducing 

injuries due to falls from elevation by implementing high friction conditions between the 

hand and the handle and strengthening the forearm and latissimus dorsi muscles.
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Figure 1. 
Experimental setup. The subject was instructed to stabilize the handle when the handle was 

perturbed at a random time via a drop of a weight.
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Figure 2. 
The polyester glove (a) and latex glove (b) are commonly used at workplaces to protect 

workers’ hand. These gloves can change the coefficient of friction at the hand-handle 

interface.
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Figure 3. 
Time course of responses to handle perturbation. Handle force, RMS EMG of the muscle 

that reacted the first (FCU muscle in this trial), and handle displacement are shown on the 

top, middle, and bottom, respectively.
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Figure 4. 
(a) The earliest muscle reaction time for the three glove conditions (earliest among all 

muscles). (b) The reaction time for individual muscles (pooled for the glove conditions). The 

forearm muscles (black bars) were activated earlier than the other muscles (grey bars). Error 

bars represent ± one standard error. A horizontal line indicates a group without statistically 

significant differences. A star distinguishes two groups with statistically significant 

differences based on the post-hoc results.
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Figure 5. 
(a) Integrated EMG (pooled for all muscles) decreased with increasing COF at the grip 

interface. The polyester glove with the lowest COF resulted in the highest integrated EMG 

to stabilize the perturbed handle compared to bare hand (p = 0.03) and latex glove (p = 0.01) 

conditions. (b) Integrated EMG (pooled for the glove conditions) was the highest for the 

FCU muscle, followed by the other forearm muscles (black) and latissimus dorsi, and by the 

upper arm and shoulder muscles. Error bars represent ± one standard error. A star indicates 

groups with statistically significant differences.
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Figure 6. 
Handle displacement decreased with increasing COF at the grip interface. The polyester 

glove with the lowest COF condition resulted in the greatest handle displacement until 

stabilization of the perturbed handle compared to latex glove condition (p = 0.002). Error 

bars represent ± one standard error. A star indicates a statistically significant difference.

Hur et al. Page 16

J Electromyogr Kinesiol. Author manuscript; available in PMC 2019 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Participants
	Procedure
	Data analysis
	Statistical analysis

	Results
	Discussion
	Effects of Gloves in Stabilizing a Perturbed Handle
	Role of somatosensation detecting pressure at the hand
	Role of forearm and latissimus dorsi muscles
	Functional implications
	Limitation and future study

	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

