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Abstract

We consider a recurrent network of two oscillatory neurons that are coupled with inhibitory 

synapses. We use the phase response curves of the neurons and the properties of short-term 

synaptic depression to define Poincaré maps for the activity of the network. The fixed points of 

these maps correspond to phase-locked modes of the network. Using these maps, we analyze the 

conditions that allow short-term synaptic depression to lead to the existence of bistable phase-

locked, periodic solutions. We show that bistability arises when either the phase response curve of 

the neuron or the short-term depression profile changes steeply enough. The results apply to any 

Type I oscillator and we illustrate our findings using the Quadratic Integrate-and-Fire and Morris-

Lecar neuron models.
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1 Introduction

Coherent activity in deterministic networks of coupled oscillators often takes the form of 

phase-locked activity. In this situation, relative to some common reference point, each 

network element is assigned a phase that is periodic over time. The relative phase differences 

between the network elements can then be computed to determine potential phase-locked 

states. Such networks arise in a variety of physical and biological contexts, such as cardiac 

networks [49], central pattern generating neuronal networks [9], and those described by 

weakly-coupled Kuramoto oscillators [26].
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Various mathematical approaches have been developed to understand phase-locking. One of 

the most common methods relies on weak coupling among the network elements, so that the 

technique of averaging can be applied. This allows the phase relationship between the 

network elements to be systematically reduced to the study of sets of equations on a torus, 

whose roots correspond to phase-locked states [21]. Another common method uses the phase 

response curve (PRC) to derive maps whose fixed points correspond to phase-locked 

solutions [17]. The PRC measures the response of an oscillator to perturbations given at 

specific phases of the oscillation cycle. The PRC is a mapping with domain given by the 

perturbation phase and range equal to the change of phase of the periodic trajectory. A 

positive (negative) value of the PRC implies that a perturbation given at that phase causes 

the oscillator to increase (decrease) its phase relative to a specified reference point. Neuronal 

models for which the PRC is strictly of one sign are Type I, while those in which the PRC 

changes sign are Type II [19].

Oscillators may also be subject to inputs that are not necessarily weak. In this case, the 

spike-time response curve characterizes how the timing of the next spike is affected by an 

input. By normalizing against the intrinsic period of the neuron, one effectively obtains a 

phase response curve, albeit one that may not quantitatively match the one obtained from 

weak perturbations. A synaptic current from a presynaptic neuron can be thought of as a (not 

necessarily weak) input to a postsynaptic cell that may affect its phase. While there are a 

wide variety of synapses, we will focus on inhibitory synapses that exhibit short-term 

synaptic depression where the strength of the synapse increases as a function of period of the 

presynaptic neuron. We are interested in finding situations where more than one stable 

periodic solution exists as a result of the shortterm synaptic depression.

Multistability of solutions refers to the existence of multiple stable solutions for the same set 

of parameters. Each of these solutions has a basin of attraction defined as the set of initial 

conditions for which the starting trajectory asymptotically approaches this solution. 

Multistability is thought to be of importance to a neuronal network in that each of the stable 

solutions corresponds to a different network output state. Thus, the capabilities of a network 

are expanded in the presence of multistability. It has been shown previously that synaptic 

depression can lead to bistable states in neuronal networks [7, 30, 33]. Synaptic depression 

can enhance information about stimuli in competitive networks that display a multitude of 

dominance times [25], but can also detract from multistability of dominance times in noise 

induced switching in excitatory networks [32].

In this study, we show that bistability of different phase-locked states can arise in a pair of 

Type I neurons in which just one of the synapses exhibits short-term depression. Further, we 

develop a technique for finding the phase-locked states that relies on knowing only the PRC 

of each neuron, rather than the specific mathematical equations needed to describe the 

evolution of a model’s voltage variable. Calculating a PRC of a neuron is a feed-forward 

process in that the timing of the perturbation to a neuron can be externally controlled. There 

is significant work on approximating PRCs from experimental data; for example see [36]. 

The maximal synaptic strength as a function of cycle period or frequency (synaptic plasticity 

profile) can also be calculated in a feed-forward manner [47]. Huang [24] developed a 

method to combine these two types of feed-forward information into a feedback Poincaré 
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map. The stable (unstable) fixed points of this map corresponded to stable (unstable) phase-

locked solutions of the reciprocally coupled inhibitory system. Using Huang’s method, we 

derive two distinct 2-D maps. For each of these maps, we derive conditions for the existence 

of bistable solutions. Our analysis reveals that bistability occurs when either the PRC of the 

neuron or the synaptic plasticity profile of the synapse has a sufficiently steep derivative in a 

neighborhood of a fixed point. To illustrate our proposed methods, we use the Quadratic 

Integrate-and-fire (QIF) model [23] and the Morris-Lecar (ML) model [34]. The QIF is the 

normal form of saddle-node bifurcation of fixed points. From it, one can derive the theta 

model which is the canonical Type I phase model. We use the QIF model because we can 

analytically derive its PRC. The ML model is perhaps the most basic, biophysically based 

planar model of a neuron and is widely used in mathematical and computational studies.

This paper is organized as follows. In Section 2, we describe the coupled systems governed 

by either the QIF or ML models, together with their respective PRCs. In Section 3 we first 

derive three distinct maps. The first map is 1-D, previously derived in Dror et al [17], that 

describes the behavior of two coupled neurons in which the synapses are static (not 

depressing). The second two maps are the aforementioned 2-D maps. We show that a stable 

fixed point of the 1-D map has a corresponding fixed point of either of the 2-D maps, 

however its stability may be different. In this section, we also utilize a geometric method, 

developed in [4], to determine existence of bistable solutions. Section 4 concludes with a 

Discussion.

2 Models and Methods

The main results of this paper hold for neuronal models that display Type I dynamics as 

described below. We will analytically (numerically) calculate a family of phase response 

curves (PRCs) for the QIF (ML) models. We will use this family of PRCs to construct a 2-D 

map that determines the existence and stability of phase locked solutions of a reciprocally 

coupled set of two inhibitory neurons. We will also use the model equations to conduct 

simulations and show that the results agree with those obtained from the 2-D map.

2.1 Intrinsic neuron models: QIF and ML

The Quadratic Integrate-and-Fire (QIF) [23] model is given by

dV
dt = 1 + V2

V tsp
+ = Vr, when V tsp

− = V t Vr < V t

(1)

where Vt > Vr are the spike threshold and the resting potential, respectively. As soon as the 

voltage V reaches the threshold Vt at a spike time tsp, V is reset to the resting potential Vr. 

While we consider homogeneous neurons in this study, there is no problem in extending this 

to consider heterogeneity. To do so, one could simply choose different values of Vt or Vr for 

the two neurons.
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The Morris-Lecar [34] neuron is a conductance-based model neuron that contains leak (L), 

potassium (K) and calcium (Ca) currents. The maximal conductance and reversal potential 

of a given current X are denoted by gX and EX, respectively. The Ca current depends on an 

instantaneous function m∞ of the membrane voltage (V) and is given by 

ICa = gCam∞ V V − ECa  where m∞ V = 0.5 1 + tanh V − υ1/k1 . The parameter v1 is the 

half-activation value of the Ca current and k1 is the reciprocal of the slope at that point. The 

leak current is given by IL = gL V − EL . The K current involves a dynamic activation 

variable w and is given by IK = gKw V − EK .

The equations for the membrane voltage V and activation variable w are given by

dV
dt = Iapp − IL − IK − ICa /C

dw
dt =

w∞ V − w
τw V

(2)

where w∞(V ) = 0.5(1 + tanh((V − v2)/k2)) and τw(V ) = 1/(ϕ cosh((V − v2)/2k2)). The 

parameters v2, k2 and ϕ govern the K kinetics. The parameter C denotes the membrane 

capacitance and Iapp denotes the current externally injected to the neuron. Depending on 

parameters, the Morris-Lecar equations can model either a Type I or Type II oscillator. We 

choose parameters such that it is the former. For the parameters we choose, the amount of 

time that the voltage spends above a prescribed threshold Vth = 0 is almost fixed. We shall 

assume that it is constant and call it tburst. This gives the width of the action potential. The 

time between spikes can vary based on the input a cell may receive. Heterogeneity between 

cells can be introduced by varying Iapp.

2.2 Phase response curves

The phase response curve of an oscillator describes how the period of the oscillator changes 

depending on the phase at which it receives a perturbation. In general, the PRC can be 

computed numerically (for model neurons) or experimentally (for biological neurons) by 

injecting a brief perturbing current (such as a small current pulse) and measuring the effect 

of this perturbation on the cycle length as a function of the phase of the perturbing input. If 

the perturbation is infinitesimally small, then an infinitesimal phase response curve (iPRC) 

of the model neuron can be obtained by linearizing the governing differential equations 

about the limit cycle and solving the adjoint equation. For appropriate choices of parameters, 

the iPRCs of the QIF and ML models are called Type I since they are each of one sign. 

These type of model neurons delay their firing in response to inhibitory inputs independent 

of the phase that the input is given.

Throughout this study, we use the term PRC to refer to responses calculated by direct 

synaptic inputs. Denote by P0 the intrinsic period of a cell. Suppose a perturbing input is 

given at time dt after the firing of the cell. This yields a phase ϕ = dt/P0 at the time of the 

perturbation. Let Pc denote the new cycle period which is the time between when a cell fires 
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prior to a perturbation and the subsequent firing of the cell when a perturbation is given at 

phase ϕ. We define the PRC as

Z ϕ =
P0 − Pc

P0
(3)

We assume that the effects of a perturbation to the current cycle of a neuron only last for that 

cycle. Any effects that may linger to subsequent cycles are ignored here, but treatment of 

such cases can be found elsewhere [42].

The PRC of a QIF neuron can analytically be calculated using equations (1). It is given by

Z ϕ =
arctan tan P0ϕ + arctan Vr − g − arctan Vr

P0
− ϕ (4)

where g > 0 denotes the strength of the perturbation. In Figure 1A, we show examples of the 

QIF PRC for a few different choices of inhibitory synaptic strength. Note that as g increases, 

the PRCs have larger amplitudes shifting to larger perturbation phases. Also note, that for 

the set of g values chosen, the PRC is quite large with changes of phase up to as much as 

0.8, with large gradients for large ϕ.

We compute the PRC of a ML model neuron numerically. We choose parameters so that the 

oscillations arise through a saddle node on invariant circle (SNIC) bifurcation. Neurons that 

oscillate through a SNIC bifurcation have a Type 1 iPRC [19]. A PRC obtained from our 

model neurons for a range of synaptic strength is shown in Figure 1B where we created the 

PRC by applying a perturbation of the form

Isyn = gpre postH Vpre − Vth Vpost − Einh .

This is a type of perturbation that mimics a synaptic input in that it contains the driving force 

Vpost − Einh where Einh is the inhibitory synaptic reversal potential. The reference point to 

compute the PRC is chosen to be when V crosses Vth in the positive direction. Note again 

that this method of computing the PRC is different from computing the iPRC of a spiking 

neuron which yields a strictly Type 1 PRC. The PRC we obtain is very similar, but there is a 

small, insignificant, region of the PRC that is positive near small stimulus phases due to the 

longer active duration of the ML neuron. Also note that for the smallest shown conductance 

of g = 0.01, the PRC is very small in amplitude and has small gradients for all ϕ.

2.3 Modeling synaptic inputs

When a presynaptic cell rises above threshold, it sends an inhibitory input to the 

postsynaptic cell. In the situation where the synapse exhibits synaptic depression, the 

strength of this input is an increasing function of the interspike interval, or alternatively a 

decreasing function of the spiking frequency. For the QIF model, we use a model for 
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depression due to Abbott et al [1]. We let r denote the amount of available synaptic resources 

normalized to lie between zero and one. The equations governing r are given by

dr
dt = 1 − r

τr
between spikes of the presynaptic neuron

r+ = f ⋅ r− when the presynaptic neuron fires.
(5)

Here, the amount of available synaptic resources is reset by a fraction f ∈ (0, 1] at the instant 

that the neuron fires and recovers to 1 with time constant τr after the spike. Hence, the value 

of the depression variable r depends on the cycle period of the neuron. To model a non-

depressing synapse, we simply choose f = 1.

When the presynaptic neuron is firing with a fixed period of P, the depression variable r 
oscillates between a minimum and a maximum value at the steady state. This maximum 

value attained at the onset of a spike at the steady state can be obtained from equation (5) as

rss P = 1 − e
−P/τr

1 − f e
−P/τr

. (6)

The function rss(P ) is called the steady state synaptic plasticity profile and is shown in 

Figure 2A. Observe that rss(P ) is a monotone increasing function.

For the ML model, we use an adapted version of the Abbott model, as in [35], that takes into 

account the length of the action potential as well as making the recovery from depression 

more strongly dependent on the cycle period. The model involves two variables r and s. As 

above, r keeps track of the amount of depression in the synapse. The variable s will be used 

to transmit information about r to the postsynaptic cell whenever the presynaptic cell 

exhibits a spike at time tsp.

dr
dt =

r∞ Pc − r
τα

H∞ V th − V pre − r
τβ

H∞ V pre − V th (7)

ds
dt = 0 (8)

r∞ Pc = 1
2 1 + αtanh Pc − Ph/kh (9)
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s+ tsp = r− tsp (10)

The function r∞(P ) is the target level of recovery that the depressing synapse is trying to 

reach for a given cycle period Pc. The parameter α = 0.6 is chosen to limit the bounds of r∞ 
between 0.2 and 0.8, Ph is the half-activation period and kh is the reciprocal of the slope at 

that point. The variable Pc is calculated and updated on a cycle-by-cycle basis. In Section 

3.5, in order to illustrate the dependence of bistability on the steady state plasticity profile, 

we shall choose different functional foms of r∞ (P ) to be used in equation (9). If we wish to 

model a non-depressing synapse, we take s+(tsp) = 1.

Just as above for the spiking neuron model, when an ML-based neuron is firing periodically 

with period P, the value of the depression variable oscillates between a maximum and a 

minimum value. In this case, it is straightforward to show that the steady state value of the 

depression at the onset of a spike is given by

rss P = r∞ P 1 − e
− P − tburst /τα

1 − e
−tburst /τβe

− P − tburst /τα
. (11)

If we let f = e
−tburst /τβ and then take the limit as tburst → 0 in the term (P − tburst), equation 

(11) reduces to a form that is similar to equation (6) except that the maximum is given by r∞
(P ) instead of one. Note that for narrow action potentials, the term exp(−tburst/τβ) is close to 

one. Moreover, the steady state period will be relatively large. Thus the fraction in (11) is 

effectively equal to one. Thus rss P ≈ r∞ P . We shall use this approximation throughout the 

duration of the paper. The function rss is plotted in Figure 2B.

2.4 Coupled equations

We shall consider a coupled system of neurons A and B. The synapse from A to B will 

always be non-depressing (f = 1 or s+(tsp) = 1) and will have a fixed synaptic conductance 

gA B. The synapse from B to A can be either depressing or non-depressing depending on 

the case we are considering and will clearly be noted in the subsequent text.

For the QIF model, the effect on the postsynaptic cell of this input is to decrease its voltage 

by an amount gpre postr
−. That is

V post
+ = V post

− − gpre postr
−

This decrease can be modeled using a Dirac delta function δ(t) in the coupled set of 

equations below.
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dV A
dt = 1 + V A

2 − gB Ar−δ t − tB, sp

dVB
dt = 1 + VB

2 − gA Bδ t − tA, sp

V A tA, sp
+ = Vr, when V A tA, sp

− = Vt Vr < Vt

VB tB, sp
+ = Vr, when VB tB, sp

− = Vt Vr < Vt

where t*,sp represents the time of the spike of A or B The dynamics for the r variable are 

given by equation (5). Note that the term r− only appears in the equation for dVA/dt.

For the ML model, let f (V, w) = (Iapp − IL − IK − ICa)/C. The coupled equations for neurons 

A and B are

dV A
dt = f V A, wA − gB As+ tsp, B H∞ VB − υth V A − Einh

dwA
dt =

w∞ V A − wA
τw V A

dVB
dt = f VB, wB − gA BH∞ V A − υth VB − Einh

dwB
dt =

w∞ VB − wB
τw VB

(12)

where the Heaviside function H∞ (V − Vth) is 0 if V < Vth and 1 otherwise. The variable s+

(tsp,B) which appears only in the dVA/dt equation is governed by the synaptic equations (7)–

(10). Thus at the moment that neuron B spikes, neuron A receives a synaptic input of 

gB As+ tsp, B  and then remains constant through the duration of the action potential of B.

2.5 Intrinsic and actual phase

We use a Poincaré section to define the phase of each cell at each cycle. This will lead to a 

sequence of crossing times when a particular trajectory crosses the Poincaré section at the 

nth cycle, which in turn will lead to a sequence of phases. A schematic that depicts various 

quantities of interest needed to derive the Poincaré maps is shown in Figure 3.

Choose the Poincaré section to be at VA = Vth. The amount of time in the nth cycle that 

passes after cell A fires until cell B fires is denoted by dtn, while the amount of time after 

cell B fires until cell A fires is denoted by dτn (Figure 3). The (activity) phase of neuron A 
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(or B) is defined as the firing time dtn (or dτn) normalized by the cycle length. Therefore, the 

phases of A and B are, respectively, given by

ϕn = dtn/Pn

θn = dτn/Qn .
(13)

In the derivations of the maps, we will make use of the PRCs of A and B which are defined 

in terms of P0 and Q0, the intrinsic periods of A and B. To simplify these derivations we 

introduce the notation of the “intrinsic phase” of neurons A and B which are defined, 

respectively, as

ϕn = dtn/P0 (14)

θn = dτn/Q0 . (15)

Because we will be considering both static and depressing cases, we need separate notation 

to demarcate each of the PRCs of neuron A. Our convention will be the following. We let 

ZA ϕ, gB A  denote the PRC when it is created with a static synapse. We let ZA(ϕ, gB→Ar−) 

denote the PRC when it depends on the strength of the synaptic conductance. What differs is 

the choice of the second variable. In the former case the maximal conductance gB A is 

fixed, while in the latter, the maximal conductance gB→Ar− depends on cycle period through 

either equation (5) for the QIF model or equation (7) for the ML model. The PRC of cell B 

is always created with a static synapse of strength gA B and is simply denoted by ZB(θ). At 

steady state, the actual phase is related to the intrinsic phase through the following:

θ = θ
1 − ZB θ

ϕ = ϕ
1 − ZA θ, g ,

where g = gB A for the static synapse and g = gB→Arss for the dynamic synapse, where rss 

is given by equation (6) for QIF or (11) for ML.
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3 Results

3.1 Derivation of the maps

For completeness, we start with the derivation of the Poincaré map for the relative firing 

times of the neurons when they are connected with static synapses [4]. Rewriting the PRC 

relationship (3), we can obtain the cycle lengths of each cell in cycle n as

Pn = P0 1 − ZA ϕn, gB A (16)

Qn = Q0 1 − ZB θn . (17)

Note that we use the PRC ZA ϕ, gB A  where the value in the second argument is chosen 

for the non-depressing, static case. The following equations relate the firing times of the two 

cells

dtn + dτn = Pn (18)

dτn + dtn + 1 = Qn . (19)

From the equations (15), (16) and (18), θn can be written in terms of ϕn:

θn =
dτn
Q0

= 1
Q0

Pn − dtn = 1
Q0

P0 1 − ZA ϕn, gB A − P0ϕn

=
P0
Q0

1 − ZA ϕn, gB A − ϕn .

(20)

Similarly, ϕn+1 can be expressed in terms of θn:

ϕn + 1 =
dtn + 1

P0
= 1

P0
Qn − dτn = 1

P0
Q0 1 − ZB θn − Q0θn

=
Q0
P0

1 − ZB θn − θn .

(21)
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using the equations (17) and (19). Thus, plugging equation (20) into equation (21) defines 

the following 1-D map for the intrinsic phase of cell A (14) when the 1:1 firing order 

between the cells is maintained:

ϕn + 1 = Π ϕn

=
Q0
P0

1 − ZB
P0
Q0

1 − ZA ϕn, gB A − ϕn − 1 + ZA ϕn, gB A + ϕn .

(22)

The condition for 1:1 phase-locking is ϕn = ϕn+1 = ϕ*. Plugging this into the map gives the 

condition for a fixed point as

P0 1 − ZA ϕ*, gB A = Q0 1 − ZB θ*

where θ* =
P0
Q0

1 − ZA ϕ*, gB A − ϕ* .

To determine conditions for 1:1 phase-locked activity, it is sufficient to rule out cases where 

either of the two neurons fires consecutively. To avoid the case where B fires twice for every 

one firing of A, dτi + Pi+1 < Qi+1 + Q0 must hold. This is equivalent to 

ZA ϕi + 1, gB A > 1 − Q0/P0 2 − θi − ZB θi . Since ϕi + 1 = Q0/P0 1 − θi − ZB θi , 

ZA ϕi + 1, gB A > 1 − Q0/P0 − ϕi + 1. So to obtain a 1:1 phase-locked solution, the fixed 

point ϕ* = Q0/P0 1 − θ* − ZB θ*  should satisfy ZA ϕ*, gB A > 1 − Q0/P0 − ϕ*. 

Geometrically, at the fixed point, the PRC of A, ZA ϕ*, gB A , should lie above the line ZA 

= 1 − Q0/P0 − ϕ. To avoid the case of A firing twice in succession, we need the condition 

Qi+1 < dτi + P0, equivalently, ZB(θi) > 1 − P0/Q0 − θi. Locally, this amounts to ZB(θ*) > 1 − 

P0/Q0 − θ*, i.e., the PRC of B, ZB(θ), should lie above the line ZB = 1 − P0/Q0 − θ at the 

fixed point.

Next, we derive maps to predict the network activity in the presence of synaptic depression. 

In the first case, we shall use the dynamic equation (5) to derive a 2-D map for the phase ϕn 

and the depression variable rn. This approach allows the transients due to different initial 

conditions to potentially play a role in the convergence of the map to a fixed point. In the 

second case, we derive a 2-D map for the phase ϕn and the period Pn. For this case, we use 

the steady state plasticity profile given in equation (9). This approach assumes that the 

depression variable quickly reaches its steady state plasticity value and as a result, we only 

need to track how the cycle period changes. We note that the fixed points of either of the two 

maps correspond to the same phase-locked solutions.

For the first approach, assume that the strength of the B to A synapse changes according to 

the dynamics of the depression variable r equation (5) and is given by gB→Arn in cycle n. 
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Assume that we know the values ϕn and rn. Then we can compute the period of neuron A in 

cycle n using the expression

Pn = P0 1 − ZA ϕn, gB Arn . (23)

We next modify equation (20) by rewriting Pn as given in (23) to obtain the phase of neuron 

B in cycle n as

θn =
P0
Q0

1 − ZA ϕn, gB Arn − ϕn . (24)

Equation (17) giving the cycle length of neuron B becomes

Qn = Q0 1 − ZB
P0
Q0

1 − ZA ϕn, gB Arn − ϕn (25)

in cycle n. Plugging (24) into (21) and computing the depression variable using (5) over one 

cycle gives a a 2-D map Πdyn for the evolution of the intrinsic phase of cell A and the 

synaptic depression variable from cell B to cell A

ϕn + 1 = 1
dyn ϕn, rn

=
Q0
P0

1 − ZB
P0
Q0

1 − ZA ϕn, gB Arn − ϕn − 1 + ZA ϕn, gB Arn + ϕn

rn + 1 = 2
dyn ϕn, rn

= 1 − 1 − f rn exp −
Q0
τr

1 − ZB
P0
Q0

1 − ZA ϕn, gB Arn − ϕn .

(26)

Observe that the first equation is the same as (22) except that now the second argument of 

ZA depends on gB→Arn as opposed to gB A.

For the second approach, we derive the map where the synaptic strength from neuron B to A 

changes according to the steady-state synaptic plasticity profile in equation (9) and is given 

by gB→Ar∞(Qn) in cycle n. Assume that we know the values ϕn and Pn. The phase of neuron 

B in cycle n can be found using (15) and (18) as

θn = Pn − ϕnP0 /Q0 . (27)

Plugging this into (17) immediately yields the expression for the cycle length of neuron B in 

cycle n as
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Qn = Q0 1 − ZB Pn − ϕnP0 /Q0 . (28)

We can now obtain the phase of neuron A in cycle n + 1 using equations (15) and (19) as

Qn + 1 = Qn − dτn /P0 = Qn − θnQ0 /P0 . (29)

We can use this phase to obtain the cycle length of neuron A in cycle n + 1 as

Pn + 1 = P0 1 − ZA ϕn + 1, gB Ar∞ Qn . (30)

Similar to equation (23), the period of neuron A is determined by ZA which is a function of 

two variables. However, in this case the synaptic strength received by neuron A in cycle n 
+ 1 depends directly on the cycle length of neuron B in cycle n. The map Πss for the activity 

of the network can be obtained by plugging the equations (27) and (28) into (29) and (30) as

ϕn + 1 = 1
ss ϕn, Pn

=
Q0
P0

1 − ZB
Pn − ϕnP0

Q0
−

Pn
P0

+ ϕn

Pn + 1 = 2
ss ϕn, Pn

= P0 1 − ZA
Q0
P0

1 − ZB
Pn − ϕnP0

Q0
−

Pn
P0

+ ϕn,

gB Ar∞ Q0 1 − ZB
Pn − ϕnP0

Q0
.

(31)

A fixed point (ϕ*, r*) of the map (26) corresponds to a 1:1 solution. This 1:1 solution is also 

represented by a fixed point of the map (31) which occurs at (ϕ*, P*), where P* is the 

steady-state value obtained from (23) at (ϕ*, r*). Thus the fixed points of the map Πdyn (26) 

and Πss (31) are equivalent. In the subsections below, we will discuss two distinct ways to 

find fixed points of these 2-D maps. One way is to use information obtained from the 1-D 

static map (22) as shown in Section 3.2. The second way is to use a geometric method 

developed in [4] as shown in Section 3.6.

3.2 Relating fixed points of the static and depressing maps

We now use the 1-D map Π (22) to find fixed points of the 2-D maps that utilize depression. 

Since we have already shown above how to relate Πdyn to Πss, we will restrict our attention 

to the relationship between Π and Πdyn. In particular, we will show that for every value of 

conductance gB A that produces a fixed point of the 1-D map Π, there exists a 
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corresponding value of gB→A that produces a fixed point of the 2-D map Πdyn. Bistability 

can occur when this relationship is non-invertible.

At a periodic steady state, a depressing synapse behaves like a non-depressing one in that the 

value rn converges to rss as derived in equation (6), but where the period is determined by the 

actual period of the feedback network. In particular, at the steady state, at each spike, the 

voltage of the postsynaptic cell is changed an amount gB→Arss. This same change can be 

achieved in a non-depressing model by choosing gB A =gB A
rss. In other words, for any 

steady state value of a depressing synapse given by the pair gB→A and rss, there exists a 

corresponding value gB A of a non-depressing synapse that yields the same synaptic 

output. Alternatively, given a value gB A for a non-depressing synapse, we will show there 

exists a pair gB→A and rss such that gB A =gB A
rss. That such a pair exists is not so 

obvious, because the value rss is determined by the steady state period which is itself a 

function of gB→A.

A fixed point (ϕ*, r*) of the map Πdyn (31) satisfies

Q0 1 − ZB
P0
Q0

1 − ϕ* − ZA ϕ*, gB Ar* = P0 1 − ZA ϕ*, gB Ar*

ZB
P0
Q0

1 − ϕ* − ZA ϕ*, gB Ar* = 1 −
τr
Q0

ln 1 − f r*
1 − r* .

(32)

At the fixed point, the steady state period P* is found by substituting the values ϕ* and r* 

into equation (23) to obtain P* = P0[1 − ZA(ϕ*, gB→Ar*)]. Because of periodicity, the value 

r* = rss(P*) is calculated from (6) by evaluating at P*. Thus if we were to try to use the 

depressing map Πdyn alone, we would end up with an implicit equation for r* which is 

difficult to solve. Instead, let us exploit the relationship between the 1- and 2-D maps to 

compute P* independently of r*.

Assume that the 1-D map Π yields a steady-state phase ϕ* of neuron A when the synaptic 

strength from B to A equals gB A. The response ZA ϕ*, gB A  of neuron A to 

perturbations received at the phase ϕ* is obtained from its PRC given by the equation (4). 

This determines the steady-state period of neuron A determined by using (16) and is given 

by P* = P0 1 − ZA ϕ*, gB A . We can now use this value of P* with equation (6) to obtain 

r*. To be able to have the same steady-state solution with the 2-D map, the phase and period 

must equal ϕ* and P*, respectively and gB A = gB Ar*. Thus if the 1-D map Π has a 

fixed point ϕ* with maximal conductance gB A, the 2-D map Πdyn will have a fixed point 

at the same fixed phase ϕ* if the following holds

P* = P0 1 − ZA ϕ*, gB A (33)
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r* =
1 − exp P*/τr

1 − f exp P*/τr
(34)

gB A =
gB A

r* (35)

To summarize, for a given gB A and associated steady state phase ϕ* of the 1-D map Π, 

solve (33) to find P*. Substitute this expression into equation (34) to find r*, and in turn use 

this value in equation (35) to find gB→A. This procedure yields gB→A as a function of 

gB A. That is there exists a function h such that

gB A = h gB A

= gB A
1 − f exp P0 1 − ZA ϕ*, gB A /τr
1 − exp P0 1 − ZA ϕ*, gB A /τr

.

(36)

Alternatively, assume that the 2-D map is used to obtain a fixed point of (ϕ*, r*) with the 

synaptic conductance from B to A equal to gB→A. Then the 1-D map can be used with the 

synaptic strength from B to A equal to gB A =gB A
r* to obtain the same steady-state 

phase of ϕ*. However, a priori, there is no guarantee that the there is a unique pair gB→A 

and r* whose product is gB A. Uniqueness will occur if the function h gB A  is invertible. 

When it is not, bistability can occur.

The potential lack of invertibility of h gB A  is directly related to the stability of the fixed 

points of the 2-D map Πdyn. Indeed while fixed points of the one-dimensional map Π are 

stable for a large range of gB A values, the 2-D map undergoes two-distinct saddle-node 

bifurcations as gB→A is varied. This will be discussed in detail below in Section 3.4.

3.3 Conditions for bistability

We now analyze the relationship gB A = h gB A  given in (36). If this function is 

invertible, then for each gB→A there exists a unique value of gB A such that ϕ* is a fixed 

phase of both the 1-D and 2-D maps. Clearly, this will occur if and only if h gB A  is 

monotonic. In the trivial case where there is no depression (f = 1) or if the PRC is zero, 

gB→A equals gB A, and h is an increasing function. To find where bistability may be 

possible, let us derive conditions under which h gB A  can be decreasing on some interval.

Akcay et al. Page 15

Physica D. Author manuscript; available in PMC 2019 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For ease of notation, let us temporarily suppress the subscript B → A. Then we can express 

h g  as

h g = g
r g , (37)

where r g  is found from equation (34). The derivative of the function h is

dh
dg =

r g − dr
dg ⋅ g

r g 2 .

It is sufficient to find condition under which the numerator is negative. That is, we require 

the following inequality to hold

r g < dr
dg ⋅ g .

Use the chain rule to find

r g < dr
dP ⋅ dP

dϕ ⋅ dϕ
dg ⋅ g . (38)

For bistability to occur, equation (38) must be satisfied at the fixed point (ϕ*, r*). Observe 

that r g  is always positive, so the right hand side of the inequality has to be positive. By 

definition, the synaptic conductance g is always positive. The derivative dr/dP depends on 

the steady state plasticity profile which is also always positive by definition. The derivative 

dP/dϕ depends on the PRC of the neuron, in fact, it equals −dZ/dϕ, which can be positive or 

negative. The derivative dϕ/dg is obtained from the 1-D map (22). As g increases, neuron A 

receives more inhibition, recovers later, causing θ to increase and ϕ to decrease, hence dϕ/dg
is always negative. Thus for the right-hand side of (38) to be positive, dP/dϕ must be 

negative, or, equivalently, dZ/dϕ must be positive. Therefore, bistability is possible only if 

the fixed point occurs on the increasing branch of the PRC. This is possible for networks 

coupled with small synaptic conductances, since small g gives large ϕ which falls on the 

increasing branch of PRC (Figure 1).

So, the first condition for bistability is that, the conductance gB A must be small. In this 

case, to satisfy the inequality (38), the product of the derivatives on the right hand side must 

be large enough to compensate the small g value. So, we expect to get bistability when these 

derivatives are large in absolute value. We will next show that we can achieve bistable phase 

locking solutions with either a PRC that has a steep increasing branch (equivalently large |

dP/dϕ|) or with a steady state depression profile that increases rapidly with increasing period 

(large dr/dP ). If dϕ/dg is large enough, we should also be able to get bistability. However, 

we do not have direct control over this term, so it is difficult to assess its impact. We will use 
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the QIF model, that has a steep PRC even for small synaptic conductances (Figure 1A) to 

show that bistability occurs even with a weak depression property (Figure 2A) when |dP/dϕ| 

is large. We will next show using the ML model if the PRC is small in amplitude for small 

synaptic conductances (Figure 1B), then a much steeper plasticity profile (Figure 2B) is 

necessary, i.e., dr/dP has to be large to achieve bistability.

3.4 Bistability with depression in QIF neurons

Consider two identical QIF neurons (VtA = VtB = 7, VrA = VrB = −8). Let the synaptic 

strength from A to B be fixed at gA B = 4. We vary gB A, the strength from B to A in a 

range from 3.3 to 4.8. The steady-state phase ϕ* of neuron A obtained from the 1-D map 

(22) Π as a function of gB A is shown in Figure 4A. We use these values of ϕ* in equation 

(33) to find P*. Then use equation (34) to determine the value of the depression variable at 

the steady state (f = 0.5 and τr = 5). Finally, use equation (35) to find the value of gB→A 

necessary to obtain the same phase locking from the depressing map Πdyn (26). The non-

monotonic relationship h gB A  between the two synaptic conductances is shown in Figure 

4B. Clearly for an interval of values in the range, there exist more than one value of gB A

corresponding to a single value of gB→A. This means that there is more than one solution to 

the 2-D map for these values of synaptic conductance.

To understand where this region of non-montonicity lies, we will briefly discuss the 

bistability conditions for the case of QIF neurons. Note that as the synaptic strength gB A

is increased, the phase of neuron A decreases (Figure 4A). The firing period of the network 

at the steady state is determined by this phase through the PRC of neuron A. A Type I PRC 

first increases and then decreases in absolute value with increasing phase (Figure 1). 

Therefore, the network period P* first increases and then decreases as gB A is increased. 

The steady-state value of depression r* is an increasing function of P*. As a result, r* also 

first increases and then decreases with increasing gB A.

The networks coupled with larger synaptic strengths yield smaller steady-state phases of 

neuron A (Figure 4A). The PRC is increasing in amplitude for this range of phases. 

Therefore, for larger synaptic strengths, r* decreases as gB A is increased. The synaptic 

strength gB→A equals the ratio gB A/r*. Hence, for larger synaptic strengths, gB→A is 

always an increasing function of gB A, since the numerator gB A is increasing and the 

denominator r* is decreasing.

On the other hand, for smaller synaptic strengths, the phase locking occurs at`larger phases 

(Figure 4A), where the PRC is decreasing in amplitude with increasing phase. Here, 

increasing gB A would yield a smaller phase, a larger period, and a larger r* value. In this 

case, whether gB→A is an increasing or a decreasing function of gB A depends on the 

derivative of r* with respect to gB A. When the PRC has a larger derivative (or when the 

derivative of the plasticity profile is large enough as will be shown next) the increase in r* is 

large, causing a decrease in gB→A. The non-monotonicity between the two conductances is 
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observed for smaller gB A (Figure 4B) and bistability occurs for synaptic conductances 

falling in this range as expected. The intersection of the dashed horizontal line at gB→A = 

5.35 with the graph of h gB A  illustrates the correspondence of three different gB A

values with it.

Having discussed conditions for bistability, we now plot the steady-state phase values 

obtained from the 2-D map. Figure 5 shows the fixed points of the map Πdyn as a function of 

gB→A. The steady-state phases ϕ* are shown in Figure 5A and the value of the depression 

variable r* is shown in Figure 5B. The stability of the fixed points can be found numerically 

as explained below. The stable solutions are shown in black and the unstable solutions are 

shown in red in the figure. For gB→A small, there are three fixed points, two of which are 

stable. Therefore, the network has bistability for this range of synaptic strength and is 

capable of exhibiting hysteresis. We plot the results of the 2-D map as a function of the total 

synaptic conductance gB A =gB A
r* in Figure 5C. The fixed points agree with the ones 

obtained from the 1-D map Π which are shown in Figure 4A. Solutions corresponding to an 

interval of gB→A values obtained from the 2-D map are unstable (red dots) while others are 

stable (black dots). In contrast, all the solutions obtained from the 1-D map are stable. 

Finally, we show the activity phases ϕ* of neuron A in Figure 5D. These are the actual 

phases (13) of neuron A at the steady state.

The bistability occurs in this model due to saddle-node bifurcations occuring as gB→A 

varies. To understand the origin of these saddle-node bifurcations, consider first the stability 

condition for fixed points of the 1-D map as derived in [17]. If ϕ* is a fixed point of Π, with 

a corresponding θ* value, then the fixed point is (asymptotically) stable if 

Z′A ϕ*, gB A + 1 ZB′ θ* + 1 < 1. For a large range of values of gB A, this condition is 

met and fixed points of the 1-D map are stable.

To determine whether the corresponding fixed point x* = (ϕ*, r*) of the 2-D map (26) is 

stable, we compute the eigenvalues µ1 and µ2 of the Jacobian matrix, A, obtained by 

linearizing about a fixed point. These eigenvalues depend continuously on parameters and, 

in particular, on gB→A. If none of the eigenvalues lie on the unit circle, i.e., 

μ ∈ ℂ: μ = 1 = ∅, then the point x* is hyperbolic. The hyperbolicity condition can be 

violated in three ways leading to different bifurcations. If one of the eigenvalues, say µ1, 

passes through 1, then a saddle-node bifurcation occurs. If µ1 passes through −1, then a flip 

bifurcation occurs. If both eigenvalues µ1 and µ2 are complex and pass through 

μ1 = μ2 = 1, then a Neimark-Sacker bifurcation occurs.

The Jacobian matrix is given by

A =

∂Π1
dym

∂ϕ

∂Π1
dyn

∂ϕ

∂Π2
dym

∂ϕ

∂Π2
dyn

∂ϕ

.
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The partial derivatives are

∂Π1
dyn

∂ϕ = ZB′ θ + 1
∂ZA
∂ϕ ϕ, gB Ar + 1

∂Π1
dyn

∂r = ZB′ θ + 1
∂ZA
∂r ϕ, gB Ar

∂Π2
dyn

∂ϕ =
P0
τr

ZB′ θ 1 − f r 1 +
∂ZA
∂ϕ ϕ, gB Ar exp

Q0
τr

1 − ZB θ

∂Π2
dyn

∂r = f +
P0
τr

ZB′ θ 1 − f r
∂ZA
∂r ϕ, gB Ar exp

Q0
τr

1 − ZB θ

(39)

where θ =
P0
Q0

1 − ϕ − ZA ϕ, gB Ar  and ZB′  denotes derivative with respect to ϕ. The PRC 

of the QIF model neuron is given in Equation (4). Taking derivatives of the PRCs of neurons 

A and B yields

ZB′ θ =
sec2 Q0θ + arctanVrB

1 + tan Q0θ + arctanVrB
+ gA B

2 − 1,

∂ZA
∂ϕ ϕ, gB Ar =

sec2 P0ϕ +gB A
tanVrA

1 + tan P0ϕ + arctanVrA
+ gB A

2 − 1,

∂ZA
∂r ϕ, gB Ar =

gB A

P0 + 1 + tan P0ϕ + arctanVrA
+gB A

r
2 .

(40)

We numerically evaluate the Jacobian matrix A at a the fixed point x* = (ϕ*, r*) of the map. 

The absolute values of the two eigenvalues µ1 (orange dots) and µ2 (purple circles) 

corresponding to each fixed point are shown in Figure 6. When the eigenvalues are both 

complex, their absolute values are equal (blue box). We see that the absolute value of one of 

the eigenvalues (µ1) exceeds 1 (green circles) when gB→A is small. We find that as gB→A 

varies, two distinct saddle node bifurcations occur as µ1 passes through the value 1 when 

gB→A equals 5.06 and 5.47. Thus when gB→A lies between these values, there are multiple 

fixed points some of which are stable and others unstable. It is in this region in parameter 

space that bistability of solutions occurs.

We also note that for fixed gB→A, stability depends on the depression parameters f and τr as 

can be seen in Equations (39) and (40). Figure 7 demonstrates the change in the bistability 

region for QIF neurons as the parameter f that controls the extent of synaptic depression is 

varied. Using the same approach as above, we first obtain the fixed points of the map Π and 

use the equivalence relations given by equation (33)–(35) to obtain the fixed points of the 
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map Πdyn. We keep the parameters that govern the neuronal and synaptic dynamics same 

except the parameter f is varied from 0.5 to 1.

When f = 1, there is no depression and only one stable fixed point exists for each value of 

gB→A. As f decreases, the extent of the depression becomes larger and a region of bistability 

emerges. The region of unstable solutions occurs over a larger interval of gB→A values as f 
decreases. But the range of stable phases covered on the upper branch for each value of f 
does not change much. The region of bistability along the lower branch does shift to smaller 

phases. Therefore, as the synapse from B to A gets more depressing, the smaller stable phase 

of neuron A gets smaller in the bistability region. An effect similar to the one observed when 

f is decreased exists when τr gets larger since this also results in stronger synaptic 

depression.

3.5 Bistability with Depression in ML Neurons

We now show how ML neurons can exhibit bistability. We first couple two ML neurons with 

static synapses. We let gA B be fixed at 0.1 and find the steady state network phase for a 

set of gB A varying between 0.001 and 0.25. The steady state phase ϕ* of neuron A 

changes between 0.5 and 0.9 for this range of synaptic strengths and is shown in Figure 8A.

Since the increasing branch of the ML PRC is not as steep as that of the QIF, in order to 

obtain bistability, we need to rely on the synaptic plasticity profile changing quickly enough. 

To show the dependency on the derivative of the plasticity profile, we use three different 

steady state synaptic plasticity profiles rss. To change the synaptic plasticity profile rss, we 

will change the function r∞ in equation (9). Based on the approximation rss ≈ r∞, we will 

assume that the changes are made directly to the function rss itself.

The first synaptic plasticity profile we use is constant, rss(P ) = 0.5 (black line in Figure 8B). 

It gives results equivalent to the case when there is no depression at all and is shown for 

comparison purposes with the other profiles. As the second plasticity profile, we choose a 

quadratic function (blue curve in Figure 8B) that compares with the plasticity profile used 

for the QIF model (Figure 2A). The minimum and maximum values of the depression 

variables are denoted by rmin and rmax and are chosen to have the values 0.2 and 0.8, 

respectively. It is given by the function rss(P ) = (rmax − rmin)((P − Pmax)/(Pmin − Pmax))2 + 

rmax, where Pmin and Pmax are the minimum and maximum values the period of the neuron 

B takes at the steady state when coupled with static synapses. The third plasticity profile is 

modeled by a hyperbolic tangent function given in equation (9) (green curve in Figure 8B). 

We shall refer to the plasticity profiles modeled by the constant, quadratic and hyperbolic 

tangent functions as the constant, shallow and sharp plasticity profiles, respectively.

Although the equations (33)–(35) are derived for the map Πdyn, we can adjust them for the 

map Πss given by equation (31) and find the value of the synaptic conductance value gB→A 

of the depressing map Πss corresponding to the solution of the static map Π for each 

conductance gB A. The relations between the two conductances for each plasticity profile 

are shown in Figure 8C. We see that for the constant rss function, the relation between the 
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conductances (black line) is simply linear gB A = gB A/2  and always increasing as 

expected. For the shallow rss function, the relation between the conductances (blue curve) is 

nonlinear but still increasing. On the other hand, for the sharp rss function, the curve that 

shows the relation between the conductances (green curve) first increases, then decreases for 

a region of small conductance values and then increases again. We expect to get bistability 

for conductances that fall in this range of nonmonotonicity as there are three gB A values 

for a given gB→A.

We next compute the steady state phase ϕ* of neuron A using the map Πss for each gB→A as 

shown in Figure 8D. We do this by plotting the phases found from the 1-D map Π on the 

gB→A axis. For the constant rss function, the phase ϕ* is the same with the phase obtained 

from the map Π (compare with Figure 8A). When the shallow rss function is used, the curve 

defining the relation between the phase ϕ* and the synaptic conductance gB→A slightly 

bends for small synaptic conductances but no bistability is observed. However, when the 

sharp rss function is used, we can see that there are three steady states for a range of small 

synaptic conductances. We find that the middle phase is unstable, therefore there are two 

stable steady states for this range of synaptic conductances.

Next we show this bistability in a simulation of the coupled network. We numerically solved 

(12) using XPPAUT [20]. Figure 9 shows an example of bistability exhibited by this 

network. Panel A shows the voltage traces of the two neurons, while panel C shows the 

evolution of the r variable. At the start of the simulation, the two neurons are oscillating out 

of phase with one another. Cell A (black trace) sends a fixed synaptic conductance gA→B = 

0.1 to B (green trace), while the conductance from B to A has a maximum given by rssgB→A 

= 0.212 ∗ 0.125 = 0.0265. Thus the maximal synaptic conductance from A to B is stronger 

than B to A and thus A delays the firing of B more than vice versa. At t = 900, we 

transiently hyperpolarized neuron B for a duration of t = 200 msecs. During this time, the r 
variable is being primed to grow because the cycle period of B will become much longer. 

Indeed, when B is released from the hyperpolarization, r is seen to grow very rapidly as the 

cycle period Pc has been updated yielding a new target r∞(Pc) for r to approach. The steady 

state configuration that the cells settle into is nearly anti-phase where the time between 

successive spikes is almost identical. This is reflected in the synaptic conductance rssgB→A 

= 0.767 ∗ 0.125 = 0.0959 being almost equal to gB A = 0.1. Panel B shows a graph of the 

actual phase (13) of neuron A and panel D shows a graph of network period versus gB→A. 

The Z- and S-shaped curves in these panels indicate the existence of bistability. The 

simulation shown in panel A was conducted at gB→A = 0.125 which is within the region of 

bistability. The lower (upper) parts of the curve in panel D (B) corresponds to the early part 

of the time traces in panels A and C. Here the synapse from B to A is weak because the 

period of the network is small and vice versa, namely, the period is small because the 

synapse from B to A is weak. The upper (lower) portion of the curve in panel D (B) 

corresponds to the latter part of the time traces after the network again reaches a steady state. 

Now the period is long giving the chance for the synapse from B to A to strengthen and 

because the synapse is strong, the period is long.
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3.6 Geometric Approach to Finding Fixed Points

In the previous section, we found fixed points of the 2-D map Πss by utilizing information 

obtained from the 1-D map. We now describe an alternate, geometric way to find fixed 

points of 2-D maps that we had developed in a separate paper [4]. To briefly describe the 

idea consider first a generic 1-D map, xn+1 = f (xn). The geometric method that one would 

use to find fixed points would be to look for intersections of the graph of y = f (x) with the 

diagonal y = x. The generalization of this idea to a generic 2-D map xn+1 = F (xn, yn), yn+1 = 

G(xn, yn) is to view the graphs of F (x, y) and G(x, y) as surfaces in appropriate spaces and 

look for their intersection with relevant planes. By then projecting the resulting curves onto a 

common plane, we can identfiy intersections of those two curves as fixed points of the 2-D 

map.

A fixed point (ϕ*, P*) of the map Πss given in equation (31) occurs when ϕ* = 1
ss ϕ*, P*

and P* = 2
ss ϕ*, P* . The two functions z1 = 1

ss ϕ, P  and z2 = 2
ss ϕ, P  each define 2-D 

surfaces. Both functions have the same domain, but have different ranges; the former lies in 

the ϕ direction and the other in the P direction. We can visualize how the fixed points are 

obtained by plotting these surfaces in an augmented ℝ3 space. We plot the surfaces 1
ss ϕ, P

and 2
ss ϕ, P  on the same coordinate axis, above and below the z = 0 plane, respectively in 

Figure 10A–C. The first condition for fixed points, ϕ* = Πss(ϕ*, P*) lies along the curve 

obtained at the intersection of the surface z1 = 1
ss ϕ, P  and the plane z1 = ϕ. Similarly, the 

condition P* = 2
ss ϕ*, P*  is satisfied along the curve obtained at the intersection of the 

surface z2 = 2
ss ϕ, P  and the plane z2 = P. In each case, we are intersecting two, 2-D 

surfaces which results in a 1-D curve. These intersection curves are shown in black above 

and below the z = 0 plane. Their projections on the z = 0 plane are also shown which are 

denoted by C1 and C2, respectively. The fixed points of the must lie on both curves; hence it 

lays on their intersection as shown on the z = 0 plane.

The graphs of the surfaces z1 = 1
ss ϕ, P  and z2 = 2

ss ϕ, P  clearly depend on the choice of 

steady state synaptic plasticity profile and associated parameters. For this section we use the 

sharp plasticity profile as defined in equation (9). The parameters are the same in all 

subfigures and are given in Section 3.5 except the conductance gB→A We choose gB→A to 

equal 0.075, 0.125 and 0.225 in A, B and C, respectively. We expect to get one fixed point 

when gB→A equals 0.075 or 0.225 as these values lay to the left and right of the bistability 

region, respectively, and three fixed points when gB→A equals 0.125, as shown in Figure 8D.

The curve C1 is common to all three cases. The reason that C1 is fixed for all three cases is 

that when the value gB→A changes, only the PRC ZA changes. So, the only term that differs 

in the map Πss for the three cases is ZA. The term ZA only appears in the Π2
ss equation and it 

does not appear in the Π1
ss equation. Therefore, when gB→A changes, only the curve C2 

moves and C1 stays constant. The curve C2
A lies mostly below the curve C1 and they intersect 
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at only one point in Figure 10A. Hence there is only one fixed point when gB→A = 0.075, as 

expected. When gB→A is increased to 0.125, the curve C2
B bends and is pushed more in the P 

direction (y axis), creating three intersections with C1 in Figure 10B. The intersections, 

hence the fixed points occur at smaller phase and larger period values compared to case A. 

When gB→A is increased to 0.225, the curve C2
C is pushed more in the P direction, and lies 

mostly above C1 and only one fixed point remains. This fixed point has a smaller phase and 

a larger period value compared to the cases A and B.

The projections of the fixed point curves, C1 and C2, are drawn on the same coordinate axes 

for three parameter sets in Figure 10D. The black curve is C1, the intersection of the surface 

z1 = 1
ss ϕ, P  and the plane z1 = ϕ and, as discussed above, is the same for the three 

parameter sets. The colored curves are C2, the intersections of the surfaces z2 = 2
ss ϕ, P

and the planes z2 = P. As C2 moves and its intersection with C1 changes, the number of fixed 

points and their values change. It is easier to see in this figure that as the value of gB→A 

increases, the curve C2 moves up causing fixed points with smaller phase and larger period 

values. It is also easy to see that fixed points are gained and lost through saddle-node 

bifurcations of fixed points, similarly to the QIF model.

4 Discussion

Numerous theoretical and computational studies have utilized PRCs to explore phase-

locking in oscillatory neuronal networks [2, 4, 11, 18, 17, 23, 41, 44]; see [10] for a review. 

Some studies assume short or weak perturbations and use iPRCs [11, 18], while others use 

more general PRCs [37, 41] obtained from inputs that are not necessarily weak. In the case 

of strong inputs, PRCs do not necessarily scale linearly with input strength. Additionally, 

experimental work has shown that PRCs computed using realistic synaptic inputs can differ 

significantly from those computed with either weak or strong current pulse injections [22]. 

In turn, these differences can lead to qualitative and quantitative differences in phase-locking 

properties of coupled neurons.

An additional level of complexity arises when dealing with realistic neuronal networks. 

Namely, the amplitude of the synaptic current may change with the short-term history of 

activity. This property, known as short-term synaptic plasticity, is observed in most synaptic 

connections and, in oscillatory networks, results in gain modulation, or a modification of 

synaptic strength as a function of presynaptic firing rate. If the presynaptic activity 

approaches a periodic state, the synaptic strength approaches a steady state. In models of 

synaptic transmission, this leads to a maximum and minimum value of the variables 

governing the synaptic dynamics along the periodic solution [8, 12]. In [4], we defined the 

steady-state plasticity profile to correspond to the maximum value of the synaptic strength as 

a function of presynaptic frequency. We further showed how to use this function, together 

with PRCs, to determine phase locking in a pair of inhibitory cells in which the underlying 

equations governing the activities of the cells and synapses need not be known.
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Bistability of periodic firing patterns in the presence of synaptic plasticity has been studied 

by us [7, 8, 14] and others [33, 50]. In most of these cases, some sort of model equations 

were utilized to conduct the analysis. Here, using the methods developed in [24] and [4], we 

show how synaptic depression gives rise to bistability of periodic solutions in reciprocally 

connected networks when the only cellular information that is available is the PRCs of the 

neurons. For neurons that display Type I PRCs [19], we derived two distinct but related 2-D 

maps whose fixed points correspond to phase-locked solutions of the coupled network. As 

the maximal strength of the depressing synapse is changed, the fixed points of these map 

undergo two distinct saddle-node bifurcations that bookend a region of bistability and 

hysteresis.

Through our analysis, we obtained a condition in the form of an inequality that dictates 

when bistability can occur. This condition depends on both neuronal and synaptic dynamics 

and requires a strong postsynaptic response that is either phase or period dependent. This 

strong effect can either be achieved if the neuron has a steep PRC (phase dependency) or a 

steep steady state depression profile (period dependency). We showed each of these 

situations, respectively, in the context of QIF and ML model neurons.

In the case of QIF neurons, the amplitude of the PRC is relatively large and the increasing 

branch of the PRC is very steep (Figure 1A). This steepness implies that the delay caused by 

a synaptic perturbation depends heavily on the phase of the perturbation received, i.e., the 

neuron is phase-sensitive to perturbations even for small synaptic strengths. In networks of 

such neurons, a weak short-term synaptic depression property (as in Figure 2A) is enough to 

create bistable phase locking modes of the network.

In the case of ML neurons, the PRC changes significantly as synaptic strength is changed 

(Figure 1B). However, the PRC has a small derivative for small synaptic conductances, 

which are of interest here. In this case, a weak short-term synaptic depression property is not 

enough to create bistable phase locking modes. This was demonstrated by choosing different 

forms of the steady state depression profile and showing that only those profiles that exhibit 

sharp changes (as in Figure 2B) lead to bistability, either in numerical simulations (Section 

3.5) or via the geometric method of intersecting surfaces (Section 3.6).

The techniques derived in this paper build on the work of many other researchers who have 

used maps, based on inter-spike intervals, to derive conditions for phase locking (see, e.g., 

[11, 13, 17, 41]). As in the present study, in most of these studies, qualitative as well as 

quantitative properties of the PRC are used to conduct the analysis. Oprisan [39] developed 

similar geometric methods that depended on the shape of the PRC in order to assess phase 

locking, but synaptic plasticity was not considered. Very recently, Oprisan and Austin [40] 

have introduced a method to incorporate the response of two stimuli within a single cycle of 

oscillation. They develop a two-stimulus response surface which shares similarities in 

approach to our geometric method involving surfaces of PRCs. From a methodological 

viewpoint, our approach in the current study demonstrates the usefulness of developing 

maps that simultaneously track the dynamics of short-term synaptic plasticity and the PRC 

effects in order to explore the stable states of recurrent networks.
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Few experimental studies have definitively demonstrated the functional roles of short-term 

synaptic plasticity at the network and behavior levels. However, the role of synaptic 

dynamics in network output is a rapidly growing area of research [5]. Short-term depression 

plays a prominent role in the activity of several oscillatory networks, including the 

thalamocortical system [15], electrosensory processing in weakly electric fish [6], olfactory 

processing [43], auditory processing [38] and central pattern generation [47]. The proposed 

mechanism in our study, that the shape of the PRC and depression profiles may result in the 

existence of bistability, indicates a form of short-term memory that can arise in such 

oscillatory networks, similar to those proposed for working memory [45]. Additionally, a 

simple modification of the PRC or depression profiles, for example by neuromodulation, 

may lead to transitions of the network in or out of states that allow for such activity-

dependent short-term memory states. The existence and modulation of these bistable states 

may allow for gating information flow, especially in the context of sensory processing.
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Figure 1: 
PRC due to synaptic input. A. The PRCs obtained from the QIF model (1) for different 

synaptic strengths. B. The PRCs obtained from the ML model (2) for different synaptic 

strengths.
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Figure 2: 
Steady state synaptic plasticity profiles rss(P ) for the two synaptic models. A. The plasticity 

profile for the QIF model (6). B. The plasticity profile for the ML model (11). Notice the 

difference in the scaling of the y-axes; the value of the depression variable changes over a 

much larger range for the synapse considered for the ML model.
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Figure 3: 
The variables that are used to define the Poincaré maps are shown on the simulation of ML 

neurons. The cycle length Pn of cell A in cycle n (measured when voltage crosses Vth) can 

be divided into the delay between cell A activity to cell B activity (dtn) and the opposite 

(dτn). The cycle period Qn of cell B in cycle n is dτn+dτn+1.
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Figure 4: 
Phase locking of QIF neurons with static synapses. A. Steady-state intrinsic phase of neuron 

A obtained from the map Π given in equation (22) as a function of the synaptic coupling 

strength gB A. B. The relationship gB A = h gB A  between the synaptic strengths of the 

static map Π and the depressing map Πdyn given in equation (26) obtained from equations 

(33–35). The dashed horizontal line at gB→A = 5.35 intersects h gB A  at three points 

(inside circles). Two of these are points that correspond to bistability in the presence of 

synaptic depression.
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Figure 5: 
Fixed points of the 2-D map Πdyn given in Equation (26) and their equivalence with the fixed 

points of the map Π given in Equation (22). A. Steady-state intrinsic phase of neuron A 

obtained from Πdyn as a function of gB A. Dashed vertical line at gB→A = 5.35 lies within 

the region of bistablity which is also shown in the inset. B. The steady-state value of the 

depression variable obtained from Πdyn as a function of gB A. C. The steady-state intrinsic 

phase of neuron A obtained from the depressing map Πdyn is equivalent to the phase 

obtained from the static map Π (compare with Figure 4A) when plotted as a function of 

gB A =gB A
r* = gB→Ar*. D. The steady state activity phase ϕ* of neuron A obtained 

from Πdyn.
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Figure 6: 
The dependence of the eigenvalues µ1 and µ2 of the depressing map (26) on the parameter 

gB→A. The absolute values of µ1 and µ2 are shown in orange and purple, respectively. These 

values overlap for complex eigenvalues (blue box). The fixed points are stable when both 

eigenvalues are less than 1 in absolute value. The fixed points lose (regain) stability via 

saddle-node bifurcation when µ1 is greater (less) than 1 (green circles).

Akcay et al. Page 33

Physica D. Author manuscript; available in PMC 2019 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
The dependence of bistability in QIF neurons on the parameters that govern synaptic 

depression (5). The unstable region increases and the region of bistability changes as f is 

decreased from left to right. A similar change is observed as τr is increased.
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Figure 8: 
Existence of bistability in ML neurons depending on the steady state plasticity profile. A. 

The steady-state intrinsic phase of neuron A obtained from the static map Π given in 

equation (22) as a function of the synaptic conductance gB A. B. Different steady state 

plasticity profiles rss used in the depressing map Πss given in equation (31). C. The 

relationship between the synaptic conductances of the static map Π and the depressing map 

Πss for different rss. D. The steady-state intrinsic phase ϕ* of neuron A obtained from the 

map Πss for different rss as a function of the synaptic conductance gB→A. Notice that the 

bistability region exists only when a sharp steady state profile is used.
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Figure 9: 
Simulation of coupled ML neurons compared with fixed points of the map Πss (31). A. 

Membrane voltages of two ML neurons coupled with inhibitory synapses when the B to A 

synapse is depressing. The network locks at two different phases. From t = 900 to 1, 100, 

neuron B is hyperpolarized, causing the network to switch to the other phase-locked 

solution. B. Activity phase versus synaptic conductance obtained from the map Πss. C. The 

evolution of the synaptic variables from neuron B to A. D. Period of neuron A (also neuron 

B) versus synaptic conductance obtained from the map Πss. The Z-shaped (S-shaped) curve 

in panel B (panel D) shows the different phases (periods) that exist over a range of 

conductance values of gB→A. The lower and upper branches represent stable solutions, 

while the dotted middle branch represents unstable solutions. The simulations in the left two 

panels occur for gB→A = 0.125, where for t < 900, the phase-locked solution corresponds to 

a point on the upper (lower) branch, and for t > 1100, the solution converges to a phase-

locked solution on the lower (upper) branch.
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Figure 10: 
Fixed points of the map Πss (31). A–C. The creation of fixed points of the map for different 

sets of parameters. The surfaces 1
ss ϕ, P  and 2

ss ϕ, P  are drawn above and below the z = 0 

plane denoted by the axes z1 = ϕ and z2 = P, respectively. The intersection of the surface 

z1 = 1
ss ϕ, P  with the plane z1 = ϕ and the intersection of the surface z2 = 2

ss ϕ, P  with 

the plane z2 = P yield the two black curves above and below the z = 0 plane. The fixed 

points of the maps lay on the intersection of the two fixed point curves whose projections C1 

and C2 on the z = 0 plane are shown. There is one fixed point in A and C while there are 

three fixed points in B, depending on the value of the gB→A. D. The projections of the fixed 

point curves, C1 and C2 are drawn on the same coordinate axes for three parameter sets. The 

curveC1 is the same for all parameter sets while C2 changes. Creation and annihilation of 

multiple fixed points with changing parameters is observed.
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