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Summary:

Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a 

given cross-section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This 

cellular heterogeneity has made it difficult to profile distinct cell types at different stages of 

development. To address this challenge, we collected single-cell RNA sequencing data from ~35K 

cells from the adult mouse testis, and identified all known germ and somatic cells, as well as two 

unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of 

germ cells from spermatogonia to spermatids, and identified novel candidate transcriptional 

regulators at several transition points during differentiation. Focused analyses delineated four 

subtypes of spermatogonia and nine subtypes of Sertoli cells, the latter linked to histologically 

defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution 

cellular atlas represents a community resource and foundation of knowledge to study germ cell 

development and in vivo gametogenesis.

Correspondence should be addressed to: hammou@med.umich.edu or junzli@med.umich.edu.
*Denotes Equal First Authors
†Denotes co-corresponding authors
Author contributions
S.S.H. overall project design. J.Z.L. oversaw the computational analysis. C.D.G, G.L.M., A.N.S., C.S., B.B.M., L.E.M, and S.J.G. 
performed experiments. Q.M., and J.Z.L analyzed data. S.M. compared our data with Mouse Cell Atlas paper. S.S.H. wrote the 
manuscript with help from J.Z.L., C.D.G., and Q.M. Comments from all authors were provided.

Declaration of interests
The authors have no competing interests.

HHS Public Access
Author manuscript
Dev Cell. Author manuscript; available in PMC 2019 August 28.

Published in final edited form as:
Dev Cell. 2018 September 10; 46(5): 651–667.e10. doi:10.1016/j.devcel.2018.07.025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Spermatogenesis; spermatogonial stem cell; heterogeneity; single-cell RNA-seq; germ cell 
developmental trajectory; testis niche

Introduction

Spermatogenesis is a complex process by which diploid spermatogonial stem cells 

terminally differentiate to produce mature, haploid spermatozoa within the testis. This 

process is continuous throughout adult life in mammals, and is characterized by three 

phases: mitotic proliferation, meiosis, and spermiogenesis (a period of morphological 

maturation and chromatin repackaging). Over the past decade, considerable efforts have 

been devoted to examining the germ cell intrinsic programs by isolating and analyzing 

specific germ cell populations using a variety of molecular or genetic approaches (Chan et 

al., 2014; Costoya et al., 2004; DeFalco et al., 2015; Evans et al., 2014; Guo et al., 2014; 

Hammoud et al., 2014; Hammoud et al., 2015; Hara et al., 2014; Hermann et al., 2015; 

Inoue et al., 2017; Johnston et al., 2008; Kliesch et al., 1992; Lesch et al., 2013; Oatley et 

al., 2006; Parvinen et al., 1992; Soderstrom and Parvinen, 1976; Zimmermann et al., 2015). 

Although these methodologies have provided valuable insights, our understanding of germ 

cell differentiation is limited because the analyses are restricted to selected subsets of germ 

cell populations that can be isolated via cell surface markers or transgenic lines.

Successful execution of the germ cell developmental program requires ongoing juxtacrine, 

paracrine, and endocrine signaling between germ cells, supporting somatic cells, and the 

pituitary gland (Chen et al., 2016; DeFalco et al., 2015; Eddy, 2002; Franca et al., 1998; 

Griswold, 1995; Jegou, 1993; Meng et al., 2000; O’Shaughnessy et al., 2008; Phillips et al., 

2010; Sharpe, 1986). Within the testis there are multiple somatic cell types that produce 

growth factors that influence neighboring somatic cells or germ cell development, either by 

direct contact or by indirect, ligand-mediated signaling (DeFalco et al., 2015; Hofmann et 

al., 2005; Kubota et al., 2004; Maekawa et al., 1996; Meng et al., 2000; Moore and Morris, 

1993; Nalbandian et al., 2003; Oatley et al., 2009; Smith and Walker, 2014). These include: 

Sertoli cells (secreted factors such as Gdnf, Fgf, Egf), macrophages (Csf1), endothelial cells 

(Vegf), steroidogenic Leydig cells (testosterone, Igf1, Csf1), and peritubular myoid cells. 

Although the somatic cells of the testis provide essential support to the germline throughout 

spermatogenesis, our understanding of their molecular subtypes, regulatory programs, and 

germline-soma or soma-soma communications remain poorly understood. Sequencing-based 

profiling of single-cell transcriptomes now provide a cost-effective method to survey 

thousands of cells to define functional subtypes and their molecular signatures. Such 

information naturally leads to the identification of both known and previously unknown cell 

types, including transient populations that were too rare to be detected with low-throughput 

approaches. Importantly, the unbiased characterization of functional heterogeneity at the 

single-cell level and the associated marker genes will be essential for understanding inter-

cellular interactions in the native organ structure, and for probing the spatiotemporal patterns 

of signaling among germ cells and supporting cells. Such a resource is expected to improve 
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the knowledge base for future studies of germ cell biology, and ultimately improve targeted 

therapies for male infertility.

In this study we used the Drop-seq technology (Macosko et al., 2015) to analyze 34,633 

single cells isolated from the mouse testis, consisting of both unselected cells and targeted 

enrichment of rare cell types. This large number of cells allowed us to generate a detailed 

cellular and molecular atlas that includes not only known cell types in the testis, but also two 

previously undescribed adult somatic cell populations. Our study reveals the continuous 

nature of germ cell development, identifies rare and key development transitions, and 

uncovers known and novel candidate transcriptional regulators that accompany germ cell 

differentiation. Furthermore, iterative re-clustering of major cell populations reveals a deeper 

level of heterogeneity contained within the spermatogonia and Sertoli cells, and single 

molecule RNA detection methods, including single-molecule fluorescence in situ 
hybridization (smFISH) and single-molecule hybridization chain reaction (smHCR), allowed 

us to spatially map cellular subtypes to histological stages described a few decades ago.

Results

Single cell RNA-seq establishes a detailed atlas of cellular heterogeneity in the adult 
mouse testis.

To provide an unbiased survey of cellular diversity of the adult mouse testis, we applied the 

Drop-seq technology to characterize single-cell transcriptomes, initially in six replicate 

experiments of the whole testis. Each replicate captures ~2,000 cells from a C57BL/6J male, 

ranging in age from 7- to 9-weeks old. From our human-mouse mixing experiment, 

consisting of 25% spike-in of human A549 cells and 75% mouse testicular cells, we 

determined that the human-mouse doublet rates were <1.8% (Figure S1A), thus confirming 

that key experimental parameters such as cell concentration and flow rates have been 

optimized for capturing and analyzing single cells. The six independent experiments 

revealed similar patterns of cellular heterogeneity (Figure S1B), and consistent clustering 

solutions (Figure S1C). The concordance among the six datasets allowed us to merge 

datasets to create a combined collection of ~12,000 cells from the adult mouse testis.

Using previously described cell-type specific markers we identified all major germ cell 

populations covering the full developmental spectrum, including spermatogonia (SPG), 

meiotic spermatocytes (SCytes), postmeiotic haploid round spermatids (STids) and 

elongating spermatids (ES). However, the gonadal somatic cell compartment was 

underrepresented in the total testis datasets. To increase the representation of these rarer 

somatic cells we generated another 19 datasets by 1) applying gentler dissociation methods, 

2) enriching for interstitial cells by depleting germ cells, 3) using mouse transgenic lines to 

enrich specifically for spermatogonia and Sertoli cells (e.g. Amh-cre;mTmG, Sox9-eGFP, 

Gfra1-creERT2;mTmG), or 4) enriching for spermatogonia, immune, Leydig or interstitial 

cells using a series of cell surface markers (e.g. Thy1, Kit, Sca1) (see Methods, Figure S1D, 

Table S1 – summarizes the datasets generated, the number of cells per dataset, and number 

of detected transcripts or genes per cell). Therefore, as a result of our 25 Drop-Seq 

experiments, we have analyzed approximately 35K cells (post QC filters). Systematic 

assessment of experimental batch effects confirmed that the identification of major cell types 
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was not driven by batch-batch variation, as shown by reliable alignment of identified cell 

types across batches (see Methods). Each cell has an average number of 6,205 UMIs, and 

2,057 genes detected. This sequencing depth and the number of detected genes are 

comparable to previously published reports using the Drop-seq technology, and is sufficient 

for defining distinct cell types (see methods) (Campbell et al., 2017; Heimberg et al., 2016; 

Macosko et al., 2015; Stephenson et al., 2018; Tanay and Regev, 2017)

Unsupervised clustering of the ~35K cells identified 11 major cell types. Expression patterns 

of known marker genes and gene ontology analysis assigned the 11 cell types to the four 

known germ cell populations described above, as well as seven somatic cell populations 

(Figure 1A, B, S1E). The seven somatic cell populations included five known somatic cell 

populations: Sertoli, myoid, Leydig, endothelial, and macrophages (Figure 1B, C, Table S2), 

and two unexpected cell populations: an innate lymphoid (type II) cell population (ILC II) 

and a novel mesenchymal cell population (See the somatic sections below). Taken together, 

our collection of ~35K single cells illustrates the functional diversity among testis cells and 

identifies known and novel major cell types. The enrichment experiments, in particular, 

provided us a unique opportunity to focus on major cell types individually and, as we show 

below, to delineate previously unappreciated subtypes. This step-wise exploration of 

functional subtypes also defines the genes and pathways underlying their biological 

differences at increasing levels of granularity (Figure 1A).

Extracting functional properties of individual cells uncovers between- and within-cell type 
heterogeneity.

To correlate the transcriptomic properties of single cells with previously described 

cytological features or average attributes of bulk cell populations, we calculated several per-

cell transcriptome-derived attributes, including the percentages of transcripts accounted for 

by chromosomes X and Y genes, by mitochondria-encoded RNAs, the total number of 

detected genes per cell, the total number of unique transcripts, and the Gini index of each 

cell (Table uploaded to GEO: GSE112393). These single-cell indices represent an 

important component of our cellular atlas, allowing extensive comparisons with the existing 

knowledge of the basic biology of germ cells and their somatic supporting cells. Below we 

highlight four illustrative examples.

First, when examining the proportion of ChrX transcripts in the entire transcriptome, we find 

that this value is highest in Sertoli cells, followed by other somatic and spermatogonia cell 

populations, is greatly reduced in spermatocytes, and partially recovers in spermatids (Figure 

1D). Similarly, the proportion of ChrY transcripts is consistent across most cell types, 

becomes depleted in spermatocytes, and recovers in spermatids. The extremely low levels of 

X and Y transcripts in spermatocytes are consistent with the timing of XY body formation 

during meiosis, a specialized nuclear territory for ChrX and ChrY where both transcription 

and homologous recombination are suppressed (Handel, 2004; Hoyer-Fender, 2003; McKee 

and Handel, 1993; Solari, 1974). After meiotic sex chromosome inactivation, both 

chromosomes are reactivated in post-meiotic cells (Mueller et al., 2008). Interestingly, our 

results show that, while Y-chromosome transcripts are transiently elevated only in STids, X-

chromosome transcripts are present in both STids and ES, suggesting that either the X-
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chromosome transcripts persist longer than ChrY transcripts, or maintain a longer 

transcriptional activity.

Second, it has been known that syncytial development of germ cells is an evolutionarily 

conserved process from fruit flies to mammals, in both the male and the female germlines 

(Pepling et al., 1999). These intercellular bridges presumably allow de facto sharing of 

cytoplasmic content, and ensure synchronous development and gametic equivalence of a set 

of clonally related germ cells (Braun et al., 1989; Fawcett et al., 1959). Evidence for 

cytoplasmic sharing in connected haploid round spermatids was first demonstrated using a 

hemizygous transgenic mouse that expresses the human growth hormone transgene under 

the control of a round spermatid specific Protamine 1 promoter (Braun et al., 1989). In that 

study, ~90% of the round and elongating spermatids express human growth hormone protein 

despite a prediction that 50% of the haploid cells in the hemizygous animal would express 

the transgene. To discern if our data also show evidence of cytoplasmic sharing, we 

examined the distribution of X and Y transcripts in the 9,923 haploid round spermatids, 

which should bear either an X or a Y chromosome. Remarkably similar to the previous 

findings, ~86% of the round spermatids (N=8,531) contain both X and Y transcripts (Figure 

S1F). Since steady-state levels of mRNA may persist long after the initial transcription, and 

the fraction of detection depends on the depth of sequencing of individual cells, we 

contrasted the levels of X and Y transcripts in diploid SPG cells to haploid round 

spermatids, separately comparing groups of cells with a comparable range of total UMI. For 

example, among cells containing 500–1K UMI, 71% of SPG cells lack ChrY transcripts, 

whereas 53% of round spermatids lack ChrY transcripts (Figure S1F). Similarly, while only 

10% of SPG cells lack ChrX transcripts, only 0.2% of round spermatids lack ChrX 

transcripts. This contrast is consistent across all UMI-bins examined, suggesting that round 

spermatids may indeed employ an active cytoplasmic sharing mechanism.

Third, early electron microscopy studies have shown that Sertoli cells undergo cyclic 

changes in the volume and surface area of their various organelles, including mitochondria, 

across the different stages of the seminiferous epithelial cycle (Ueno and Mori, 1990). 

Interestingly, when examining the percentage of mitochondria-encoded RNAs (%Mito) we 

find the highest and most variable levels of Mito RNAs are among the Sertoli and myoid 

cells (Figure 1D), suggesting that changes in mitochondrial morphology may correlate with 

mitochondrial transcriptional output. The levels of mitochondrial-encoded RNAs are much 

lower in the differentiating germ cells than in spermatogonia and somatic cells (Figure 1D), 

consistent with their reduced mitochondrial DNA copy number (Rantanen and Larsson, 

2000).

Finally, earlier bulk RNA-seq analyses of germ cell populations have shown that, at a given 

sequencing depth, SCytes and STids have more detectable transcripts than somatic cells or 

other germ cell populations (Hammoud et al., 2014; Soumillon et al., 2013). What remains 

unclear is whether this higher number of genes detected in bulk SCyte and STid data was 

due to (1) a mixture of more heterogeneous cells or (2) each cell truly expressing a large 

number of distinct genes. Consistent with the latter, our single-cell data also show that 

SCytes and STids tend to contain a larger number of observed transcripts when compared to 

somatic cells or other germ cells (Figure 1D), leading to a larger “cell size factor” (a cell-
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specific scaling factor that is proportional to the total number of unique transcripts observed 

per cell). To compare the transcript distribution properties across cells and major cell types, 

we then calculated a Gini Index for each cell, which is a measure of gene expression 

inequality within a cell. Here the property of even-ness, or equality, describes whether the 

highly and the lowly expressed transcripts cover a moderate range or a very wide range. For 

example, a cell expressing many distinct genes (high diversity) may express most of them at 

very low levels, and thus display high uneven-ness. Cells with such a severely uneven 

distribution of transcripts among genes will have a Gini closer to 1, whereas those with a 

more even distribution of transcripts will have a smaller Gini. For sparse count data, the 

classic Gini Index has inherent dependencies with the cell size factor. After correcting for 

this effect, we observed systematic differences across the 11 cell types. During the transition 

from spermatogonia to elongated spermatids there is a progressive increase in the Gini index 

(Figure S1G), suggesting that the germ cells in later stages show greater inequality, devoting 

a higher fraction of their transcripts to a narrower set of unique genes, which likely reflects 

the focus on increasingly specific biological functions (Piras et al., 2014; Teschendorff and 

Enver, 2017), even if there are more distinct transcripts observed in these cells. In sum, these 

analyses underscore the power of single-cell profile data, which can be used to compare the 

biological state within and between differentiating germ cells and somatic cells at all levels, 

from individual genes to whole-cell heuristics. As the community curates specific gene lists 

to represent additional functional processes, other biological properties, such as cell cycle, 

stem-ness, senescence, and migration, can also be scored for individual cells, further adding 

to the richness of information contained in this cell atlas.

Germ cell development includes initial discrete states followed by a continuous 
differentiation trajectory.

Constant sperm production relies on spermatogonial stem cells undergoing spermatogenesis 

asynchronously. Therefore, within a given cross section of a tubule (a snapshot of time in the 

seminiferous epithelial cycle) one finds multiple germ cell types spanning different stages of 

differentiation. This spatiotemporal complexity has made it challenging to isolate stage-

specific cells with sufficient accuracy to decipher the developmental programs and their 

molecular drivers. Of the ~35K cells in our study, 20,646 correspond to germ cells with >1K 

detectable genes (range per cell 1–10K genes) (Figure 1B), allowing us to systematically 

identify distinct cellular states and key developmental transitions. The cell-cell distance 

matrix among the ~20K germ cells reveals cellular heterogeneity within and across clusters 

(Figure S2A). Unsupervised clustering of these cells identifies 12 germ cell states (GC1–12) 

(Figure 2A, Table S3A). The sequencing depth for each cell doesn’t affect germ cell 

clustering (Figure S2B), but varies the cells placement along the path or within a cluster. For 

example, in each cluster we have a 10-fold range in cell size (number of genes detected per 

cell), with large and small cells coexisting in every segment along the continuous trajectory, 

which strongly suggest that minimum coverage we have in this dataset is sufficient to 

classify and position cells along the trajectory.

From these clusters, we find GC1–3 are discrete cell types, whereas GC4–12 follow a long, 

continuous trajectory, describing a smooth progression without distinct stable states 

separated by sparsely occupied transient states. The pattern of discrete and continuous 
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developmental transitions is also substantiated by the rank correlation matrix of the 12 germ 

cell states’ centroids (Figure 2B). The developmental ordering of the 12 germ cell states was 

concordant with the pseudotime ordering from Waterfall (Shin et al., 2015) and Monocle 
(Trapnell et al., 2014) (Figure S2C, D).

To roughly define mitotically active, pre-meiotic, and post-meiotic cell populations within 

these 12 GC states, we calculated a mitotic cell cycle index for each cell, defined as the 

fraction of observed transcripts accounted for by 590 known cell cycle genes (Macosko et 

al., 2015). By this metric, cells in GC1 have the highest levels of mitotic cell cycle activity 

(Figure S2E), followed by gradually reduced levels in GCs 2–8, and vanishing levels in GCs 

9–12. These observations are consistent with GC1 being spermatogonia, GCs 2–8 being 

meiotic cells and 9–12 being STids / ES. Our rough division between mitotic, meiotic and 

post-meiotic cell types is further corroborated by known marker genes (Table S3A). Cells in 

GC1 express genes such as Zbtb16, Sall4, Gfra1, Sohlh1, Stra8, and Kit, therefore, GC1 

includes both undifferentiated and differentiating spermatogonia cells (note: PC1 vs. PC2 of 

all cells doesn’t discriminate among SPG cells. See spermatogonia section for SPG-focused 

analyses) (Figure 2C, S2D). GCs 2–3 represent discrete developmental transitions and 

contain far fewer cells than other clusters. The relative rarity of these cells suggests that they 

correspond to transient cellular states in vivo, as it is unlikely that the underrepresentation of 

these populations can be readily attributed to selective loss during the experiments. These 

cells express genes enriched in RNA splicing and RNA binding proteins, early meiotic genes 

such as Hormad1, Sycps, γ-H2Ax, and Dazl, as well as chromatin remodeling and 

epigenetic modifiers, such as Atr, Setx, Dnmt1, Chd, Brd, Ash1, Asxl2, Phf1/2, Mllt10 
(dot1l), and Brd8/9, suggesting that the transition from spermatogonia to early 

spermatocytes likely involves translational controls and changes in chromatin prior to 

entering meiotic prophase (Figure 2C, S2D). GCs 4–8 express mRNAs functioning at 

various stages of meiosis (Figure 2C, S2D). Although meiotic proteins have very defined 

stages of action histologically, we find that the RNAs of most of these genes are expressed 

broadly, over two or more clusters (Figure 2C), making it challenging to use known meiotic 

RNA markers to define meiotic stages precisely. To address this challenge we sought to 

develop new markers to define cell state along the germ cell developmental trajectory more 

precisely. Toward this goal we performed self-organizing map clustering, asking for an 

unbiased partition of cells into a linear series of 20 clusters. Strikingly, each of these clusters 

can be uniquely identified by 14–44 markers (mean 25.4), yielding a total of 508 markers 

that are transiently expressed in as narrow as one of the twenty clusters (Figure S2F). The 

list of ~500 markers genes may serve as relevant landmark genes that can precisely establish 

an unsupervised spatial map, and these novel markers can be used to distinguish meiotic and 

postmeiotic states more finely when combined with smFISH (Figure S2F, Table S3B). When 

validated, these genes may provide a resource on par with previous landmark datasets for 

different phases of mitosis (Whitfield et al., 2002).

Finally, GCs 9–12 express genes involved in acrosome formation or spermiogenesis (Acrv1, 

Prms and Tnps) (Figure 2C, S2D) and are also enriched for genes involved cytoskeleton 

organization and nuclear reorganization (Table S3A), consistent with these cells completing 

spermiogenesis to produce spermatozoa.

Green et al. Page 7

Dev Cell. Author manuscript; available in PMC 2019 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In short, our systematic analyses of the ~20k germ cells provides an unequivocal view of the 

continuous germ cell intrinsic program in the adult testis, and provides a list of stage specific 

markers that can finely partition the meiotic and postmeiotic process.

Dynamic gene expression regulation in germ cells identifies known and novel candidate 
regulators and suggests stage-of-action of infertility genes.

To delineate groups of genes showing concerted regulation over successive stages of germ 

cell development, we first calculated the average expression pattern (the “centroid”) of the 

12 germ cell clusters, selected 8,535 highly variable genes across these 12 centroids, and 

used K-means clustering to partition these genes into six (Figure 3A) or 12 groups (Figure 

S3A). Interestingly, even with the unsupervised approach, these gene groups reveal a natural 

progression from genes highly expressed in germ cell clusters GC1 to those highly 

expressed in GC12 (Figure 3A). An alternative clustering method, self-organizing map 

(SOM), produced similar gene groupings, corroborating the dynamic regulation of distinct 

gene groups (Figure S3B).

The purpose of grouping genes by clustering is different from those seeking to identify a 

small number of highly significant stage-specific markers, as each gene group contains both 

the most specific markers and the rest of the genes showing a similar but less crisp pattern. 

For instance, in the six-group partition of the 8,535 genes, each group likely captures both 

the principle drivers of a given stage of development, but also the larger number of 

“follower” genes (Table S3C). This allows us to leverage these gene groups to gain further 

insights of the functional theme, regulatory network, and clinical consequence of germ cell 

development. First, gene ontology analysis of the six gene groups highlights the cascade of 

functional programs that are activated: Group 1 genes are enriched for those related to cell 

cycle, DNA repair, oxygen sensing and response, and oxidative phosphorylation (FDR 

<5%). These results are consistent with an actively dividing population of spermatogonia. 

Genes in Group 2 are enriched for RNA processing, RNA splicing, alternative splicing, and 

TGF-β signaling. TGF-β signaling was previously shown to be induced or augmented in 

response to hypoxia in multiple cell types (Zhang et al., 2003), and it initiates an epithelial 

mesenchymal transition - allowing cells the ability to acquire a migratory potential(Xu et al., 

2009), suggesting that GC2 corresponds to cells in preparation for, or in the process of, 

crossing the blood-testis barrier. Finally, genes in Groups 3–6 represent downstream 

processes such as spermiogenesis and flagella formation.

To delineate major transcriptional regulators acting in individual stages we applied 

comprehensive motif discovery analyses using the putative promoter sequences (1 kb 

flanking each side of the transcription start site) of genes within each group (Bailey et al., 

2009; Machanick and Bailey, 2011). Motif enrichment patterns in promoter sequences 

suggest that genes within each group are likely regulated by distinct sets of transcription 

factors (TFs), i.e. very few TFs are present in multiple gene groups. Many of the 

transcription factors enriched only in group 1 genes have either an established role in SPG 

development (i.e. Bcl6b) (Oatley et al., 2006) or are implicated in infertility in gene-

knockout experiments (Zfx, Nrf1, E2f family, Ctcfl, and Egr1) (Figure 3B, Table S4A,B) 

(El-Darwish et al., 2006; Luoh et al., 1997; Suzuki et al., 2010; Wang et al., 2017). In 
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addition to TF categories described above, we find several motifs that either correspond to a 

known transcription factor that has not been previously explored in the testis (Zbtb33, 

Runx3, and Zx1), or very strongly enriched motifs that have no annotated transcription 

factor - providing us with lists of genes/motifs that need to be explored in future studies in 
vivo.

Finally, to explore the clinical utility of our single-cell data and the resulting gene-dynamics 

map of germ cell progression, we focused on ~200 previously reported mouse infertility 

genes (Matzuk and Lamb, 2008) and observed their dynamic expression patterns across the 

12 cluster centroids. A large fraction of mouse infertility genes have peak expression in the 

spermatogonia and round/elongating spermatid stage; and this pattern holds true also for 

human infertility genes documented by OMIM (Figure 3C, Table S3D). We then asked if the 

timing of a gene’s peak expression correlates with its observed stage of germ cell arrest once 

mutated. Interestingly, many genes causing arrest in one stage tend to be expressed at the 

highest levels in the same or an earlier stage. For instance, infertility genes that manifest as 

arrest at the spermatocyte stage tend to be expressed at highest levels in the preceding stage 

of spermatogonia. The observations of such a “lag” suggest that aberrant meiotic 

progression may manifest more according to the time of translational deficits than the time 

of transcriptional dysregulation. In contrast to meiotic arrests, the round and elongated 

spermatid arrests exhibit the expected concordance between expression timing and stages of 

arrest (Figure 3D). In short, we anticipate that these gene groups of distinct dynamic patterns 

can be used as a searchable resource to predict the stage-specific consequences of perturbing 

individual genes.

Single-cell data identify four spermatogonial subtypes that correspond to spermatogonial 
states previously described by histology.

Through a series of genetic experiments, many groups have independently identified a 

handful of spermatogonial stem cell markers that capture the developmental progression 

from undifferentiated (e.g., Gfra1, Lin28, Id4, Pax7, Etv5, Zbtb16, Tert and Bmi1) (Hara et 

al., 2014; Nakagawa et al., 2010); Chakraborty et al., 2014; (Chan et al., 2014; Sun et al., 

2015); (Aloisio et al., 2014) (Chen et al., 2005); (Buaas et al., 2004; Costoya et al., 2004); 

(Komai et al., 2014) (Pech et al., 2015) to differentiating spermatogonia committing entry to 

meiosis (e.g., Kit, Stra8, Dmrts, and Sohlhs) (Anderson et al., 2008; Kissel et al., 2000; 

Matson et al., 2010; Suzuki et al., 2012; Xu et al., 2009; Zhang et al., 2014). However, little 

is known about the transcriptome-wide dynamics during the differentiation process, the finer 

steps of the process, or the transcriptional regulators that are important for each step.

Our dataset contains 2,484 spermatogonia cells, providing an excellent opportunity to re-

examine these important questions. We performed focused re-clustering of 2,484 

spermatogonia cells and identified 4 subtypes (Figure 4A, B). Each of the four subtypes is 

comprised of cells with a range of 1,000 UMI – 10,000 UMI, suggesting that the number of 

genes per cell has a minimal effect on spermatogonia subtypes (Figure S4A). Global 

transcriptome patterns and developmental ordering of cells suggest that the four SPG 

subtypes follow the order of SPG1 to SPG4. Marker gene analysis suggests that cells in 

SPG1 correspond to undifferentiated spermatogonia, as they express one or more 
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spermatogonial stem cell genes such as Id4, Bcl6, Taf4b, Gfra1, Lhx1, Etv5, Eomes, and 

Plzf (a.k.a. Zbtb16), and lack the expression of differentiation markers (Figure 4B, C, Table 

S5A). Therefore, we predict SPG1 (~213) cells is comprised of a mixture of Asingle (a single 

spermatogonia stem cell), Apaired (two connected spermatogonia), and Aaligned (chains of 4, 

8, 16, or occasionally 32 spermatogonia). Unlike SPG1 subtype, cells in SPG2–4 subtypes 

express various differentiation marker gene combinations (Figure 4B, C), suggesting that 

these three SPG subtypes represent progressively differentiated spermatogonia (Matson et 

al., 2010; Schrans-Stassen et al., 1999; Suzuki et al., 2012; Zhang et al., 2014; Zhou et al., 

2008). Cells in SPG2 are Kit+ and Stra8+, express early differentiating markers such as 

Dmrt1, Dmrtb1, Sohlh1, Sohlh2, and lack any evidence for meiotic gene expression (Figure 

4C). These patterns are consistent with SPG2 corresponding to A1–4 differentiating 

spermatogonia (Zhang et al., 2014; Zhang and Zarkower, 2017). Cells in SPG3 are Kit+, 

Stra8−, Sohlh2−, Sohlh1+, Dmrtb1+, Dmrt1+, and express meiotic genes (such as Sycp3 or 

Prdm9) at very low levels. Specifically, the loss of Sohlh2 and low levels of meiotic genes 

suggests that this population is consistent with Aintermediate (Ain) – Type B spermatogonia 

(Suzuki et al., 2012). Cells in SPG4 are Kit+, Stra8+, and express high levels of meiotic 

genes, suggesting that SPG4 cells are consistent with Type B or preleptotene cells which are 

poised for meiotic entry. Notably, the off-on-off-on pattern of Stra8 mRNA expression 

across the four populations initially seemed unexpected (Figure 4C), but this bi-phasic 

activation of Stra8 across SPG states becomes clear when considering spatial positions of 

SPG2 (A1–4) and SPG4 (type B/Prelep) cells in the seminiferous tubule (Figure 4D). In 

stages VII-VIII of the seminiferous epithelial cycle, SPG2 and SPG4 populations are 

coincident, therefore, both are exposed to retinoic acid (RA) during this defined 

developmental window. The responsiveness of cells in SpG2 and SpG4 to RA is consistent 

with earlier data that has shown that retinoic acid signaling or dietary supplementation of 

RA precursors (vitamin A) is necessary for the transition of undifferentiated spermatogonia 

(Aundiff (SPG1) to A1 (SPG2) spermatogonia), and the transition of preleptotene cells 

(SPG4) into meiosis (Anderson et al., 2008; Endo et al., 2015; Hogarth et al., 2013; Morales 

and Griswold, 1987; Snyder et al., 2011; Van Beek and Meistrich, 1990). Interestingly, 

although both developmental transitions require active RA signaling, RA induces distinct 

cell type specific gene expression and exerts stage-specific outcomes, underscoring the 

importance of transcription factor repertoire or chromatin context of the cells in determining 

the signaling outcome.

Finally, to better define the complex networks of transcription factors that may be involved 

in coordinating the developmental progression of spermatogonia, we identified 57 subtype-

specific TFs over the four SPG states (Table S4C), 12 of which are shown in Figure S4B. 

Some of these TFs are specifically expressed in one state (e.g., Egr1 in SPG1; Lmo1 and 

Tcea3 in SPG2; Tead2, Esx1, and Pthf1 in SPG3; and Nr2c2, Nfat5, and Hif1a in SPG4), 

whereas others span multiple states (e.g., Esx1 in SPG3–4 and Cited in SPG2–4), suggesting 

broader functional activity. Taken together, this analysis provides the first molecular 

signatures of the major spermatogonia subtypes described histologically and identifies 

candidate transcriptional regulators that may act in a single state or across multiple states.
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The undifferentiated SpG1 spermatogonia population lacks distinct molecular states.

Early pairwise immunohistochemistry staining of many spermatogonial stem cell markers in 
vivo found that most identified stem cell genes show uneven distribution of markers among 

and across the undifferentiated spermatogonia populations comprised of Asingle, Apaired, and 

Aaligned spermatogonia (de Rooij, 1998; de Rooij and Russell, 2000; Nishimune et al., 1978; 

Ohbo et al., 2003; Shinohara et al., 2000). In order to achieve a more global sense of the 

heterogeneity within the undifferentiated spermatogonia cells, we performed a focused 

analysis of the 213 cells in SPG1. PCA and Louvain-Jaccard clustering using all genes, 

highly variable genes, or only the established stem cell genes (that can distinguish the 

Asingle, Apaired, and Aaligned cells among the undifferentiated SPG cells) each consistently 

identified a continuous ensemble of cells without discernible stable structure (Figure S4C). 

When forcing the data into two clusters, the three gene sets brought two-cluster solutions 

that were completely discordant (Figure S4C). This result suggests that SPG1 cells in our 

dataset do not reveal distinct functional subtypes and thus do not support the hierarchal 

model within undifferentiated SpG. Rather, our single cell sequencing findings are 

consistent with a model of spermatogonial stem cell plasticity previously described (Hara et 

al., 2014). However, it is also possible that the developmental hierarchy among the 

undifferentiated SPG cells is maintained at the level of protein content or cell-cell 

interaction, or alternatively, is dependent on very subtle transcriptomic differences which 

would require much deeper seqeuncing to discern. Nevertheless, our results yielded specific 

gene expression markers for SPG1 and can be leveraged as new reagents for SPG1 

enrichment for future in-depth analysis, or for in situ tracking to unravel the lineage 

relationships and spatial complexity.

Identification of known and novel somatic cell populations.

Successful spermatogenesis in mammals requires the support of a specialized 

microenvironment (i.e., the niche) consisting of diverse somatic cell types. In the past, the 

major somatic cell types were identified histologically, and their functional roles have been 

determined using genetic strategies (DeFalco et al., 2015; Yoshida et al., 2007). However, a 

comprehensive census of major cell types in the somatic compartment has been hampered 

by their relative rarity: unselected cell isolation from the testis tend to recover too few 

somatic cells. Here, we applied molecular and genetic strategies to enrich for single cells 

from the somatic compartment. Among the cells analyzed in these targeted enrichment 

experiments, ~5,000 can be assigned to somatic cells. Clustering analysis focusing on these 

cells revealed seven major cell types (Figure 5A). Five of the clusters were recognized as 

known cell types based on previously reported cell type-specific marker genes: Sertoli cells 

(Sox9), Leydig cells (Hsd3b1), myoid cells (Acta2), endothelial cells (Vwf), and 

macrophages (F4/80 a.k.a Adgre1) (Figure 5B). The two remaining clusters represent 

unexpected populations, corresponding to (1) an innate lymphoid type II immune cell type 

not known to be present in the testis and (2) a previously unknown mesenchymal cell 

population (further described below).

Cells in the first unexpected cluster have high expression levels for Id2, Gata3, Cd90, IL7R, 

IL13, and Rora (Table S2), which are cell surface, intracellular, and cytokines markers 

characteristic of innate lymphoid type II (ILCII) cells – a population similar to T-helper cells 
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(TH cells)(Spits and Di Santo, 2011). These cells were first described in the spleen, 

mesenteric lymph node, and bone marrow of mice, where they play a role in regulating 

immune responses (Neill et al., 2010). However, these cells were not previously looked for, 

nor known to exist, in the testis. To confirm the presence of this population in the testis by an 

independent approach, we performed whole-animal perfusion with 1X PBS in order to clear 

circulating immune cells from the testis, and then dissociated and stained the single 

suspensions using a variety of surface markers (CD45, THY1, CD3, CD4, CD8, IL7R), 

intracellular transcription factors (GATA3) or immune cytokines (interleukin 4 (IL-4) or 

IL-13) (see methods, Figure 5C, D, S5A). Immune cell profiles from total testis show that 

the total percentage of immune cells (CD45+) in the testis is ~8% (Figure S5A). Of the 

CD45+ cells, ~3% are Thy1.2+ (Figure S5A), which marks both T-helper cells (TH2) and 

ILCII populations. To distinguish between these populations, we first gated cells based on 

CD3 expression (Figure S5A) followed by CD4, CD8, and IL7R (Figure 5C, S5A). Based 

on these flow profiles we can conclude that the CD3+, CD4+, CD8−, and IL7R+ cells are 

TH2 cells, whereas the CD3−, CD4−, CD8−, and IL7R+ cells are ILCII. To further verify that 

the triple negative population (CD3−, CD4−, CD8−, IL7R+) is truly an ILCII population, we 

stained for a panel of intracellular transcription factors and cytokines and found that the 

testis ILCII population is positive for Gata3 and IL-13, but not IL-4 (Figure 5D).

Cells in the second unexpected cluster show high expression levels for Tcf21, Arx, Vim, 
Col1A1, and Sca1, and are recognized as a mesenchymal cell population (Figure 5B, Table 

S2). To determine the location of these cells in the testis, we used a genetic labeling strategy 

(Tcf21-creERT2; tdTomato), which confirms the presence of a Tcf21+ cell population 

surrounding the seminiferous tubules (Figure 5E) and interstitial space. Furthermore, we 

molecularly enriched for the Tcf21+ cell population by flow sorting cells with the surface 

markers Sca1+/Kit– from the testis (Figure 5F). This population has high levels of Tcf21 and 

Col1A1, but lacks expression of Myh11, ActA2, indicating that this population is distinct 

from both mature myoid and Leydig cells.

To determine whether a similar population is detected in the embryonic gonad population, 

we reprocessed the previously published single-cell RNA-seq data for Nr5a1-GFP+ cells in 

XY mouse gonads during sex determination (Stevant et al., 2018), which identified six 

somatic cell types. Comparisons with the seven somatic cell types found in our study 

demonstrate that the adult endothelial, Leydig, and Sertoli cells show high correspondence 

to cells in the embryonic gonad tissue, while our unknown cell type is most similar to the 

interstitial progenitor cells in the embryonic gonad (Figure S5B). Interestingly, pseudotime 

ordering of this embryonic population by Stevant et. al. suggests that the interstitial 

progenitor population may give rise at least to fetal Leydig cells. Whether the adult Tcf21+ 

population acts as a reserve somatic progenitor in the adult during tissue homeostasis or 

tissue regeneration remains to be determined.

Next, we compared our data with those reported for the Mouse Cell Atlas (MCA) which 

analyzed >16K cells from the adult mouse testis (Han et al., 2018). While our atlas contains 

enhanced representation of somatic cell types, the MCA is dominated by germ cells, and 

lacks dense survey of other cell types. As a result, unsupervised clustering could not reliably 

identify major cell types within the MCA. By a semi-supervised approach using most 
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definitive markers developed from our study, we were able to reach a provisional 

identification of seven minor cell types in MCA aside from the germ cells, which are the 

overwhelming majority. After calculating the rank correlation between each of the 8 cluster 

centroids from MCA with each of the 11 major cell type centroids in our study, we found 

that the Leydig cells, myoid cells, macrophages, and Sertoli cells can be identified in MCA, 

whereas our unknown, endothelial cells, and the innate lymphoid cells were not found 

(Figure S5C). Furthermore, there is no discernible substructure among the MCA germ cells 

that correspond to spermatocytes, the round spermatids, or elongated spermatids.

Taken together, the analysis of a large number of single somatic cells identifies known and 

rare, unexpected populations in the testis. Future studies will be needed to characterize the 

functional significance of the ILCII and mesenchymal cell populations in testis development 

and tissue homeostasis.

Sertoli subtypes capture transcriptional changes across the stages of the seminiferous 
epithelial cycle.

Sertoli cells are the only somatic cells within seminiferous tubules that intimately interact 

with developing germ cells (Figure 6A). As a result, the functional role of Sertoli cells has 

been a subject of intense investigation for decades. Sertoli cells residing at different stages of 

the seminiferous epithelial cycle exhibit characteristic differences in size, shape and marker 

gene expression patterns (Hasegawa and Saga, 2012; Johnston et al., 2008; Kerr, 1988a, b). 

These features (Figure 6A) have supported the description of Sertoli cell heterogeneity in 

terms of 12 spatially-ordered stages of the seminiferous tubule (labeled I-XII in Figure 4D).

Our atlas allows the first direct analysis of a large number of Sertoli cells from the adult 

testis (Figure 5A), isolated from two transgenic lines Sox9-eGFP and Amh-cre;mTmG. 

Unsupervised clustering of ~1,100 Sertoli cells with >1,000 detected genes identifies four 

stable cell clusters (SER-1 to SER-4) which can be further divided into nine sub-clusters, 

denoted SER-1, SER-2A/B, SER-3A/B, and SER-4A/B/C/D, where the A-B split indicates 

finer divisions among transciptomically similar cells (Figure 6B). The nine subtypes showed 

different functional attributes (Figure S6A) and all nine were observed in both of the two 

transgenic lines (Figure S6B, C). A natural question then is how the four types of Sertoli 

cells, or the nine subtypes, match to the histologically defined stages. We took advantage of 

previously reported stage-specific marker genes identified by microarrays from tubule 

segments (Hasegawa and Saga, 2012; Wright et al., 2003) and compiled them into four lists, 

corresponding to the mouse seminiferous tubule stages I-III, IV-VI, VII-VIII, and IX-XII, 

respectively. We then calculated the relative “loading”, or correspondence (see Methods), of 

the four curated lists of stage-specific genes in each of the nine sub-clusters observed in our 

data (Figure 6C). Interestingly, we do not find a simple one-to-one matching between the 

four histological stages and the four major clusters. Rather, cells within the same major 

cluster, such as SER-2A/B, may correspond equally well to two different stages; or, 

equivalently, cells with the same stage-specific signatures may appear in multiple clusters, 

such in both SER-2A and 3A. More specifically, cells in SER-2A express genes associated 

with Stages IX-XII, while cells in SER-2B, although computationally predicted to be closely 

related to SER-2A, map to Stages IV-VI (Figure 6C). Therefore, the single-cell analysis of 
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Sertoli cells uncovers a fundamental difference between transcriptome-wide functional 

properties of Sertoli cells and spatially defined developmental stages of the seminiferous 

tubule. This result implies that 1) clustering of cells are influenced by all active biological 

pathways and global cell attributes, but these global attributes may not fully reveal specific 

programs that confer positionally-defined biological stages; and 2) functionally dissimilar 

Sertoli cells – as defined by global transcriptome patterns – may co-localize in situ and serve 

complementary functions.

To independently validate the predicted spatial positions of the 9 Sertoli cell subtypes, we 

performed single-molecule fluorescent in situ hybridization (smFISH) or single molecule 

hybridization chain reaction (smHCR), followed by lectin immunostaining. The shape of the 

lectin distribution in individual germ cells (shown in green) shows characteristic patterns 

that allow us to estimate the stage of the seminiferous epithelial cycle for each tubule cross 

section (Figure 6E, S6D, S7A,B). However, a challenge to image RNA transcripts in situ in 

intact Sertoli cells are at least two-fold. First, Sertoli cells are large - they traverse the tubule 

radius and are in direct contact with, and often enclose germ cells. Second, we lack cell 

surface markers that define the perimeter of the Sertoli cells. To overcome these challenges, 

we focused our smFISH and smHCR analysis on a series of highly variable Sertoli cell 

subtype-specific marker genes that are absent in germ cell populations (Table S6). Therefore 

using this approach, we feel it is reasonable to deduce that the observed puncta from either 

smFISH or smHCR are part of the Sertoli cells of a specific stage (that lectin-staining has 

defined), and not part of the germ cells.

The marker gene lists identified for the 9 Sertoli cell clusters contain many of the previously 

described stage-variable genes (i.e. Gas6, Drd4, P2rx2, Zfp36l1) identified from tubule 

segments isolated by transillumination (Hasegawa and Saga, 2012; Wright et al., 2003), as 

well as newly discovered subtype marker genes such as Mfge8, Prm2, Lgals, Caskin1, Ptprv, 
Mical2, Eyst3, Zfp36l1, and Dpysl4. Importantly, the majority of marker genes selected for 

smFISH or smHCR recapitulated the predicted Sertoli subtype stage specific expression 

patterns (Figure 6C,D, Table S6). For example, previous literature and our Drop-seq data 

both predict that Gas6 is highest in I-III, dropping in IV-VI and to the lowest point in VII-

VIII, and partially recovers in IX-XII (Figure 6C, Table S6), which is indeed observed in our 

smFISH patterns (Figure S6D) and quantification (Figure S7D). Similarly, the predicted 

patterns were seen for genes such as Drd4, Dpysl4, Mfge8, Pr2×2, Eyst3, Zfp36l, and 

Zfyve27 (Figure S7C, D). Further, to expand the number of genes tested simultaneously in a 

single tissue cross-section, and have a better sense of presence/absence of signals across 

stages, we performed multiplex sequential smHCR using a panel of markers that can 

distinguish between the Sertoli cell subtypes. Specifically, by using a combination of 

markers (Lagls, Caskin1, Ptprv, Mical2, Eyst3), we confirm that cells derived from a major 

Sertoli cell cluster (Ser-4C/D vs. Ser-4A/4B, or Ser-3A vs. 3B) reside in distinct locations of 

the seminiferous epithelium (Figure 6D–E).

A particularly unexpected marker of Sertoli cells was protamine 2 (Prm2) - a sperm specific 

nuclear protein highly expressed in the round spermatid, but under translational control 

(Table S6). smFISH validation of Prm2 transcript in the testis (Figure S7A,B) shows 

protamine signal in regions surrounding the round spermatid nuclei (stages VII-VIII) and in 
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Sertoli cell tips. This cytoplasmic staining pattern of Prm2 transcript is observed in Sertoli 

cells of almost all stages of the seminiferous tubule cycle (except VII-VIII). The persistence 

of protamine RNA is surprising because one expects that RNAs brought in from 

phagocytosed germ cells or residual bodies should be degraded immediately by the 

lysosome. Instead, these RNAs persist in Sertoli cell cytoplasm (Figure S7A, B). To 

determine and validate the site of transcription, we designed a protamine probe set 

containing intronic and UTR sequence, therefore allowing us to capture transcriptional foci 

in the nucleus. As expected, Prm2 transcriptional foci are detected in the round spermatid 

nucleus at stages VII-VIII, whereas, the nuclear signal is absent from Sertoli cell nuclei, 

despite having Prm2 transcript in the cytoplasm - which is consistent with the notion that the 

Prm2 RNAs present in Sertoli cell cytoplasm are persistent RNAs of germ cell origin. If and 

whether a biological role exists for these retained RNAs remains to be examined.

In short, by using using both known and novel markers for each Sertoli subtype, we have 

successfully linked the 9 Sertoli cell subtypes to the predicted stages of the seminiferous 

epithelial cycle (Figure 6C–E, S6D, S7C–D, see Methods), and showed that many of the 

selected Sertoli subtype markers are not regulated in an on-off manner, underscoring the 

continuous nature of Sertoli cell progression.

Discussion

Spermatogenesis is characterized by three specific functional phases: mitotic proliferation 

and expansion, meiosis, and spermiogenesis. In the proliferation phase, spermatogonia 

(SPG) lining the basement membrane asynchronously undergo several mitotic divisions to 

form spermatocytes (SCytes), which then complete two meiotic divisions to form haploid 

spermatids (STids). The STids proceed through the process of spermiogenesis, which entails 

morphological, structural, and chromatin changes, ultimately giving rise to mature sperm. 

This differentiation process is coordinated radially within a tubule cross-section, and occurs 

asynchronously along the tubule. As a result, at any point along the seminiferous tubule 

there are multiple differentiating germ cells at different stages of development. The 

longitudinally continuous and radially asynchronous process of spermatogenesis has made it 

challenging to obtain stage specific molecular resolution of germ cell development. As a 

result, past studies relied on histological descriptions (Clermont, 1972), characterized 

transcriptomes of purified cells using known cell surface markers (Guo et al., 2017; 

Hammoud et al., 2014; Hammoud et al., 2015; Lesch et al., 2013; Oatley et al., 2006; 

Yoshida et al., 2007), or analyzed the semi-synchronous or artificially synchronized first 

wave of spermatogenesis in the neonatal testis (Ball et al., 2016; Zimmermann et al., 2015). 

Therefore, the field of stem cell, regenerative, and reproductive biology still lacks a 

comprehensive catalogue of major cell types, cell states, associated molecular markers and 

signaling pathways that guide this developmental process. We addressed this challenge by 

performing single-cell RNA-seq analysis of ~35,000 cells of the adult testis.

A complete cellular and molecular catalog of spermatogenesis.

At a gross level, we identified all major germ cell groups including spermatogonia (stem and 

progenitor populations), spermatocytes, round spermatids, and elongating spermatids. 
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Unsupervised ordering of cells allowed us to reconstruct a complete differentiation trajectory 

of the spermatogenic process at an unprecedented resolution (Figure 2, 7; GC1-GC12). Our 

annotation of germ cell subtypes (GC1-GC12) uses an existing set of genes from prior 

knowledge. However, many of these genes exhibit broad expression patterns and may not be 

the most specific molecular markers for individual stages. Instead, we generated a list of 

tightly regulated genes along the germ cell differentiation trajectory to precisely define 

subtypes, but these markers need validated by smFISH in order to provide a highly detailed 

molecular map for meiosis – a resource on par with previous landmark datasets for different 

phases of mitosis (Whitfield et al., 2002).

Our data demonstrate for the first time the continuous nature of germ cell development with 

no stable intermediate states. Although spermatogenesis appears largely continuous, there is 

a rare and discrete developmental transition (captured by clusters 2/3) occurring prior to 

entry into meiosis. The cells in these clusters express multiple transcriptional cofactors, 

epigenetic modifiers, and remodelers including Setx, Dnmt3a, Cbx1, Kdm5a, Ash1, Asxl2, 

Phf1/2, Mllt10 (dot1l), and Brd7/8/9. Previous genetic labeling or loss-of-function 

experiments demonstrate a role for some of these factors in germ cell development. For 

example: 1) Setx−/− mice exhibit a severe disruption of the seminiferous tubules and early 

meiotic arrest in 35-day males (Becherel et al., 2013); 2) Analysis of postnatal testis in 

Asxl2 gene trap mice shows that Asxl2 expression is restricted to early spermatocytes and is 

not detectable in secondary spermatocytes. Full body knockout of Asxl2 results in early 

neonatal lethality, therefore, fertility could not be evaluated (Baskind et al., 2009); 3) PHF1 

protein, which is comprised of an N-terminal Tudor domain and two C-terminal PHD 

fingers, play important roles in Polycomb repressive complex 2 (PRC2)-mediated 

transcriptional repression through stimulating H3K27me3 activity by binding to H3K36me3 

(Cai et al., 2013; Musselman et al., 2012; Qin et al., 2013). A recent investigation showed 

that PHF1 binds to H3K27me3 on a testis-specific H3 variant (Kycia et al., 2014), 

suggesting that some well-studied somatic epigenetic “readers” might play distinct but yet-

to-be-identified roles specifically in germ cells.

While the initial analysis of all cells identified spermatogonia cells, we could not clearly 

distinguish SPG subtypes. Only by focused re-clustering of the ~1,200 SPG cells could we 

resolve the undifferentiated and differentiated spermatogonia. This analysis discerns four 

SPG subtypes that correspond to spermatogonial stem cell populations previously described 

histologically (Figure 4,7). A further zoomed-in analysis of the undifferentiated SPG1 

population doesn’t reveal any structural hierarchy or stable states, suggesting cellular 

plasticity at the RNA level consistent with stem cell plasticity model of the undifferentiated 

SpG cells.

In addition to reconstructing comprehensive developmental maps and gene expression 

networks, we have identified both known regulators (Egr1/4, Bcl6b, Nrf1, E2f4, Nfyb, Ctcfl, 
Rfx2) (Danielian et al., 2016; Fukuda et al., 2013; Sleutels et al., 2012; Tourtellotte et al., 

2000; Wang et al., 2017) and previously undescribed regulators (Zbtb33, Zbtb7a, Rfx3/4, 

Runx3) in germ cell development (Figure 3B), which will need to be further validated using 

molecular and genetic approaches. Additionally, we find a large number of uncharacterized 

motifs in both meiotic and postmeiotic cells – which raises the possibility of identifying 
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gametogenesis-specific factors that were missed from somatic cell ENCODE datasets. In 

sum, the cellular catalog, developmental trajectories, transcriptional programs and candidate 

regulators described here deepened our understanding of the gametogenesis process and far 

exceed the level of granularity described in earlier foundational datasets performed on sorted 

bulk populations (Guo et al., 2017; Hammoud et al., 2014; Lesch et al., 2013; Soumillon et 

al., 2013).

Characterization of the somatic compartment of the testis

Although the enrichment strategies, by definition, led to a cellular census that no longer 

reflects the true proportion of cell types in vivo, our approach gained the advantage of 

efficiently charting the entire molecular landscape of testis somatic cells. The markers we 

developed for both common and rare cells will enable future rounds of spatiotemporal 

mapping of cell-cell interactions/communications in a complex organ structure. Even at this 

early stage of map building, we made the provocative discovery of two unexpected somatic 

cell types.

The first is an ILCII population, which is related to TH2 cells in terms of cytokine 

production, and have been studied in the context of intestinal homeostasis (Yang et al., 

2016). The ILCII population in the testis is capable of secreting high levels of IL-13, but not 

IL-4 in vitro (Figure 5). The presence of IL-13 in the testis has been detected using real-time 

RT-PCR, but the source was not known (Maresz et al., 2008). However, the authors of that 

study nicely demonstrate that the IL-13 cytokine and receptor are necessary for maintaining 

an alternative subpopulation of macrophages known as M2 (ym1+) macrophages (Maresz et 

al., 2008). Based on these preliminary observations from the testis and from other tissues, 

we postulate that the ILCII population in the testis may have an immune surveillance and 

tissue homeostasis function.

The second population identified was a Tcf21+/Sca1+ population. Based on the 

transcriptome data, comparative analysis with earlier single cell transcriptomes, and gene 

ontology analysis we predict that the Tcf21+cells is a mesenchymal cell population that is 

reminiscent of an embryonic interstitial cell progenitor population has been previously 

predicted to give rise to fetal supporting cells by pseudotime ordering (Acharya et al., 2011; 

Cui et al., 2004; Stevant et al., 2018). However, the role of this population in the adult testis 

is unknown, and whether this population can serve as reserve somatic stem cell remains to 

be tested. Future studies will aim to elucidate whether the ILCII and/or Tcf21+ populations 

play an essential role in testis tissue homeostasis.

Finally, for somatic cell populations with sufficient cell numbers, such as the Sertoli cells, 

we applied iterative clustering to uncover previously unappreciated finer-level heterogeneity. 

Re-clustering of Sertoli cells identified four major subtypes that can be further divided to 

nine molecular clusters (Figure 6, 7). We found that each major cluster can contain multiple 

functional types; whereas conversely, each functional type of Sertoli cells could reside in 

multiple stages of the seminiferous epithelial cycle. Furthermore, the cell type-specific 

markers we produced, in conjunction with stage-specific markers, will be invaluable for 

dissecting the co-localization patterns of diverse classes of Sertoli cells, unraveling the 
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functional heterogeneity of Sertoli cells within a single cross-section, and resolving germ 

cell – Sertoli cell communication.

Taken together, our datasets and findings will likely serve as an enduring resource to the 

community, and are critical for an integrative understanding of germ cell development and 

germ cell – niche communication. Such an understanding represents an essential step toward 

finding new ways to recapitulate this process in vitro in the context of developing novel 

therapeutics for infertility.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the 

corresponding author S. Sue Hammoud (hammou@med.umich.edu). Questions regarding 

computational resources can be directed to co-corresponding author Jun Li 

(junzli@med.umich.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal experiments were carried out with prior approval of the University of Michigan 

Institutional Committee on Use and Care of Animals (Animal Protocols: PRO04380, 

PRO06792), in accordance with the guidelines established by the National Research Council 

Guide for the Care and Use of Laboratory Animals. Adult (7 to 18 weeks old) male mice 

were housed in the University of Michigan animal facility, in an environment controlled for 

light (12 hours on/off) and temperature (21 to 23°C) with ad libitum access to water and 

food. For detailed mouse strain information, see below and Key Resources table.

METHOD DETAILS

RNA-sequencing

Isolation of mouse cells for sequencing: Testes from adult C57BL/6 (JAX®mice, stock no. 

000664) and transgenic mice were excised and the tunica albuginea was removed. Briefly, 

seminiferous tubules were transferred to 10ml of digestion buffer1 (comprised of Advanced 

DMEM:F12 media (Life Technologies), 200 μg/ml Collagenase IA (Sigma), and 400 

units/ml DNaseI (Worthington Biochemical Corp.)). Tubules were dispersed by gently 

shaking by hand, and allowed to settle for 1 min at room temperature. Tubules were then 

transferred to digestion buffer 2 (200 μg/ml trypsin (Invitrogen) and 400 units/ml DNaseI 

(Worthington Biochemical Crop) dissolved in Advanced DMEM:F12 media) and dissociated 

at 35°C / 215 rpm for 5 min each and quenched with the addition of fetal bovine serum 

(FBS). Cells were filtered through a 100 μm strainer, washed in Phosphate-buffered saline 

(PBS), pelleted at 600g for 3min, and re-suspended in MACS buffer containing 0.5% BSA 

(MACS buffer; Miltenyi Biotec). For interstitial cell enrichment, testes were dissociated in 

digestion buffer 1 (described above) for 5min at 35°C / 150 rpm, the cells were dislodged by 

a gentle hand shake, supernatant quenched with FBS (tubules were discarded), and used 

directly for Drop-Seq. For all Drop-seq experiments, live single-cell suspensions were 

collected by flow cytometry using FACSARIA II/III (BD Biosciences) and Synergy SY3200 

(Sony) cell sorters.
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Enrichment of rare cell populations: Because cells such as spermatogonia, interstitial and 

Sertoli cells are very rare and proportionally less well-represented in the unbiased six 

seminiferous tubule (ST) dataset (6 batches), we employed a number of genetic or molecular 

strategies to enrich for these various cell types. Specifically, we did 1n-depletion experiment 

to remove haploid round and elongating spermatids (2 batches), which account for >50% of 

the cells of the testis and this naturally increases the representation of rarer cells. We also 

specifically enriched for undifferentiated and differentiating spermatogonia (SPG) (3 

datasets), Interstitial (INT) cells (6 datasets), Sertoli (SER) (8 datasets) in order to achieve a 

more comprehensive census of major cell types testis (Table S1A).

1n-Depletion: Hoechst 33342 (Life Technologies) and propidium iodide (PI) staining was 

performed on single cell suspensions of testis as previously described (Gaysinskaya et al., 

2014). This method allows us to identify and remove haploid germ cell subtypes, while 

maintaining all other testicular cells.

SPG-enrichment: Spermatogonia were enriched by selection of C-kit+ or Gfra1+ cells. C-

kit+ (CD117) cells were isolated from whole tubule cell suspensions on a magnetic cell-

sorting separator (Miltenyi Biotec) using an anti-CD117 (Miltenyl Biotec) antibody. Cells 

were additionally stained with a biotinylated anti-CD117 antibody (1:200) for 20 min 

followed by streptavidin conjugated Alexa Fluor 488 (1:1000, Life Technologies) for 20 min 

prior to flow cytometry. For Gfra1+ selection, tamoxifen inducible Gfrα1CreERT2 mice on a 

C57BL/6 background (kindly provided by Dr. Shosei Yoshida, National Institute for Basic 

Biology, Okazaki, Japan) were crossed with B6.Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo 

(RosamT/mG; JAX®mice, stock no. 007676). Labeling of Gfra1+ spermatogonia was 

conducted by injecting a Gfrα1CreERT2; RosamT/mG mouse with 2mg of 4OH-tamoxifen 

(dissolved in ethanol and then in corn oil, Sigma) per day for 3 weeks prior to euthanasia at 

8 weeks of age. All live Gfra1 positive (GFP expressing) and tdTomato negative cells were 

collected by flow cytometry. The extended labeling was necessary to obtain the number of 

cells needed for Drop-seq. As a result this dataset includes spermatogonia and 

spermatocytes.

Interstitial enrichment: Interstitial cell dissociations were performed by modifying 

digestion buffer 1 – which replaces 2.5mg of collagenase 1a1 with 0.25mg of collagenase D 

(Sigma). This milder digest is sufficient to gently dissociate the interstitial cells, but the 

second digestion buffer containing trypsin is the same for all sample preps since this is 

required to dissociate the seminiferous tubule into a single cell suspension. For Thy1+ 

enrichment, we performed a magnetic cell-sorting separator (Miltenyi Biotec) using anti-

CD90.2 (Miltenyi Biotec) antibody. Cells were additionally stained with anti-CD90-FITC 

conjugated (1:200; Abcam, Cat# ab62009; RRID: AB_940927) or anti-CD90-PerCP 

cyanine5.5 (1:200; Life Technologies, Cat# 45090082; RRID: AB_2573662) for 20 min 

prior to flow cytometry and CD90+ cells were collected for Drop-seq. For Sca1+ (Ly6a) cell 

enrichment, cells were stained with anti-Ly6a-PerCP cyanine5.5 (1:200; Life Technologies, 

Cat# 45-5981-82; RRID: AB_914372) for 20 min or biotinylated anti-Ly6a (1:200) for 20 

min followed by streptavidin conjugated Alexa Fluor 488 (1:1000; Life Technologies Cat# 
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S11223; RRID: AB_2336881) for 20 min prior to flow cytometry. Sca1+ cells were 

collected for Drop-seq.

Sertoli cell enrichment: Sertoli cells were enriched by selection of Amh+ or Sox9+ cells. 

For Amh+ cell selection, 129S.FVB-Tg(Amh-cre)8815Reb/J (JAX®mice, stock no. 007915) 

mice were crossed with RosamT/mG. Amh-cre; RosamT/mG were used to collect all live Amh 

positive (GFP expressing) and tdTomato negative cells by flow cytometry. For Sox9+ cell 

selection, Sox9-eGFP (MGI ID: 3844824) mice were used to collect GFP+ cells by flow 

cytometry.

Drop-seq procedure: Single-cell suspensions were diluted to 280 cells/ml and processed as 

described previously (Macosko et al., 2015). Briefly, cells, barcoded microparticle beads 

(MACOSKO-2011–10, Lots 113015B and 090316, ChemGenes Corporation), and lysis 

buffer were co-flown into a microfluidic device and captured in nanoliter-sized droplets. 

After droplet collection and breakage, the beads were washed, and cDNA synthesis occurred 

on the bead using Maxima H-minus RT (Thermo Fisher Scientific) and the Template Switch 

Oligo (Table S7). Excess oligos were removed by exonuclease I digestion. cDNA 

amplification was done for 15 cycles from a pool of 2,000 beads using HotStart ReadyMix 

(Kapa Biosystems) and the SMART PCR primer (Table S7). Individual PCRs were purified 

and pooled for library generation. A total of 600 pg of amplified cDNA was used for a 

Nextera XT library preparation (Illumina) with the New-P5-SMART PCR hybrid oligo, and 

a modified P7 Nextera oligo with 10 bp barcodes (Table S7). Sequencing was performed on 

a HiSeq-2500 (Illumina) in Rapid mode for read length of 112 nt, 115 nt, 126 nt, or 151 nt 

with the Read1CustomSeqB primer (Table S7). Oligo sequences are the same as previously 

described (Macosko et al., 2015).

Validation of ILCII cell population: Testes were collected from adult C57BL/6 

(JAX®mice, stock no. 000664) mice and enzymatically and mechanically dissociated into a 

single cell suspension enriched for interstitial cells as described above. The single cell 

suspension is stained with a series of cell surface markers including anti-CD8-BV570 

(1:300; Biolegend 100739), anti-CD3-PE/Cy7 (1:300; Biolegend 100219), anti-CD4-BV510 

(1:300; Biolegend 100449), anti-IL7r-PE/Cy5 (1:300; Biolegend 135015). However, for 

intracellular staining - the ILCII cells were first incubated with PMA (10 ng / mL), 

ionomycin (10 μM), with the addition of Golgi-stop reagent (BD Bioscience, San Jose, CA) 

for 4 h at 37°C and subsequently stained for anti-IL4-PE (1:300; Biolegend 504103), anti-

IL-13-APC (1:300; Novus 011818), and anti-Gata3-BV421 (1:300; Biolegend 653813) for 

30 minutes prior to flow cytometry.

Validation of Tcf21+ cells: 8week Tcf21-creERT2:tdtomato males were injected with a 

single dose of 2mg. The testes were collected within 24 hours, embedded in OCT, sectioned 

and stained with DAPI.

Histological Methods

Validation by single molecule RNA FISH: Adult male mice were perfused with 4% 

RNase-free paraformaldehyde (PFA). Testes were transferred to 20% RNase-free sucrose 
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overnight at 4°C, embedded in OCT, and cryosectioned at a 7um thickness. Single molecule 

RNA FISH (smFISH) was performed as previously described by Raj et. al. (Raj et al., 2008) 

with slight modifications. Briefly, tissue sections were warmed to room temperature for 10 

min, cross-linked with 4% RNase-free PFA for 10 min, washed with 2x SSC, and 

permeabilized in 70% ethanol overnight at 4°C. Coverslips were pre-equilibrated in FISH 

wash buffer (2x SSC, 10% deionized formamide (Fisher Scientific)) for 5 min, and washed 

twice in FISH wash buffer containing 0.2% Tween-20 (Sigma) for 15 min for additional 

permeabilization. Custom probe sets targeting mouse Gas6, Mfge8, Drd4, Dpysl4, Esyt3, 

Zfp36l1, P2rx2, and Prm2 were labeled with Quasar 570 or Quasar 670 from Stellaris (LGC 

Biosearch Technologies). For probe design see Raj and Tyagi 2010 (Raj and Tyagi, 2010). 

Probes were added to hybridization buffer (2x SSC, 10% dextran sulfate, 1 μg/μl tRNA 

(Roche), 2 mM vanadyl ribonucleoside complex (NEB), 0.5% RNase-free BSA (Ambion), 

10% deionized formamide) at 20 to 100 nM and applied to the tissue sections for 20 hrs at 

37°C in a humidified chamber. Samples were washed with FISH wash buffer at room 

temperature for 15 min, at 37°C for 20 min, and again at 37°C with 20 ng/ml DAPI for 30 

min, at room temperature for 10 min, and mounted using an in-house antifade solution (2 

mg/ml p-phenylenediamine (Sigma) dissolved first in 0.3 M Tris-pH 9.0 and then brought up 

in glycerol at a ratio of 3:7). Tubules were imaged at 100x using an oil immersion objective 

on a Nikon Ti-E inverted fluorescence microscope equipped with a Photometrics Prime 95B 

Back-illuminated sCMOS Camera (Nikon Instruments Inc., Melville, NY). Each tubule was 

captured with 4 Z-stack images, each comprising 19 Z-sections with 0.3 μm spacing, and 

stitched together using NIS elements software. Quantification of spots was conducted using 

MATLAB (MathWorks) image analysis software developed and kindly provided by Arjun 

Raj. smFISH molecules were counted from maximum projection images for each whole 

tubule section after background subtraction of auto-fluorescent spots in the 488-nm channel. 

To determine the stage of the seminiferous epithelial cycle, we added PNA lectin (Life 

Technologies) at 1:650 and incubated tissue for 45 min. Each tubule was then reimaged, 

capturing Z-stacks as described above, and assigned to stages of spermatogenesis as 

described by Meistrich ML and Hess RA (Meistrich and Hess, 2013).

Validation by single molecule RNA HCR: Testes sections from adult male mice were 

prepared as described above, and single molecule RNA HCR was performed as described by 

Choi et al. (Choi et al., 2018) with slight modifications. Briefly, tissue sections were warmed 

to room temperature for 10 min, cross-linked with 4% RNase-free PFA for 10 min, washed 

with 1X PBS, and permeabilized in 0.5% Triton X-100 (Sigma T8787) for 1 hour at room 

temperature. Coverslips were then washed in 5X SSCT (Life Technologies 15557–044) and 

equilibrated in HCR hybridization buffer (30% Formamide (Ambion AM9342), 5X SSC 

(Life Technologies 15557–044), 9 mM Citric acid (pH 6.0) (Sigma 791725), 0.1% Tween-20 

(Life Technologies 00–3005), 50 μg/mL Heparin (Sigma H3393), 1X Denhardt’s solution 

(Life Technologies 750018), and 10% Dextran Sulfate (Sigma D6001)) for 1 hour at 37°c, 

then probes were added to the sections at a final concentration of 2nM and hybridized 

overnight in a humidified chamber at 37°c. Custom probe sets for Esyt3, Lgals1, Mical2, 

Ptprv, and Caskin1 were designed and synthesized by Molecular Technologies. Samples 

were washed three times in HCR wash buffer (30% Formamide (Ambion AM9342), 5X SSC 

(Life Technologies 15557–044), 9 mM Citric acid (pH 6.0) (Sigma 791725), 0.1% Tween-20 
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(Life Technologies 00–3005), 50 μg/mL Heparin (Sigma H3393)) for 15min at 37 °c and 

then three times for 15min at 37 °c in 5X SSCT (Life Technologies 15557–044). The probe 

sets were amplified with HCR hairpins for 45–90min at room temperature in HCR 

amplification buffer (5X SSC (Life Technologies 15557–044), 0.1% Tween-20 (Life 

Technologies 00–3005), 10% Dextran Sulfate (Sigma D6001), and 100ug/mL salmon sperm 

DNA (Thermo Fischer 15632–011)). Fluorescently-conjugated DNA hairpins used in the 

amplification were ordered from Molecular Technologies. Prior to use, the hairpins were 

‘snap cooled’ by heating at 95°c for 90 seconds, and letting cool to room temperature for 30 

min in the dark. After amplification, the samples were washed in 5X SSCT (Life 

Technologies 15557–044) and stained with 20ng/mL DAPI before being mounted with the 

in-house antifade solution previously described. Microscopy and quantification of single-

molecule RNA spots were performed as described above. To achieve sequential 

hybridizations, HCR probes and hairpins were stripped from the samples by a 4-hour 

incubation with DNase I (Thermo Fischer 18068–015) at room temperature. Samples were 

then washed in 5X SSCT (Life Technologies 15557–044) before being hybridized with the 

next round of probes. RNA integrity of the samples was confirmed by the multispectral 

overlap between two probe sets designed against Pgk1, as described in Shah et. al. (Shah et 

al., 2016). Images from sequential hybridizations were aligned using fluorescent 

nanodiamonds (AdamasNano NDNV100nmHi10ml).

Computational Methods for Drop-seq Data

Preprocessing of Drop-seq data

Read filtering and alignment.: Raw paired-end sequence data were converted to 

queryname-sorted BAM files using Picard v2.6.0 FastqToSam (Broad Institute, 2016), and 

processed using Drop-seq tools v1.12 from the McCarroll laboratory as described previously 

(Macosko et al., 2015; Shekhar et al., 2016). Briefly, the first read is comprised of, from left 

to right, a 12-base cell-barcode, an 8-base unique molecular index (UMI), and a poly-T 

segment with 6 bases or longer. Read pairs with a base quality of less than 10 for any base of 

the cell barcode were removed. The second read (with read length of 112 nt, 115 nt, 126 nt, 

or 151 nt for different batches) was trimmed at the 5’ end to remove any SMART adaptor 

sequence, and at the 3’ end to remove poly-A tails of 6 consecutive bases or greater. The 

trimmed reads were then aligned to either the mouse reference genome (GRCm38, version 

38) or a combined mouse (GRCm38) - human (GRCh37) mega-reference using STAR 
v2.5.2b (Dobin et al., 2013) with default settings. Reads uniquely mapped to the sense strand 

of gene exons were recorded and grouped by cell barcode. Throughout this study we used 

the Ensembl transcriptomic annotation (GRCm38 from Ensembl release 81, GRCh37 from 

Ensembl release 75, small RNA annotation from miRBase release 21, July 17, 2015).

Correcting for barcode synthesis errors.: The ChemGenes beads we ordered contained ~5%

−10% cell barcodes that are identical in the first 11 bases, and with >95% of “T” at the last 

position of the UMI, as having been noticed before (Shekhar et al., 2016). These beads were 

missing a single base of cell barcode (Shekhar et al., 2016). Thus, the 20-bp barcode read 

would be expected to contain a mixed base at position 12 (the first base of the UMI) and a 

fixed T at position 20 (the first base of the polyT segment). To correct for this, we used 

Drop-seq tools DetectBeadSynthesisErrors to identify cell barcodes with mixed bases at 
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position 12 and UMIs with fixed “T” at position 8 and to insert an “N” at cell barcode 

position 12 for these reads with synthesis missing base. This resulted in a corrected set of 

cell barcodes and UMIs that was used for the estimation of digital gene expression. 5%–10% 

of cell barcodes were corrected in this way in all the datasets.

Digital gene expression.: To distinguish cell barcodes that represent genuine transcriptomic 

libraries arising from cells, rather than from empty droplets, we ordered the cell barcodes by 

the total number of reads per cell barcode and estimated the inflection point in the 

cumulative reads distribution plot, as described previously (Macosko et al., 2015). All cell 

barcodes with the total number of transcripts larger than this cutoff were extracted for 

downstream analysis.

To digitally count gene transcripts, UMIs in each gene and within each cell were assembled, 

and UMIs within edit distance of 1 (substitutions only) were collapsed. The total number of 

unique UMI sequences was counted and reported as the transcript count for that particular 

gene in a given cell. This resulted in a digital gene expression matrix (DGE) with genes as 

rows and cells as columns that served as the starting point for downstream analyses.

Filtering for cells and genes.: The starting pool of 59,313 cells and 37,241 genes was first 

selected by the cell size and integrity filters – cells with ≤500 detected genes per cell or with 

≥10% of transcripts corresponding to mitochondria-encoded genes were removed. We then 

removed low abundance genes that were detected in ≤15 cells or with ≤20 UMIs summed 

across all the retained cells. These filters resulted in 34,633 cells and 24,947 genes, which 

were considered for further analysis. The information of batch origin, number of retained 

cells, the total number of UMIs (nUMI) and detected genes (nGene) for each dataset was 

summarized in Table S1.

Among the retained cells, the average number of detected genes per cell was 2,057 (IQR 864 

– 3,006, Figure 1D) and the average number of UMIs was 6,205 (IQR 1,435 – 8,074). The 

average number of transcriptome-mapped reads per cell was 18,699 (IQR 4,124 – 23,627). 

The mean number of reads for a given UMI was 3.3 (IQR 2.2 – 3.3). On average, 95% of 

detected genes has a transcript count of ≤10 (54.6% 1’s, 17.8% 2′s, 8.5% 3′s, 4.9% 4’s, 

3.2% 5’s and <2.2% each for 6’s – 10’s).

For each cell, we normalized transcript counts by (1) dividing by the total number of UMIs 

per cell and (2) multiplying by 10,000 to obtain a transcripts-per-10K measure, and then log-

transformed it by E=ln(transcripts-per-10K+1). For PCA, we used standardized expression 

values obtained by centering and scaling for each gene using (E-mean(E))/sd(E).

Evaluation of technical variability

Between-batch reproducibility.: We analyzed reproducibility across the six batches of 7- to 

9- week old wild-type male mice seminiferous tubule (ST) data, which were the unbiased 

representation of ST. All 6 ST batches contained ~2k cells passing cell size and integrity 

filters and ~19k genes passing abundance filter in the remaining cells. We performed PCA 

on each of the six batches. The placement of the five major cell types (somatic cells and the 

four recognized major germ cell types) in PC1-PC2 plots were similar across the six batches, 
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indicating reproducible patterns of heterogeneity (Figure S1B). We used scree plot and 

Jackstraw permutation to identify top PCs that explain statistically significant proportion of 

the variance among the genes. We performed Louvain-Jaccard clustering using the top 13 

significant PCs for each of the six batches and obtained 14 clusters for each. We then 

ordered clusters within each batch using custom scripts. Briefly, for each batch, we 

calculated cluster centroids of each gene as ln(mean of normalized expression+1) over all 

cells in each cluster, and obtained Euclidean distances for the cluster centroids, which were 

then ordered using the optimal leaf ordering algorithm in R Package Seriation. The cluster 

IDs were thereby renumbered according to the seriation. To compare the cluster solutions 

among the six batches, we cross-tabulated rank correlation coefficients among all pairs of 

cluster centroids across the six ST batches, which demonstrated that clusters were largely 

reproducible across batches (Figure S1C).

Evaluating targeted depletion or enrichment experiments.: We performed PCA on the 

entire expression matrix of 34,633 cells and 24,947 genes and visualized subset depletion or 

enrichment by the cell density differences in the PC1-PC2 space. Specifically, density of cell 

counts (d) was calculated in PC1-PC2 space in a 50–50 grid for each of the five experiments 

using hist2d function in R and then log-transformed as c = ln(d+1) (Figure S1D, top panel). 
The per-grid enrichment/depletion pattern of each depletion/enrichment experiment against 

the original ST experiment (n = 6 ST batches, c0) was calculated as the ratio r = c/sum(c) – 

c0/sum(c0), where c is the per-grid count of cells on the log scale. The density ratio against 

the original ST experiment (Figure S1D, bottom panel) confirmed that our targeted-subset 

enrichment experiments have indeed enriched for the intended rare cell types: the 1n-

depleted ST datasets showed depletion of spermatids; the SPG-enriched datasets had 

enrichment of spermatogonia cells; the INT-enriched and SER-enriched datasets had 

enrichment of the interstitial cells and the Sertoli cells, respectively.

The overall atlas for spermatogenesis

Dimensionality reduction using PCA.: We performed principal component analysis (PCA) 

on the standardized gene expression matrix with 34,633 cells and 24,947 genes using the 

PCA function in R package Seurat v1.4.0.3 (Satija et al., 2015). We used elbow point in the 

scree plot and the distribution of eigenvalues to identify top PCs and chose the top 55 PCs 

for downstream clustering. PCA thus reduced the dimensionality of expression data from 

24,947 (# of genes) to 55 (# of selected PCs).

Louvain-Jaccard clustering for 24 ST batches.: We initially performed PCA on 24 ST 

batches with 33,180 cells passing the cell size and integrity filter and 24,482 genes passing 

the abundance filter in the remaining cells. These 24 ST batches did not include INT6 batch. 

We did Louvain-Jaccard clustering using top 40 PCs. As an initial attempt to assess cellular 

heterogeneity, we used the FindClusters function in the R package Seurat to identify cell 

clusters. This approach used the top PC scores to calculate Euclidean distance among all 

pairs of cells and for each, identified its 30 nearest neighbors. It then used the Louvain 

method of clustering using the Jaccard distance among cells as weights, where the Jaccard 

distance between any two cells was defined as the degree of overlap of their 30 nearest 

neighbors. The Louvain method for community detection (Blondel et al., 2008) is a greedy 
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optimization method that runs in time O(n log n) (n is the number of cells). For the 33,180 

cells from the first 24 ST batches, we initially identified 31 clusters, which were merged as 

described below.

Merging clusters and annotation to known cell types.: Our first step is to identify major 

cell types in the overall atlas, and we will rely on focused re-clustering in the second step to 

identify subtypes within each major cell type. To achieve the first goal, we merged some 

clusters in the initial set of 31 by an iterative process that combines statistical evaluation and 

biological assignment. We computed a 31–31 Euclidean distance matrix for the 31 cluster 

centroids, which were defined as ln(mean of normalized expression+1) over all cells in each 

cluster. We ordered and renumbered the 31 clusters using the optimal leaf ordering algorithm 

in the R Package Seriation. We selected marker genes for each cluster by comparing the 

expression level in one cluster against that in all other clusters using a nonparametric 

binomial test. The marker gene selection criteria include: (1) at least a 20% difference in 

detection rate; (2) a minimum of 2-fold higher mean expression level in the cell type 

compared to all other cell types, and (3) p-value < 0.01 in the binomial test. Pairs of 

neighboring clusters without a single differentially-expressed gene were merged. Further 

merging of the ordered clusters was based on known markers for major cell types. Overall, 

for the 31 ordered clusters, we assigned 7 neighboring clusters as somatic cell group, 3 

neighboring clusters as SPG, 2 neighboring clusters as two transitioning populations 

between SPG and Scytes, 7 neighboring clusters as Scytes, 8 neighboring clusters as round 

spermatids, and 4 neighboring clusters as elongating spermatids.

Louvain-Jaccard clustering for 25 ST batches.: We then included an additional batch, 

INT6, with only somatic cells, into the analysis. For the 25 batches after adding INT6, we 

performed Louvain-Jaccard clustering using top 55 PCs, and obtained 10 clusters using 

minimal resolution. We selected markers for each of these 10 clusters using the same 

method as above and then based on the markers, merged these 10 clusters into 2 major 

groups – 1 somatic cell group and 1 germ cell group, which confirmed that INT6 only 

contributes to somatic cell group. Since INT6 did not contribute to germ cell group, we 

retained the major cluster assignment for the germ cells from the 24 ST batches as described 

above. We then performed focused clustering on the somatic cell group (5,081 cells) and 

obtained 7 somatic cell types as described in details in Focused analysis 2: the somatic cells 
section. As a result, the 25 batches led to the identification of 11 major cell types: four germ 

cell types (spermatogonia – including 1 SPG cluster and 2 transitioning clusters between 

SPG and Scytes, spermatocytes, round spermatids and elongated spermatids) as well as 

seven somatic cell types (Sertoli, a Mesenchymal cell population, an ILCII population, 

Macrophage, Endothelial, Myoid, and Leydig cells).

Cellular attributes.: We also calculated a series of per-cell attributes based on the 

transcriptome data, and included them in our GEO submission GSE112393 and shown in 

Figure 1D.

• %Mito, is the percent of UMIs accounted for by the 24 mitochondria-encoded 

genes. It serves as an index of cell injury or viability, with a smaller %Mito 

indicating a healthier cell.
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• %ChrX, %ChrY, are the percentage of transcripts accounted for by the 2,062 

ChrX or 643 ChrY Ensembl genes, respectively.

• Gini index, is a measure of gene expression inequality, using either all genes or 

only the detected genes

• Cell cycle indices. We obtained a list of 590 cell cycle genes, and its partition 

into five phase-specific lists: G1S (N=98), S (N=106), G2M (N=130), M 

(N=151), and MG1 (N=105) (Macosko et al., 2015). The cell cycle index (%cell 

cycle) is calculated as the proportion of all 590 cell cycle genes in the total UMI 

count of the cell. The cell phase index, one for each phase, is the relative 

proportion for one phase-specific list of genes over the UMI counts of all cell 

cycle genes.

Marker selection for the 11 major cell types and pathway analysis.: Markers for each of the 

11 major cell types were obtained by comparing a given cell type with all other 10 cell types 

using the binomial likelihood test embedded in R package Seurat v1.4.0.3 (results are in 

Table S2). Selection criteria are (1) at least 20% difference in detection rate; (2) a minimum 

of 2-fold higher mean expression level in the cell type compared to all other cell types, and 

(3) p-value < 0.01 in the binomial test. To display the markers in the 11-centroid heatmap 

while accommodating their wide range of absolute expression levels, we centered each 

marker’s expression levels across the 11 centroids and scaled by its standard deviation 

(Figure 1C).

For functional enrichment analysis of the 11 marker lists we use the Gene Ontology terms 

and GOrilla (Eden et al., 2009) (accessed on Aug 14, 2017) using the 37,241 Ensembl 

detected genes as the background list. GO terms that contain too many (>500) or too few 

(<50) genes were removed as their enrichment p-values were either too easy to be significant 

or too unstable (Figure 1C).

Focused analysis 1: developmental trajectory of germ cells

Focused analysis for germ cells.: After evaluating cellular heterogeneity in the global atlas 

(Figure 1A), we performed iterative, zoomed-in analyses to assess subtypes contained within 

the major cell types. As germ cells tend to have higher number of genes and unique UMIs 

compared to somatic cells (Figure 1D), we raised the cell size filter and only selected germ 

cells with >1k detected genes for downstream analysis. We extracted normalized expression 

for germ cells (20,646 cells with >1k detected genes, 24,475 non-0 genes). We standardized 

for each gene by centering and scaling and selected 2,047 highly variable genes (HVG) for 

germ cells using MeanVarPlot function in R package Seurat. We performed focused PCA on 

germ cells with >1k detected genes (N=20,646) using the 2,047 HVG and calculated Jaccard 

distance using top 24 PCs. We visualized the expression levels of known germ cell markers 

in 2D PCA plot, with the darkest blue indicating no detected expression and the darkest red 

indicating highest expression for the marker (Figure 2B).

Focused clustering for non-SPG germ cells.: From focused analysis of germ cells (i.e., 

removing the identified somatic cells and smaller cells), we found that the SPG cells 
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(including 1 SPG cluster and 2 transitioning clusters between SPG and Scytes) are separated 

from the continuous transitions of other germ cells (Figure 2A). To closely examine the 

developmental trajectory of the germ cells after SPG, we extracted the normalized gene 

expression matrix for the 18,450 non-SPG germ cells, which contains 24,460 detected 

genes. We selected 1,879 HVG using the MeanVarPlot function in R package Seurat. For 

these non-SPG germ cells, we performed focused PCA using only HVG, and obtained 9 

clusters by Louvain-Jaccard clustering using the top 20 PCs. Thereby, we obtained a total of 

12 germ cell clusters, including 1 SPG cluster, 2 transitioning clusters between SPG and 

Scytes, and 9 non-SPG germ cell clusters.

Ordering of germ cell clusters by seriation.: To order the 12 germ cell clusters, we first 

computed an expression matrix with 12 cluster centroids and 24,475 genes by ln(mean of 

normalized expression+1) over all cells in each cluster for each gene and obtained Euclidean 

distances for each pair of cluster centroids. We ordered the cluster IDs of Euclidean distance 

matrix using optimal leaf ordering (OLO) algorithm in R Package Seriation v1.2.2 (Hahsler 

et al., 2008). The cluster IDs were then renumbered according to the seriation and 

neighboring clusters were thereby the most similar. We visualized rank correlation of the 12 

ordered germ cell cluster centroids (Figure 2B), as well as cell-cell rank correlation and 

Jaccard distance of all 20,646 germ cells ordered by the 12 ordered germ cell clusters 

(Figure S2A) in heatmaps.

Comparison with pseudotemporal ordering by two other methods.: We also inferred 

pseudotemporal ordering by applying two methods widely adopted for this purpose: 

Waterfall and Monocle. Waterfall (Shin et al., 2015) contains three steps: pre-processing by 

removing outlier cells and determining route and orientation; reconstructing of a trajectory 

using minimum spanning tree and determining the pseudotime of individual cells; 

identifying genes correlated with the pseudotime. We followed the standard pipeline to 

calculate pseudotime for 20,238 germ cells using 9,074 genes retained by Waterfall. The 

results are in good agreement with the cells’ assignment to our 12 germ cell cluster (Figure 

S2C, left panel). We showed that gene expression dynamics for 8 representative known germ 

cell markers predicted by Waterfall agree well with our germ cell clusters (Figure S2D). 

Monocle 2 (Qiu et al., 2017; Trapnell et al., 2014) performs clustering and selects 

differentially-expressed genes from dense cell clusters for use in trajectory reconstruction. 

We applied dpFeature in Monocle 2 to select highly informative genes which 1) excludes 

genes expressed in <5% of cells; 2) performs PCA using prcomp_irlba; 3) projects cells to 

2D using tSNE; 4) clustered by densityPeak; 5) performed differential gene expression 

analysis and selected the top 1000 significant differentially-expressed genes. We then 

reduced dimension with DDRTree and ordered cells along the trajectory using Monocle 2. 

The result was compared with that from the 12 germ cell clusters (Figure S2C, right panel).

Comparison with ordering of non-SPG germ cells by SOM.: We performed clustering for 

non-SPG germ cells (18,450 cells with >1k detected genes, 1,879 HVG) using unbiased self-

organization map (SOM) embedded in R package som v0.3.5.1 (Yan, 2016) and obtained 20 

ordered clusters for non-SPG germ cells. We then visualized SOM 20 clusters in 2D PCA 

view with alternating colors for neighboring clusters (Figure S2F, left panel), which agreed 
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well with our ordering of the 12 germ cell clusters. As the cells describe a long “slender” 

trajectory, we were not only able to identify 20 clusters but also found that they were robust. 

That is, neighboring clusters can be distinguished by highly informative markers. After 

filtering with both fold-change and p-values we identified cluster-specific markers that are 

often expressed highly in a given cluster but substantially lower in its flanking clusters. The 

heatmap for 508 markers (Figure S2F, right panel) account for the distinction among the 20 

clusters with 14–44 transient transcripts for each cluster. The color scale from white-to-red 

spans the range of 0–4.2 in the natural log of cluster centroid expression levels.

Marker selection for the 12 germ cell clusters.: We obtained markers for the 12 germ cell 

clusters (20,646 cells) by comparing each cluster against all other 11 germ cell clusters using 

binomial likelihood test in Seurat v1.4.0.3 (Table S3A). As before, the criteria are: (1) At 

least 20% difference in detection rate; (2) a minimum of 2-fold difference in mean 

expression level in the cluster-in-question compared to all other clusters, and (3) p-value < 

0.01 in the binomial test.

Discovery of co-regulated gene groups using the 12 germ cell cluster centroids.: To 

identify the genes exhibiting concerted dynamic patterns along the course of 

spermatogenesis, we performed unbiased gene clustering by SOM using the centroids of the 

twelve germ cell clusters. We focused on 8,583 highly expressed (mean>2) and highly 

variable (variance/mean>0.5), where the mean and variance were calculated over the 12 

cluster centroids, each of which was defined as the median vector of all the cells in each 

cluster. In the 10–10 configuration, we used SOM to separate the genes into 100 groups, 

linked in a 10–10 grid, resulting in 5 to 729 genes in each group (median: 35.5 genes). Re-

running SOM with a 6–6 grid led to similar results (not shown). Gene groups in the four 

corners of this “map” showed distinct expression patterns, e.g., those in the upper left and 

lower left had highest expression in spermatogonia and round spermatids, respectively, 

whereas those in the upper right and lower left showed highest expression in spermatocytes 

and elongated spermatids, respectively. In an alternative approach, we applied unsupervised 

k-means clustering to identify major gene groups among the 8,583 genes at k=6 (Figure 3A) 

and k=12 (Figure S3A). At k=6, the six gene groups map to the four corners of the 10–10 

SOM grid, containing genes with highest expression during distinct phases of the 

spermatogonia-to-spermatocyte transition (Figure S3B). The centroid expression levels of 

the 8,583 genes and their membership in the SOM and k-means clustering were included in 

Table S3B serving as a reference resource of the dynamic gene regulation in germ cell 

development.

Further, to uncover potential transcription factors driving the dynamic expression patterns 

we applied motif enrichment analyses for the sequences within ± 1kb of the transcription 

start site for genes within each of the six gene groups (Bailey et al., 2009; Machanick and 

Bailey, 2011) (Figure 3B).

Expression patterns of mammalian infertility genes in the 12 germ cell cluster centroids.: 
We extracted from Matzuk et al. (Matzuk and Lamb, 2008) >200 genes exhibiting fertility 

phenotypes when carrying loss-of-function mutations. The genes that were indicated as 

infertile by Matzuk et al. were combined with those indicated as secondary infertility, 
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selective infertility, and mostly infertile. Genes resulting only in female infertility were 

excluded. Among 209 such male infertility genes, 192 were detected in the germ cell 

populations in our study. To curate male infertility genes in humans, we queried the Online 

Inheritance in Man (OMIM) database (McKusick-Nathans Institute of Genetic Medicine, 

2017) and identified 260 genes involved in heritable and often rare cases of infertility 

(accessed on 10/30/2017). To illustrate the utility of the reference map of dynamic 

expression, we applied hierarchical clustering to the 114 mouse infertility genes and the 87 

human infertility genes meeting the same filtering criteria that led to the 8,583 high-

variability genes, and plotted expression heatmap for these mouse and human genes across 

12 germ cell cluster centroids (Figure 3C).

Further, based on literature review of previous loss-of-function studies, we categorized 150 

of the detected mouse infertility genes according to their earliest observed defects in major 

cell types during spermatogenesis: spermatogonia, spermatocyte, round spermatid, elongated 

spermatid, or sperm. The expression heatmaps for these five subsets of genes were shown in 

Figure 3D

Further focused analysis of the spermatogonia cells

Focused subset clustering and ordering of SPG cells.: In order to elucidate the 

heterogeneity within the SPG cluster, we performed focused PCA for only SPG cells in the 

SPG cluster: 2,484 cells with >1,000 UMIs, and 21,541 detected genes. We obtained four 

subtypes of SPG cells using the Louvain-Jaccard clustering with the top 10 PCs, and 

visualized them using tSNE (Figure 4A). In order to order the 4 SPG subtypes, we first 

calculated the SPG subtype centroids as ln(mean of normalized expression+1) across all 

cells in each subtype for each gene, and then obtained pairwise Euclidean distances for the 4 

SPG subtypes and ordered them using the optimal leaf ordering (OLO) algorithm in R 
Package Seriation. The cluster IDs were henceforth numbered according to the ordering.

Marker selection for 4 SPG subtypes.: Markers for each SPG subtype were obtained by 

comparing cells in each cluster against those in the other 3 clusters, using the binomial 

likelihood test in Seurat v1.4.0.3. Genes with a minimum 1.5-fold effect size and p < 0.01 

were selected (Figure 4B, Table S5A). We visualized per-cell expression patterns of 

representative markers in tSNE plot (Figure 4C). We summarized the schematic depicting 

the position of 4 SPG subtypes across stages of seminiferous epithelial cycle inferred from 

the expression patterns of markers for each SPG subtype (Figure 4D).

Heterogeneity within undifferentiated SPG cells (SPG1 subtype).: The SPG subtype 1 

(SPG1) is undifferentiated based on known stem cell marker genes. We analyzed 

heterogeneity within the 213 SPG1 cells by re-clustering cells with >1k UMIs by three 

methods, using: 1) all detected genes in the SPG1 subtype (n=15,765); 2) highly variable 

genes (HVG) (n=888); and 3) known spermatogonial stem cell markers (n=32). Clustering 

was performed using top 3 significant PCs for each of the three gene sets. Cross-tabulation 

of the number of cells for each cluster across clustering solutions with the 3 sets of genes 

(right panel) showed inconsistency among the three sets of clusters.
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Focused analysis 2: the somatic cells—In order to assess cellular heterogeneity 

among the somatic cells (Figure 1B), we performed focused PCA on the 5,081 somatic cells, 

using 22,734 genes detected in >3 cells (Figure 1B insert). We performed Louvain-Jaccard 

clustering using the top 23 significant PCs and identified seven somatic clusters (Figure 5A). 

They correspond to five known cell types (based on known markers, Figure 5B), as well as 

two previously unknown cell populations. One of them was subsequently identified as the 

innate lymphoid type II cells. Heatmap for Jaccard distance of all 5,081 somatic cells 

ordered by the 7 clusters showed that these 7 clusters are distinct from each other (Figure 

S1E).

Distinct expression profiles of transcription factors—A list of 1,675 mouse 

transcription factors was downloaded from the non-redundant mouse set of the Riken 
Transcription Factor Database (TFdb) on Oct 4, 2017 (Table S4A). We performed three sets 

of analysis for differentially-expressed TFs, 1) across 12 germ cell stages; 2) across 4 SPG 

subtypes; 3) across 7 somatic cell types (Table S4). For each set of analysis, differentially 

expressed TFs were identified by comparing each cluster against all other clusters using the 

binomial likelihood test in Seurat v1.4.0.3. The criteria are: (1) at least 20% difference in 

detection rate; (2) a minimum of 2-fold higher mean expression level in the cluster-in-

question compared to all other clusters, and (3) p-value < 0.01 in the binomial test.

Among the 1,097 TFs expressed in the 20,646 germ cells, 110 were differentially expressed 

across the 12 germ cell clusters (Table S4B). Among the 1,065 TFs present in the 2,484 SPG 

cells, 57 were differentially expressed across the 4 SPG subtypes (Table S4C). Among the 

1,025 TFs present in the 5,081 somatic cells, 92 were differentially expressed across the 7 

somatic cell types (Table S4D). For each TF, the cluster centroids were calculated as 

described above. We visualized per-cell expression patterns of representative differentially-

expressed TFs for 4 SPG subtypes in tSNE plot (Figure S4B).

Further focused analysis of Sertoli cells

Focused clustering of Sertoli cells.: To assess cellular heterogeneity among the Sertoli cells, 

we performed PCA on 1,067 Sertoli cells with >1,000 detected genes. We obtained nine 

clusters by Louvain-Jaccard clustering using the top 11 PCs (Figure 6B). Marker selection 

was performed as before. A k-means clustering analysis at k=4 found that the nine clusters 

can be grouped into four main clusters. To capture this nested clustering pattern we named 

the nine clusters as 1, 2A-2B, 3A-3B, and 4A-B-C-D.

Comparing nine functional clusters with four known stages of Sertoli cells in the 
seminiferous tubule cycle.: Mouse genes with Sertoli cell stage-specific expression patterns 

were retrieved from previous studies (Hasegawa and Saga, 2012; Wright et al., 2003) and 

divided into four groups, representing four stage groups of the seminiferous epithelial cycle: 

stages I-III, IV-VI, VII-VIII, and IX-XII. These four lists of genes were used to calculate the 

relative expression level of stage-specific genes, defined as a percentage of one stage over all 

4 stages (akin to the earlier analysis of cell cycle fractions for G1S, S, G2M, M, MG1). The 

four-stage fractions were calculated for each of the 9 molecularly defined clusters of Sertoli 

cells (Figure 6C).
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QUANTIFICATION AND STATISTICAL ANALYSIS

For the Drop-seq experiments, cells were collected from 25 experiments, including 6 

experiments with unbiased representation of mouse seminiferous tubules, 2 experiments 

with 1n-depletion, 3 experiments with spermatogonia-targeted enrichment, 5 experiments 

with interstitial-targeted enrichment, and 8 experiments with Sertoli-targeted enrichment 

(See Table S1).

For smFISH experiments, the numbers of seminiferous tubules imaged from one mouse are 

indicated in Figures S7C-D. For immunofluorescence imaging, representative images were 

chosen from 40 images of one mouse. Precision measures are listed in the appropriate figure 

legends (Figure 5F, mean ± SD; Figures S7C-D, mean ± SEM).

Statistical methodologies and software packages used are described according to the STAR 

Methods format. All analyses were performed in R.

DATA AND SOFTWARE AVAILABILITY

Data Resources—Raw and processed data files for Drop-seq experiments are available 

under the GEO accession number GEO: GSE112393.

R Markdown Code for Reproducing Clustering Analysis—As an accompaniment 

to this paper, we provide an R markdown file that describes step-by-step procedures, 

including the loading and preprocessing of the Drop-seq digital expression matrix, PCA, 

Louvain-Jaccard clustering, data visualization, ordering by seriation, and differential 

expression tests. The R commands are provided at https://github.com/qianqianshao/Drop-

seq_ST.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Analysis of ~35K cells identifies known and unexpected mouse testicular 

cell-types.

2. Germ cell development includes discrete states followed by a continuous 

trajectory.

3. Differential gene expression identifies novel regulators of spermatogenesis.

4. Four spermatogonia subtypes and nine Sertoli cell subtypes map to known 

stages.
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Figure 1. Overview of major cell types and cellular attributes inferred from single-cell RNA-seq 
analyses of the mouse testis.
(A) Schematic overview of data collection and iterative clustering approach. (B) Cellular 

heterogeneity at the highest levels. Left: principal component analysis of all ~35K cells post-

QC reveals 5 major clusters, corresponding to four germ cell and one somatic cell cluster. 

Right: focused re-clustering of the 5,081 somatic cells identifies seven cell types: 

macrophages, endothelial, myoid, Leydig, Sertoli, innate lymphoid type II cells, and a 

previously unexpected mesenchymal cell type (“unknown”). (C) Marker genes and their top 

5 gene ontologies, highlighting salient biological functions of the major cell types. Note – in 

the heatmap each marker gene is standardized over the 11 cluster centroids and ordered by 

cell type. (D) Distribution profiles of per-cell attributes compared across the 11 cell types. 

From left to right: %Mito, percent of mitochondria transcripts in the overall transcriptome; 

%ChrX and %ChrY, percent of X and Y chromosome transcripts, respectively; nGene, total 

number of detected genes in a given cell; nUMI, total number of Unique Molecular 
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Identifiers (UMI) in a given cell, a.k.a the “cell size factor”; Gini Index, a measure of gene 

expression inequality in each cell using either all ~35K genes expressed in at least one cell 

(left) or only the detected genes (with non-zero counts) for that cell (right).
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Figure 2. Adult germ cell development exhibits both discrete states and continuous 
developmental transitions.
(A) Principal component plot of 20,646 germ cells with >1,000 detected genes, colored by 

assignment to 12 clusters determined by unbiased clustering. (B) Pairwise rank correlation 

matrix among the 12 cluster centroids, showing that Clusters GC1–3 are relatively isolated 

whereas the other 9 GC clusters form a gradual series of transitions. (C) Biological 

annotation of the 12 germ cell clusters using genes of known, stage-specific expression. The 

seven markers in the top row suggest that cells in GC1 correspond to spermatogonia (SPG) – 

comprised of undifferentiated and differentiating spermatogonia (see Figure 4 for zoomed 
in clustering of spermatogonia). GC2–3 likely contain rare cells transitioning into meiosis. 

According to the 12 markers shown in the lower left panel, GC4–8 correspond to 

spermatocyte (SCytes). Whereas genes in the right panel suggest that cells in GC9–12 

correspond to round spermatids (Stids, Clusters GC9–11) and elongated spermatids (ES, 

Cluster GC12). Major biological transitions are highlighted in green.

Green et al. Page 42

Dev Cell. Author manuscript; available in PMC 2019 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Gene expression dynamics along the germ cell differentiation trajectory.
(A) Unsupervised K-means clustering (k=6) of 8,583 highly variable genes across the 12 

germ cell cluster centroids yields six groups of genes with distinct expression patterns. From 

left to right are six heatmaps of scaled expression levels across the 12 centroids, showing 

wave-like progression of gene expression from Group 1 genes, which are highly expressed 

in spermatogonia (germ cell cluster GC1), to Group 6 genes, highly expressed in elongated 

spermatids (germ cell cluster GC12). (B) Transcription factor motifs significantly enriched 

(E-value < 0.01) within +/−1kb of the transcriptional start site of the six groups of genes. (C) 

Gene expression heatmaps of 187 mouse male-infertility genes (left) and 234 human 

infertility genes (right) over the 12 germ cell clusters, highlighting a significant proportion 

of mammalian infertility genes have peak expression in spermatogonia. (D) Gene expression 

heatmaps of mouse infertility genes grouped by the five known stages of germ cell arrest, 
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showing that genes causing arrest in a particular stage tend to be expressed at high levels in 

the same or an earlier stage.
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Figure 4. Heterogeneity among spermatogonia cells supports 4 recognized subtypes: SPG1-
SPG4.
(A) Focused re-clustering of 2,484 spermatogonia cells with >1,000 UMIs reveals 4 

biological subtypes, as shown in the t-SNE plot. (B) Heatmap of differentially expressed 

marker genes, obtained by comparing each subtype against the other three (p < 0.01; fold 

change > 1.5). (C) Per-cell expression level of known or novel markers of the four 

spermatogonia states visualized in t-SNE space. (D) Summary schematic depicting the 

position of spermatogonia subtypes across stages of the mouse seminiferous epithelial cycle. 

Illustration is modified from (Ahmed EA and de Rooij DG, 2009; Meistrich ML1 and Hess 

RA, 2013).
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Figure 5. Identification of known and new somatic cell types in the testis.
(A) Focused re-clustering of 5,081 somatic cells revealed seven distinct cell types as shown 

in t-SNE space. Note that the relative cell number proportions illustrated in TSNE plots is 

not representative of in vivo proportions, since many of the somatic populations required 

genetic or molecular enrichment experiments prior to Drop-seq analysis. (B) Cell-type 

specific expression of selected maker genes shown in t-SNE space. (C) Identification of 

resident ILCII population in the testis using flow cytometry. TH2 are designated as 

CD3+/CD4+/CD8− and ILCII cells are CD3−/CD8−/CD4−. (D) Further validation of the 

ILCII population can be achieved using known cell surface or intracellular markers (IL7R, 

GATA3, IL-13, and IL-4). (E) Localization of the Tcf21+ mesenchymal cell population in 

the testis by genetic labeling using Tcf21-creERT2; tdTomato mice. White arrowheads mark 

Tcf21+ cells surrounding seminiferous tubules. (F) Validation of Tcf21 and Col1a1 mRNA 

expression in Sca1+ cells by real time qRT-PCR. The Sca1+ cells are depleted of Leydig 
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cells markers (Hsd3b1 and Cyp17a1), and myoid cell markers (Myh11 and Acta2). Data 

represent average ± SD.
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Figure 6. Functional subtypes of Sertoli cells map to spatially defined seminiferous tubule stages.
(A) Schematic illustrating Sertoli cell heterogeneity across the 12 stages of the mouse 

seminiferous epithelial cycle. (B) Unbiased clustering of Sertoli cells reveals four major 

functional types (SER-1–4), which can be further divided into nine subtypes (named with a 

letter suffix, e.g., SER-2A/B for the two subtypes obtained from SER-2). (C) Comparison of 

the nine transcriptome-based Sertoli subtypes with four stage-specific Sertoli cell enriched 

marker gene lists identified by microarrays from tubule segments (Hasegawa and Saga, 

2012; Wright et al., 2003). Specifically, we calculated the relative fraction of Stages I-III, 

IV-VI, VII-VIII, or IX-XII genes across the 9 Sertoli cell subtypes. This fraction is 

calculated for every cell, then averaged in each of the nine molecular clusters, forming the 9-

by-4 matrix. (D) Heatmap of expression levels for the five probes designed for smHCR 

across 9 Sertoli subtype centroids. The values displayed are natural log-transformed cluster 

centroid average expression values for each gene. The marker probes chosen for smHCR 
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enrich in multiple Sertoli cell subtypes and aim to examine whether the Sertoli cell subtypes 

derived from a major cluster do or do not colocalize in situ. (E) smHCR reveals stage-

specific expression of five Sertoli cell marker genes. For each row of imaging panels, left 

panel shows seminiferous tubule staging determined by the pattern of acrosome staining 

with Lectin PNA; second to left panel shows the combined RNA transcripts by smHCR; 

right five panels show the isolated signal from each probe. Arrowheads indicate Sertoli cell 

nuclei. Dashed lines represent tubule borders.
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Figure 7. Overview of the comprehensive cellular atlas of mouse spermatogenesis and testis 
niche.
Summary schematic of the major findings from the analysis of >35K single-cell RNA-seq 

profiles. On the Left, our study demonstrates for the first time the full developmental 

trajectory of germ cell development from spermatogonia to elongated spermatids. The 

transition from spermatogonia to spermatocytes involves discrete developmental transitions, 

whereas, the progression from spermatocytes to elongating spermatids is continuous with no 

stable intermediate states. Focused re-clustering of spermatogonia further define transitions 

between undifferentiated and differentiated stem cells. On the Right, we identify all major 

somatic cell types within the testis, as well as two previously uncharacterized populations 

(innate lymphoid type 2 cells and an unknown mesenchymal cell type). Focused re-

clustering of Sertoli cells uncovers significant heterogeneity which can be linked 

biologically to cycling stages of the seminiferous epithelium. Taken together, these findings 

represent a powerful new resource to the community for studying the cellular and molecular 

heterogeneity of the testis and spermatogenesis program in unprecedented resolution.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-CD90 [30-H12] (FITC) Abcam Cat#ab62009; RRID: AB_940927

Mouse monoclonal anti-CD90.1 (HIS51), PerCP-
Cyanine5.5 ThermoFisher Scientific Cat#45090082; RRID: AB_2573662

Rat monoclonal anti-Ly6A/E (Sca-1) (D7), PerCP-
Cyanine5.5 ThermoFisher Scientific Cat#45–5981-82; RRID: AB_914372

Streptavidin, Alexa Fluor™ 488 conjugate ThermoFisher Scientific Cat#S11223; RRID: AB_2336881

PE/Cy7 anti-mouse CD3 Antibody Biolegend Cat#100219; RRID:AB_1732068

Brilliant Violet 510™ anti-mouse CD4 Antibody Biolegend Cat#100449; RRID:AB_2564587

Brilliant Violet 570™ anti-mouse CD8a Antibody Biolegend Cat#100739; RRID:AB_524958

PE/Cy5 anti-mouse CD127 (IL-7Rα) Antibody Biolegend Cat#135015; RRID:AB_1937262

PE anti-mouse IL-4 Antibody Biolegend Cat#504103; RRID:AB_315317

APC anti-mouse IL-13 Antibody Novus Cat#011818

Brilliant Violet 421™ anti-GATA3 Antibody Biolegend Cat#653813; RRID:AB_2563220

APC anti-mouse CD45 Antibody BD Bioscience Cat#561018; RRID:AB_10584326

Chemicals, Peptides, and Recombinant Proteins

Deoxyribonuclease I Worthington Biochemical Corp. Cat#LS002139

Collagenase Type IA Sigma Cat#C9891

Advanced DMEM:F12 media ThermoFisher Scientific Cat#12634010

Trypsin ThermoFisher Scientific Cat#27250018

autoMACS Rinsing Solution Miltenyi Biotec Cat#130–091-222

MACS BSA Stock Solution Miltenyi Biotec Cat#130–091-376

Hoechst 33342 ThermoFisher Scientific Cat#H3570

Propidium Iodide ThermoFisher Scientific Cat#P3566

DAPI Sigma Cat#D9542

FBS ThermoFisher Scientific Ca#10437010

Tamoxifen Sigma Cat#T5648

Collagenase D Sigma Cat#11088858001

Sucrose, Rnase and Dnase free Amresco Cat#0335

p-Phenylenediamine Sigma Cat#p6001

Lectin PNA, Alexa Fluor® 647 Conjugate ThermoFisher Scientific Cat#L32460

Paraformaldehyde EMD Millipore Cat#818715

Bovine Serum Albumin, Fraction V VWR Cat#97061–422

ProLong™ Gold Antifade Mountant ThermoFisher Scientific Cat#P36930

Formamide, Deionized Ambion Cat#AM9342

tRNA from Baker’s Yeast Sigma Cat#10109495001

Ribonucleoside Vanadyl Complex New England BioLabs Cat#S1402S

UltraPure™ BSA ThermoFisher Scientific Cat#AM2618
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Ficoll PM-400 Sigma Cat#F5415

Sarkosyl, Sodium Salt Solution Sigma Cat#L7414

1H,1H,2H,2H-Perfluoro-1-octanol Sigma Cat#370533

dNTP Mix ThermoFisher Scientific Cat#R0192

NxGen RNAse Inhibitor Lucigen Cat#30–281-1

Maxima H Minus Reverse Transcriptase ThermoFisher Scientific Cat#EP0753

Exonuclease I New England BioLabs Cat#M0293S

SuperScript™ III First-Strand Synthesis System ThermoFisher Scientific Cat#18080–051

Power SYBR™ Green PCR Master Mix ThermoFisher Scientific Cat#4367659

GolgiStop™ BD Bioscience Cat#554724

Agencourt AMPure XP Beads Beckman Coulter Cat#A63880

Tween-20 ThermoFisher Scientific Cat#00–3005

Heparin Sigma Cat#H3393

Denhardťs solution ThermoFisher Scientific Cat#750018

Citric Acid Sigma Cat#791725

Triton X-100 Sigma Cat#T8787

Dextran Sulfate Sigma Cat#D6001

Salmon Sperm DNA ThermoFisher Scientific Cat#15632–011

SSC Buffer ThermoFisher Scientific Cat#15557–044

Ionomycin Cell Signaling Technology Cat#9995

PMA Sigma Cat#P1585

Fluorescent Nanodiamonds Adamas Nano Cat#NDNV100nmHi10ml

Critical Commercial Assays

Rat monoclonal anti-CD117 microbeads Miltenyl Biotec Cat#130–091-224

Rat monoclonal anti-CD90.2 microbeads Miltenyl Biotec Cat#130–049-101

QuadroMACS Starting Kit (LS) Miltenyi Biotec Cat#130–091-051

KAPA HiFi HotStart ReadyMix PCR Kit Kapa Biosystems Cat#KK2602

Nextera XT DNA SMP Prep Kit Illumina Cat#FC-131–1096

Deposited Data

Raw data files for RNA-sequencing This paper or NCBI Gene 
Expression Omnibus GEO: GSE112393

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: Gfrα1-CreERT2 Hara et al., 2014 N/A

Mouse: B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-
tdTomato,-EGFP)Luo/J The Jackson Laboratory JAX: 007676

Mouse: 129S.FVB-Tg(Amh-cre)8815Reb/J The Jackson Laboratory JAX: 007915

Mouse: Tg(Sox9-EGFP)EB209Gsat MMRRC MGI: 3844824

Mouse: Tcf21-creERT2 Acharya et al., 2011 N/A

Oligonucleotides

Primers for qPCR, see Table S7 This paper N/A
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Drop-seq primers, see Table S7 Macosko et al., 2015 N/A

Drop-seq beads ChemGenes Macosko201110

smFISH probes, see Table 7 LGC Biosearch Technologies N/A

smHCR probes, see Table 7 Molecular Technologies N/A

Software and Algorithms

Drop-seq_tools (v1.12) Macosko et al., 2015 http://mccarrolllab.com/dropseq/

Picard Tools (v2.6.0) Broad Institute, 2016 http://broadinstitute.github.io/picard/

Samtools (v1.2) Li et al., 2009 http://samtools.sourceforge.net/

STAR (v2.5.2b) Dobin et al., 2013 https://github.com/alexdobin/STAR

R (v3.3.3) R Core Team, 2017 https://www.R-project.org/

Seurat (v1.4.0.3) Satija et al., 2015 https://github.com/satijalab/seurat

Seriation (v1.2–2) Hahsler et al., 2008 https://CRAN.R-project.org/
package=seriation

Monocle 2 Qiu et al., 2017 https://github.com/cole-trapnell-lab/
monocle-release

Waterfall Shin et al., 2015 https://omictools.com/waterfall-tool

som (v0.3.5.1) Yan et al., 2016 https://CRAN.R-project.org/package=som

MATLAB R2017a The MathWorks https://www.mathworks.com/products/

Other

Resource website for the publication This paper https://github.com/qianqianshao/Drop-
seq_ST
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