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Abstract

Methodological innovations have allowed researchers to consider increasingly sophisticated 

statistical models that are better in line with the complexities of real world behavioral data. 

However, despite these powerful new analytic approaches, sample sizes may not always be 

sufficiently large to deal with the increase in model complexity. This poses a difficult modeling 

scenario that entails large models with a comparably limited number of observations given the 

number of parameters. We here describe a particular strategy to overcoming this challenge, called 

regularization. Regularization, a method to penalize model complexity during estimation, has 

proven a viable option for estimating parameters in this small n, large p setting, but has so far 

mostly been used in linear regression models. Here we show how to integrate regularization within 

structural equation models, a popular analytic approach in psychology. We first describe the 

rationale behind regularization in regression contexts, and how it can be extended to regularized 

structural equation modeling (Jacobucci, Grimm, & McArdle, 2016). Our approach is evaluated 

through the use of a simulation study, showing that regularized SEM outperforms traditional SEM 

estimation methods in situations with a large number of predictors and small sample size. We 

illustrate the power of this approach in two empirical examples: modeling the neural determinants 

of visual short term memory, as well as identifying demographic correlates of stress, anxiety and 

depression. We illustrate the performance of the method and discuss practical aspects of modeling 

empirical data, and provide a step-by-step online tutorial.
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Introduction

The empirical sciences have seen a rapid increase in data collection, both in the number of 

studies conducted and in the richness of data within each study. With large numbers of 

variables available, researchers often seek to explore which variables explain observed 

variability beyond what their hypothesis-driven models attempted to confirm, identifying the 

variables that are most informative about the outcome of interest. Typical questions asked 

are: “What is the importance of my variables for predicting the outcome of interest?” and, 

ultimately, “What subset of variables is most predictive of (or most relevant for) my 

outcome?”

How to perform variable selection is a pervasive challenge in applied statistics. The field of 

statistical learning (also known as ‘machine learning’ or ‘data mining’) has dedicated a large 

amount of attention to the topic of how predictors can be optimally selected when there is 

little or no prior knowledge. Statistical approaches to variable selection range from the 

notorious stepwise variable selection procedures (cf. Thompson, 1995) to more complex and 

comprehensive approaches such as support vector machines or random forests. One 

particularly fruitful approach is that of regularized regression, a method that solves the 

variable selection problem by adding a penalty term that penalizes solutions, effectively 

producing sparse solutions in which only few predictors are allowed to be “active.” 

Regularization approaches vary in their precise specifications and include method such as 

Ridge (Hoerl & Kennard, 1970), Lasso (Tibshirani, 1996), and Elastic Net regression (Zou 

& Hastie, 2005).

Despite their strengths, these regularization approaches are generally developed in a context 

of models that only include observed indicators, which do not allow for modeling 

measurement error. However, incorporation of measurement error is central to many 

approaches in psychology. The most dominant approach to doing so in psychology and 

adjacent fields is the use of Structural Equation Modeling (SEM). SEM offers a general 

framework in which hypotheses can be formulated at the construct (latent) level with explicit 

measurement models linking the observed variables to latent constructs. Latent variable 

models account for measurement error, assess reliability and validity, and often have greater 

generalizability and statistical power than methods based on observed variables (e.g., 

Brandmaier, Wenger, Raz, & Lindenberger, submitted; Little, Lindenberger, & Nesselroade 

1999). Here we describe a novel approach called regularized SEM, which incorporates the 

strengths of regularization into the SEM framework, allowing researchers to estimate sparse 

model solutions and implicitly solve large-scale variable selection in SEM by introducing a 

penalized likelihood function. We will use simulations and two empirical datasets (One from 

the Cambridge Study of Cognition, Aging and Neuroscience, in which we examine the 

neural determinants of visual short term memory, and a second from a large online sample 

measuring the Depression, Anxiety and Stress Scale; Lovibond & Lovibond, 1995) to 
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illustrate the performance of regularized SEM, and discuss practical aspects of using the 

method for modeling empirical data. First we outline the general principles of regularization, 

how to extend these principles to SEM, and show how regularization is a viable and 

underused tool for settings with large numbers of predictors and relatively small sample 

sizes.

Regularization Overview

Regression—To set the stage for discussing the use of regularization (e.g. shrinkage or 

penalized estimation) in structural equation models, we give a brief overview in the context 

of regression. For more detail, interested readers may consult McNeish (2015) or Helwig 

(2017). We use ordinary least squares (OLS) estimation as a basis. Given N continuous 

observations of p predictors in matrix X and associated continuous outcome Y, we can 

estimate the regression coefficients by minimizing the residual sum of squares

RSS = ∑i = 1
N (Y i − β0 − ∑ j = 1

p β jXi j) .2 (1)

For coefficients, we estimate an intercept β0 along with βj coefficients for each of the p 
predictors. However, there may be instances when we prefer a simpler model, namely a 

model that includes fewer predictors of the outcome. To perform variable selection we can 

use the Least Absolute Shrinkage and Selection Operator (Lasso; Tibshirani, 1996). Lasso 

regularization builds upon equation 1 above, incorporating a penalty for each parameter 

(with larger parameter values incurring a larger penalty):

Lasso = RSS
OLS

+ λ∑ j = 1
p |β j| .
Lasso

(2)

The Lasso penalty includes the traditional RSS as in equation 1, but introduces two new 

components. First and foremost, it introduces a new penalty term that reflects the sum of all 

beta coefficients (righthand term in equation 2). In this manner, much like how a traditional 

regression attempts to minimize the squared residuals, the Lasso penalty also tries to drive 

parameters to zero, thus implicitly performing variable selection. Second, as can be seen in 

equation 2, the sum of the absolute value of each βj coefficient is multiplied by a hyper-

parameter, λ. This term λ quantifies the influence of the Lasso penalty on the overall model 

fit and thus weights the importance of the least-squares fit versus the importance of the lasso 

penalty - as λ increases, a stronger penalty is incurred for each parameter, which results in 

greater shrinkage of the coefficient sizes. λ is called a hyper-parameter because it cannot be 

estimated jointly with the βj coefficients (this is not the case in Bayesian regularization, 

which we will return to later). As there is no generally optimal value for λ, it is common to 

test a range of λ values, combined with cross-validation, to examine what the most 

appropriate degree of regularization is for a given dataset. An additional type of 

regularization is Ridge regularization (Hoerl & Kennard, 1970), where in contrast to the 

Lasso, the Ridge sums the squared coefficients. Where the Lasso penalty will push the betas 

all the way to 0 (as any non-zero beta will contribute to the penalty term), the Ridge penalty 
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will instead shrink betas, but not necessarily all the way to 0 (as the squaring operation 

means that small betas incur negligible penalties). One benefit of Ridge regularization is that 

it better handles multicollinearity among predictors. In an effort to combine both the variable 

selection aspects of the Lasso along with the ability to handle collinearity from Ridge 

regularization, Zou and Hastie (2005) proposed the Elastic Net. Through the use of a mixing 
parameter, α, the Elastic Net combines both Ridge and Lasso regularization

Elastic Net = RSS + 1 − α λ∑ j = 1
p β j

2

Ridge

+ α λ∑ j = 1
p |β j| .
Lasso

(3)

In the same way that it is common to test different values of λ, combined with cross-

validation to choose a final model, the same can be done for α. Generally, this means testing 

values ranging from zero (equivalent to the Ridge penalty) to 1 (equivalent to the Lasso 

penalty).

Extensions—Originating from the application of ridge regression as a way to improve the 

results of OLS when predictors are correlated (Hoerl & Kennard, 1970), a large number of 

alternative forms of regularization have been proposed. In the case of high dimensional 

research scenarios, sparser versions of the lasso have been proposed. This includes the 

adaptive lasso (Zou, 2006), smoothly clipped absolute deviation penalty (Fan & Li, 2001), 

and the minimax concave penalty (Zhang, 2010), to name a few. Methods such as these have 

been shown to produce more optimal results when only a small number of predictors are 

desired to have non-zero coefficients among thousands or more candidate variables. In 

general, there is no optimal type of regularization as they each are optimal under different 

assumptions.

An additional way that regularization methods have been extended is with Bayesian 

estimation. In Bayesian regression, priors are placed on each of the coefficients in the model. 

When these priors are diffuse (large variances), the observed data has a large influence on 

the posterior distribution of each parameter. Regularization as applied to Bayesian 

estimation entails placing different types of prior distributions on those parameters of 

interest and constraining the prior variability to shrink the coefficients towards zero. Thus, 

prior knowledge, as applied through strong priors, carries greater weight in determining the 

posterior distribution for each parameter. Placing normal distributions priors has been shown 

to be equivalent to Ridge regression (Kyung, Gill, Ghosh, & Casella, 2010; Park & Casella, 

2008; Tibshirani, 1996), whereas the Lasso corresponds to Laplace distribution priors (Park 

& Casella, 2008; Tibshirani, 1996). Particularly in the context where variable selection is 

desired, a number of more advanced forms of Bayesian regularization have been found to 

perform better (see van Erp, Oberski, & Mulder [2018] for an overview).

Regularization Rationale

Instead of the traditional use of a test statistic (and associated p-value) to determine the 

significance of a parameter, we instead test a sequence of penalties, use model comparison 

to choose a best fitting model, and examine whether the regression parameter estimates in 
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this best model are non-zero. Non-zero coefficients can be thought of as important (e.g. see 

Laurin, Boomsma, & Lubke, 2016). This stands in stark contrast to the use of p-values, as 

using regularization to label parameters as important does not rely on any asymptotic 

foundations (it does not make statements with regards to a population). In particular, since 

the regularized estimates move away from the point of maximum likelihood, asymptotic 

distributions of parameter estimates do not hold anymore. Commonly paired with cross-

validation, regularization attempts to identify which parameters are likely to be non-zero not 

only in the current sample, but also in a holdout sample.

One implicit conceptual assumption of regularization methods that set parameters to zero, 

such as the Lasso, is that of sparsity (e.g. Hastie, Tibshirani, & Wainwright, 2015) – in other 

words, it reflects the hypothesis that the true underlying model has few non-zero parameters. 

However, in psychological research, this is unlikely to be true. Instead, most variables in a 

dataset likely have small correlations among themselves (e.g. the “crud” factor; Meehl, 

1990). As a result, the use of regularization in psychological research will impart some 

degree of bias into the results - as with all procedures, there is no such thing as a free lunch 

(Wolpert & Macread, 1997). Although this may first seem to be an undesirable side effect, 

we argue that there are common situations where the benefits of reduced variance outweigh 

the drawbacks of non-zero degrees of bias. First, we provide a brief overview of the bias-

variance tradeoff.

Bias-Variance Tradeoff

Although regularization is often used in scenarios where variable selection is desired to 

achieve a parsimonious level of description, or where the number of predictors is larger than 

the sample size (P > N), one of the fundamental motivations behind regularization is in 

relation to the bias-variance tradeoff. Bias refers to whether our estimates and/or predictions 

are, on average (across many random draws from the population), equal to the true values in 

the population. Variance, on the other hand, refers to the variability or precision of these 

estimates (See Yarkoni & Westfall [2017] for further discussion). Practically speaking, we 

want unbiasedness and low variance (e.g., the Gauss-Markov theorem guarantees that least-

squares estimation yields unbiased estimates with lowest variance among all unbiased linear 

estimators), however, both can be difficult to achieve in practice. Regularization plays a role 

in those scenarios where we wish to allow for some bias to achieve a larger decrease in 

variance. In cases where the sample size may be insufficient to adequately test the number of 

predictors we desire to include in our model, regularization will systematically bias the 

regression coefficients towards zero, as the variance of the estimator will be high due to the 

low sample size. Such an approach will prove particularly beneficial when the true model is 

sparse (ie., only few predictors are important).

As a simple example, we simulated 30 observations with ten predictors of a normally 

distributed outcome variable, which is far below recommended guidelines for predictor to 

observation ratios in linear regression. Across 1,000 repetitions, the first predictor was 

simulated to have the strongest regression coefficient (0.5), the second was half as strong 

(0.25), and the third predictor was simulated as half of the second (0.125). The other seven 
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predictors had simulated coefficients of zero. The resultant coefficients from both OLS and 

ridge regression models are display in Figure 1.

In this, we can see unbiased estimates for OLS (the mean parameter estimates corresponding 

with the simulated parameter estimates [shown as asterisks]) However, this comes at the 

expense of variance, as there is a large degree of variability to the OLS coefficients. All of 

this is to be expected given methodological work on sample size recommendations for linear 

regression (Green, 1991). However, instead of restricting the number of predictors entered 

into the model based on the fixed sample size (only testing 2 predictors when really testing 

all 10 is desired), researchers can use regularization to impart bias as a mechanism to 

decrease the variance of the estimates. In contrast to the OLS results, the Ridge mean 

estimates are biased towards zero (i.e. the mean estimate is lower than the data generating 

mechanism), which becomes increasingly evident among larger simulated parameter 

estimates and penalty. Higher regularization imparts more bias towards zero, while also 

reducing the variance of the parameter estimates. Particularly in small sample sizes and/or 

when the number of variables is large (compared to N) this is a desirable property of 

regularization.

Rationale to Induce Bias

First, even though there may be a confluence of small effects in our dataset, we may not 

value the inclusion of every non-zero parameter into our model, as it complicates estimation 

and renders interpretation difficult. In this case we care more about what could be termed as 

functional sparsity, where we specifically aim to develop a parsimonious model that 

facilitates interpretation and generalization of the most important parameters. Second, one of 

the main motivations for the development of regularization methods is for datasets that have 

a larger number of variables than total observations. In this case, OLS regression cannot be 

used. Although settings where the number of parameters exceeds n may still be uncommon, 

the benefits generalize to settings where the ratio of observations to predictors is small, 

which can be construed as sample size challenge (e.g. Bakker, Van Dijk, & Wicherts, 2012). 

To achieve adequate power to detect a given parameter, a suitably large sample size 

(depending on the magnitude of the effect) is required. When multiple effects are 

considered, either separately or in the context of a multivariate model, the sample size to 

detect multiple effects can rapidly increase, reducing power. If collecting additional data is 

not possible for practical or principled purposes, one strategy for testing complex models in 

the presence of a small sample is to reduce the dimensionality of the model. Most commonly 

this means using some method such as stepwise regression to reduce the number of 

coefficients in a regression model, which can be highly problematic (e.g. Harrell, 2015).

Regularization in Structural Equation Modeling

In psychological research, it is common to have more than one outcome of interest, often 

specified as latent variables. Usually, researchers want to not only model a latent variable, 

but also predictors of these factors. One strategy is to estimate factor scores in a 

confirmatory factor analysis, extract the factor estimates and treat those as outcomes in a 

traditional OLS regression. However, this can be problematic (e.g. Grice, 2001, Devlieger & 
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Rosseel, 2017), inducing issues such as biased estimates of the regression parameters and 

factor score indeterminacy. In contrast, one can stay within the latent variable framework, 

and include predictors of both outcomes of interest in a single analysis. This would allow for 

a richer set of analysis, allowing researchers to test equality of relationships across time, 

assess fit (through various fit indices), allow for directed relationships between latent 

variables, to name a few. Pairing regularization with a multivariate model of this type 

requires a generalization of the types of univariate regularization methods discussed prior.

Regularization has been extended in a number of directions beyond linear regression. This 

includes generalized linear models (e.g. Park & Hastie, 2007), network based models (e.g. 

Epskamp, Rhemtulla, & Borsboom, 2016), item response theory models (Chen, Li, Liu, & 

Ying, 2018; Sun, Chen, Liu, Ying, & Xin, 2016), differential item functioning (Magis, 

Tuerlinckx, & De Boeck, 2015; Tutz & Schauberger, 2015), educational assessment 

(Culpepper & Park, 2017), and factor analysis (e.g. Hirose & Yamamoto, 2015), to name 

just a few. Specific to our purposes is what we refer to as regularized structural equation 

modeling (RegSEM; Jacobucci, Grimm, & McArdle, 2016).

RegSEM directly builds in different types of regularization into the estimation of structural 

equation models, by expanding the traditional Maximum Likelihood estimation (MLE) to 

include a penalty term, as follows:

Fregsem = log Σ + tr C ∗ Σ−1 − log C − p
MLE

+ λP ⋅
penalty

. (4)

This adds a penalty term, λP(⋅) to the traditional MLE fit function. Just as in regularized 

regression, λ is the penalty, while P(⋅) is a general function for summing parameters. In the 

case of the Lasso, P(⋅) sums the absolute values of the specific parameter estimates. The 

same goal is accomplished for Ridge penalties, the Elastic Net, as well as other extensions 

(See Jacobucci, 2017). The other component of P(⋅) is selecting which parameters estimates 

should be included (i.e. which parameters are penalized). Because this form of regularization 

takes place in the estimation of structural equation models, regularization can be selectively 

applied to subset(s) of parameters, including factor loadings (e.g. subset selection in a 

questionnaire to create a short form), variances or covariances (e.g. test whether the addition 

of residual covariances is necessary) or, our specific interest, regression paths1. For each of 

these penalized parameters in the model, it is important to standardize the corresponding 

variables prior to the analysis. By standardizing the variables, we ensure that each penalized 

parameter is equally weighted in contributing to model fit.

When the penalty term is either the Lasso or Elastic Net (or other sparse penalties), the 

number of effective degrees of freedom can change as the penalty increases. Most notably, 

as the penalty increases, each parameter that is set to zero increases the degrees of freedom 

(see Jacobucci, Grimm, and McArdle [2016] for additional information), thus often resulting 

1Note that regression paths can be penalized regardless of which variables they connect. For example, they can be from manifest 
variables to predict latent variables, this directionality can be reversed, between latent variables, as well as only include manifest 
variables. In fact, Lasso regression can be seen as a subset of RegSEM Lasso.
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in an improvement in fit with those fit indices that include the number of parameters in the 

equation (e.g. RMSEA, CFI, and information criteria). Note however, that some fit indices 

are derived under the assumption that the point estimate is maximum likelihood, thus, it may 

be preferable to evaluate test set prediction error rather than classic in-sample test statistics 

(see Yarkoni and Westfall, 2017).

RegSEM combines both confirmatory aspects of structural equation modeling with an 

exploratory search for important predictors. The confirmatory and exploratory aspects can 

take place in either the measurement or structural parts of a structural equation model. In 

many situations, researchers may have some a priori idea of how some variables relate to 

each other. To be more concrete, this may take the form of a confirmatory factor analysis 

(CFA) model. For instance, imagine a model with four indicators of a single latent variable 

such as fluid intelligence. This confirmatory formulation may be the result of previous 

research support for a single latent dimension underlying the covariance between all of the 

indicators. In contrast, we may have less certainty about which covariates in our dataset may 

be important predictors of the fluid intelligence latent factor, either because we lack strong a 

priori expectations, or because a large number of potential covariates is available (e.g. 

genetic markers, brain variables). As an example, Figure 1 displays the addition of three 

predictors (say, volumetric measures of different brain regions, cf. Kievit et al., 2014) to the 

initial CFA model resulting in a Multiple Indicator, Multiple Causes Model (MIMIC; 

Joreskog & Goldberger, 1975). Once the model is run, researchers commonly rely on 

traditional techniques such as the Wald test (and associated test statistics) to determine 

which predictors have non-zero population values. This kind of model is commonly used to 

simultaneously estimate the joint influence of a set of presumed causal influences on one or 

more latent variables. However, given the constraints of traditional SEM approaches, the 

predictors are usually selected a priori based on theoretical or empirical considerations (cf. 

Kievit et al., 2014). Now imagine an alternative scenario, instead of only incorporating a 

small set of predictors in a MIMIC model, researchers may have a much larger number of 

predictors they may wish to test (such as grey matter volume across all regions in an atlas). 

None of these additional relationships may be based on previous hypotheses. Instead, an 

exploratory search would be conducted. Here is where traditional tools are no longer as 

suitable, as the model may not converge, or estimates may be imprecise. This can be 

attributed to problems in using maximum likelihood estimation (MLE) with large numbers 

of variables when the sample size is limited (e.g. see Hastie,Tibshirani, & Wainwright, 

2015). Although previous research has examined the influence of large models on test 

statistics (Yuan, Yang, & Jiang, 2017), less attention has been paid to strategies that produce 

more accurate parameter estimates. To address this challenge, we propose and evaluate the 

use of regularization to reduce the dimensionality of the model to improve the parameter 

estimate accuracy.

Combining what we have detailed with regularized regression, the rationale for using 

regularization, and regularization in structural equation models, we can now revisit our 

example in Figure 1. In going from the CFA model to the MIMIC model, we transition from 

a confirmatory latent variable model, based on previous research, to the inclusion of 

predictors that may not have a strong a priori basis. Moreover, in many applied fields such as 

genetics, cognitive neuroscience, epidemiology and similar fields, the ratio of predictors 

Jacobucci et al. Page 8

Adv Methods Pract Psychol Sci. Author manuscript; available in PMC 2019 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



may be large compared to the available sample size. Indeed, one could argue that the 

absence of regularization methods may help explain why fields such as cognitive 

neuroscience rely on mass univariate approaches (i.e., a relationship between an outcome 

and neural data is tested thousands of times, separately for each brain region). However, as 

multivariate approaches generally paint a richer, more realistic picture of the true data 

structure, as well as allowing the researcher to investigate which effects are redundant across 

brain regions, and which may be partially independent complementary effects. To examine 

the possible benefits of regularization in the SEM context we conducted three studies. In 

Study 1 we examine the effectiveness of both MLE and regularization in the context of 

complex structural equation models. In Studies 2 and 3 we apply regularized SEM to a large 

existing datasets.

Study 1: Simulation

Methods

To evaluate the effectiveness of the RegSEM Lasso, we designed simulation conditions that 

researchers may commonly face when evaluating a large number of predictors (e.g., a 

property such as cortical thickness measured across many brain regions). We vary our 

simulations across two dimensions: sample size and predictor collinearity. The template 

model with each simulated parameter is depicted in Figure 3 below. In this, there are six 

indicators (Y1-Y6) of the latent variable, f. These factor loadings differ in their simulated 

population values (see Figure 3). As predictors of f, there are 70 uninformative (“noise”) 

variables (Cn1-Cn70), with simulated population coefficients of zero. Additionally, there are 

three sets of 10 predictors each of differing effect sizes: small (0.20, Cs1-Cs10), medium 

(0.50; Cm1-Cm10), and large (0.80; Cl1-Cl10). Taken together, this makes a dataset of 100 

potential predictors of f, each treated as fixed effects. In fitting this model, the latent variable 

variance was fixed to one for identification purposes, allowing each factor loading to be 

freely estimated (we do not estimate a mean structure).

After creating simulated data according to the model in Figure 3, we then tested a model that 

included 112 free parameters, including one hundred latent regression coefficients, 6 factor 

loadings, and 6 residual variances. Although rules of thumb are inherently limited, common 

guidelines would suggest a ratio of 10:1 for sample size, suggesting a minimum N of 1,200 

(e.g. Kline, 2015) to obtain stable estimates. Given that many researchers may wish to test 

models of this size, but may not have the requisite sample size, we aimed to test a variety of 

sample sizes to examine when the performance of MLE degrades. and when the use of 

regularization is beneficial. As a result, we tested sample sizes2 of 150, 250, 350, 500, 800, 

and 2000.

Finally, in most psychological studies that examine the influence of a variety of predictors, it 

is common that these predictors have correlations amongst themselves. This complicates the 

interpretation of the results – for instance, it becomes challenging to determine the relative 

contribution of individual predictors (Grömping, 2009). Moreover, high degrees of 

2We tested a sample size of 120 as well, but the regsem package failed to converge at a high rate, thus we did not include these 
results.
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collinearity can result in problematic estimation. As a result, we also included predictor 

collinearity as a simulation condition. To investigate the effect of predictor collinearity, we 

simulated data that included correlations of 0, .20, 0.50, 0.80, and 0.95 among all predictors. 

With increasing correlation, we expected increasing amounts of bias in both MLE and 

regularized estimation. Because Lasso regularization is problematic with high degrees of 

collinearity, we also included the Elastic Net estimator. Finally, we examine the prevalence 

of Type I (wrongly including a noise predictor) and Type II (wrongly excluding a true 

predictor) error rates across a range of sample sizes and effect sizes.

To test each form of estimation, we used two different packages in the R statistical 

environment (R Core Team, 2018). For MLE, we used the lavaan package (version 

0.5-23.1097; Rosseel, 2012). For RegSEM, we used the regsem package (version 1.0.6; 

Jacobucci, Grimm, Brandmaier, & Serang, 2017). Both Lasso and Elastic Net regularization 

are implemented in regsem, along with a host of additional penalties (Jacobucci, 2017). We 

vary the penalty term lambda (see equation 4 above) across 30 values, ranging from 0 to 

0.29 in equal increments. In initial pre-runs, higher penalty values were used but always 

resulted in worse fit at the higher ranges. To choose a final model among the 30 models run, 

we used the Bayesian information criteria (Schwarz, 1978). Across all of the simulation 

conditions, each cell was replicated 200 times. Our simulation code and other material can 

be found at https://osf.io/z2dtq/.

Results

Instead of giving a detailed analysis of each figure, we instead give a high level overview of 

simulation results. We compare the performance of RegSEM Lasso to MLE across three 

performance metrics: Root Mean Square Error (RMSE; averaged across each set of 

parameters), relative bias (RB; averaged across each set after taking the absolute value of 

each parameter) and and error type (type I and type II respectively). For each performance 

metric we vary sample sizes (left panels) and collinearity (right panels). We do not present 

the results for RegSEM Elastic Net estimation, as the results were almost identical to those 

from RegSEM Lasso.

Parameter Estimates—First we examine the precision of parameter recovery quantified 

as RMSE and relative bias (RB). At higher sample sizes, MLE performed well in 

comparison to Lasso with regard to RMSE, and even more so for RB. This performance 

distinction with RegSEM Lasso between both metrics is as expected, because as we 

discussed earlier, the Lasso imparts bias to reduce variance. RMSE measures both bias and 

variance, while RB only measures bias, thus the increase in bias is somewhat offset by a 

decrease in variance. At smaller sample sizes, the Lasso performed better than MLE, 

particularly at a sample size of 150. With only 150 observations, MLE was highly unstable 

in its estimation of parameters, meaning parameter estimates were drastically larger than 

their simulated values.

In using RMSE, there was remarkably similar performance across both MLE and Lasso, 

with the exception of sample sizes of 150 and 250. Using the RMSE, the Lasso produced 

better results in most conditions, whereas the results with RB were more mixed. When the 

Jacobucci et al. Page 10

Adv Methods Pract Psychol Sci. Author manuscript; available in PMC 2019 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://osf.io/z2dtq/


amount of correlation among all predictors was extremely high (0.95), the Lasso produced a 

large amount of RMSE in the factor loadings. As displayed in the top right pane of Figure 4, 

this large increase in RMSE mostly likely is what also produced higher RMSE values for the 

Lasso and sample size for the factor loadings (top left pane). This can most likely be 

explained by covariance expectations, and how correlations among predictors create a more 

complicated web of relationships (see Appendix A for further detail). Fortunately, 

collinearity of predictors in the range of .95 is unlikely to be observed in real datasets.

The Lasso was favored with respect to RB for the sample size of 150, but MLE was favored 

with larger samples. The same effect that occurred for the Lasso and RMSE with extreme 

degrees of collinearity also occurred for RB. This secondary effects were much less present 

using MLE. Additionally, in comparison to RMSE, collinearity resulted in a U-like effect on 

the Lasso for RB for the regression coefficients. Both small (0) and extreme (0.95) 

correlations among predictors resulted in the highest RB, whereas this same relationship did 

not hold for MLE. Together, our simulations show that regularized SEM outperforms 

traditional MLE in terms of parameter estimation in cases where sample sizes are small and 

the number of predictors is large.

Type I and Type II Errors—An alpha criterion of 0.05 was used to determine parameter 

significance in the MLE models (see Figure 6). First looking at the propensity of a Type I 

error with the noise parameters (if a noise variable had a p-value < 0.05), sample size had a 

larger effect than did collinearity for MLE. For a sample size of 150, this means a 17% 

chance to incorrectly identify a noise variable as a significant parameter. For collinearity, 

although the Type I errors rates were higher than 0.05, this can mostly be attributed to the 

influence of the sample size conditions. More alarming is the low power, or high Type II 

error rates (p-value > 0.05) for the small and medium parameters in MLE. As collinearity 

increases, so does the Type II error rates for these parameters, while the inverse relationship 

holds for sample size. Even for the parameters simulated at a value of 0.8, larger than 

expected numbers of Type II errors were committed at small sample sizes and a large 

amount of collinearity. For the Lasso, almost opposite results occurred. Overall, the Lasso 

committed far more Type I errors with the noise variables (estimating noise variables as non-

zero), but also had much lower Type II errors (i.e., it rarely omitted a truly predictive 

variable) across the small, medium and large variables in each condition.

Summary—Across our simulations, MLE performed better at larger sample sizes, the 

Lasso better at smaller numbers of observations. Across both metrics, MLE had less relative 

bias (as expected), while in some cases the Lasso improved upon MLE with respect to the 

RMSE. These results are in line with previous work such as Serang, Jacobucci, Brimhall, 

and Grimm (2017), who found a similar tradeoff between regularization and other forms of 

estimation in the context of mediation models. Parameter estimate accuracy had a less stark 

contrast in the performance between methods. The optimal method for a given research 

context depends on the relative importance of decreasing parameter bias or parameter 

variance. Although MLE may produce more accurate results within your sample, this model 

may not generalize as well as a model produced using regularization. This contrast goes 

beyond the small selection of models discussed in this paper.
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Study 2: White matter determinants visual short term memory

In cognitive neuroscience, where many features of brain structure and function may have 

complementary effects, the challenge is how to best reconcile the dimensionality constraints 

for covariance based methodologies such as SEM, with the richness of the imaging metrics 

(which may include hundreds of measures per individual). Here, we describe an illustrative 

example using regularized SEM on a large, population-derived cohort of healthy aging 

individuals (Cam-CAN, Shafto et al., 2014), modelling visual short term memory as a 

function of white matter microstructure.

Sample

For this empirical illustration we use data from the Cambridge Study of Cognition, Aging 

and Neuroscience (Cam-CAN, www.cam-can.org). The sample consists of 627 participants, 

320 female, between the ages of 18 and 88 (M =54.18, SD=18.42) who participated in a 

large battery of cognitive tests, demographic and lifestyle measurements, and MRI scans (for 

more detail on the cohort and sampling methodology see Taylor et al., 2017). Here we focus 

on a specific cognitive task (the visual short term memory task) and a common index of 

white matter microstructure (Fractional Anisotropy, FA) for participants with complete data. 

Subsets of this data (but not this cognitive task) have previously been reported (e.g. Henson 

et al., 2016; Kievit et al., 2014, 2016).

Visual Short Term Memory

This particular visual short term memory task was developed to quantify capacity and 

precision of short term visual memory. The task consists of three phases: an encoding phase, 

during which participants view between one and four coloured circles, followed by a brief 

blank screen (900 milliseconds) and a cue in the same spatial location as one of the (up to) 

four circles (see Figure 7). Participants are asked to use a colour wheel to pick the colour of 

the cued circle, as well as rate their confidence in their judgment. Participants performed a 

total of 224 trials across two blocks, with position, set size, and cues counterbalanced across 

blocks. We here focus only on set size (defined as the visual capacity of an individual 

estimated for each set size) for set sizes 2-4 (to avoid the ceiling effects associated with the 

simplest version). Each participant had three scores capturing their mean performance across 

the three set sizes, with each score ranging between 0 and the maximum number of circles 

per set size (i.e. 2-4).

White matter

For the neural indicators we use a common metric of white matter organization called 

Fractional Anisotropy. This metric quantifies the dispersion of water molecules and the 

extent to which this dispersion is constrained by the organization of white matter structures. 

FA is a complex and indirect measure with various limitations, and the relationship between 

FA and white-matter health is not yet fully understood (Jones, Knösche, & Turner, 2013; 

Bender, Prindle, Brandmaier, & Raz, 2016). Nonetheless, FA is widely used as it has been 

shown to be associated with individual differences in a range of cognitive domains, 

especially in old age (Madden et al., 2009). We here focus on mean FA for each tract using 

the ICBM-DTI-81 atlas (Mori et al., 2008) which parcellates the human white matter 
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skeleton in 48 tracts. Although we have previously focused on white matter atlases of lower 

dimensionality (e.g. (Kievit et al., 2016 and Mooij, Henson, Waldorp, Cam-CAN, & Kievit, 

2018), we here intentionally use a more high-dimensional white matter tract atlas to 

illustrate the benefit of regularization. For more details regarding the pipeline, see Kievit et 

al (2016).

MIMIC-model

To examine the neural determinants of visual short term memory we fit a Multiple Indicator, 

Multiple Causes model (Joreskog & Goldberger, 1975). This model captures the hypothesis 

that a latent variable measured by multiple indicators is in turn affected by multiple causes 

(cf. Kievit et al., 2012 for a comparison of the MIMIC model to competing representations). 

First, we specify a measurement model such that a latent variable is measured by the 

memory capacity across three subtests varying in set size (2, 3 and 4, see above for more 

details). Next, we simultaneously regress this latent variable on all 48 white matter tracts. 

This model tests the joint prediction of the latent variable by all 48 tracts which allows one 

to quantify if one or more white matter tracts help predict individual differences in visual 

short term memory.

Model estimation and results

We estimate the regularized model across a range of lambda values, using the Bayesian 

Information Criterion (BIC; also Schwarz Criterion; see Jacobucci, Grimm, & McArdle for 

further detail on alternative strategies for selecting a final model) to compare model fit 

across each iteration. The BIC balances the extent to which the increased parsimony of 

regularizing parameters to 0 simplifies the model with the concurrent decrease in 

explanatory power of the reduced model. As we have a strong a priori hypothesis about the 

measurement model we only regularize the structural parameters (i.e. the joint prediction of 

the latent variable by 48 tracts), not the factor loadings or residual variances. As can be seen 

in Figure 8, the best solution by BIC is obtained with a lambda value of 0.18, which yields 

an acceptable RMSEA of 0.0321. Figure 9 shows the beta estimates and model BIC across a 

range of lambdas, as well as the six tracts that are non-zero in the final model.

Results

As can be seen in Figure 9, six tracts remain non-zero in the regularized MIMIC model. 

Strikingly, three of these are subdivisions of the fornix (the column and body, as well as the 

cres), all showing positive effects (i.e. greater white matter microstructure is associated with 

better visual short term memory performance). The fornix, a tract connecting the 

hippocampus to other brain regions, has long been associated with various aspects of 

memory, usually autiobiographic (e.g. Hodgetts et ell., 2016) or, in the same Cam-CAN 

cohort, subdomains such as recollection, familiarity and priming (Henson et al., 2016). 

Notably, there are even some phase I trials suggesting deep brain stimulation to the fornix 

may alleviate memory complaints in early Alzheimer’s sufferers (Laxton et al., 2010). The 

posterior thalamic radiations (see Figure 9 top right) have been posited as crucial in focusing 

and allocation attention in demanding tasks (Menegaux et al., 2017). Evidence in infants 

suggests distinctive association between greater white matter organization in the posterior 

thalamic radiations and better performance on the visual short term memory task (Menegaux 
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et al., 2017). Finally, we observe a positive association between the superior fronto-occipital 

fasciculus, previously associated with greater spatial working memory in children 

(Vestergaard et al., 2011).

Although the above five tracts align well with previous literature, we also observe a single 

(surprising) negative effect – Greater white matter integrity of the Superior cerebellar 

peduncle was associated with poorer VSTM performance. However, closer inspection of this 

tract suggests that this pattern is likely an artefact of image registration as (unlike other 

tracts) the integrity of this tract (bilaterally) increases with age. A likely explanation is that 

the relatively deep location of this tract within the brain makes it vulnerable to registration 

challenges such as partial volume effects (Alexander, Hasan, Lazar, Tsuruda, & Parker, 

2001). For these reasons we suggest this ‘negative’ pattern is more likely to represent an 

imaging artefact than a true association.

It should be noted that the regularized model solution does not imply that all other tracts are 

uncorrelated to VSTM. In cases of collinear predictors a regularized solution is more likely 

to yield a predictor most ‘representative’ of a broader set of correlated predictors (i.e. a 

single tract captures most or all of the predictive power across a network of tracts). In this 

case, regularizing “groups” of predictors with the group lasso (Friedman, Hastie, & 

Tibshirani, 2010) may be more appropriate, however, this has not been generalized to SEM 

at this time. To summarize, a regularized SEM-MIMIC is able to model the relation between 

cognitive performance and imaging metrics with a high dimensional set of predictors into a 

relatively parsimonious representation of key tracts previously implicated in visual short 

term memory performance. This demonstrates the viability of this methodology in cognitive 

neuroscience in general and aging and developmental cohorts in particular.

Study 3: Modeling the determinants of depression, anxiety and stress

Sample

Previous work suggests many distinct predictors of individual differences in stress, anxiety 

and depression (e.g. Sümer, Poyrazli, & Grahame, 2008), but it is often unclear to what 

extent these are separable or collinear (non-unique) determinants of mental health. For our 

second empirical example we examine this question using a large (N= 27,835) publicly 

available dataset of the Depression, Anxiety Stress (DASS) scale (Lovibond & Lovibond, 

1995). This dataset was collected as an online sample and is freely available at https://

openpsychometrics.org/_rawdata/. The 42 item DASS scale captures latent variables of 

depression, anxiety and stress (each with 14 indicators) as well as a set of personality and 

demographic covariates, which will be subject to regularization. These covariates include the 

Ten Item Personality inventory (Gosling, Rentfrow, & Swann, 2003), each rated on a 7 point 

likert scale (Disagree strongly to Agree Strongly). Other covariates included are education 

(ranging from 1=’less than high school’ to 4 ‘graduate degree), gender (1=Male, 2=Female, 

Age (in years), handedness (1=Right, 2=Left), voter record (1=’I have voted in the last 

year’) and family size (‘Including you, how many children did your mother have’). These 

covariates are included for illustrative, rather than conceptual, reasons.
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Results

First, we fit a three factor measurement model to the full DASS scale. This model fit the data 

well (X2(816) = 64,490.79, p < .001; RMSEA = .053 [.053 - .053]; CFI = .897; SRMR = .

040), and all factor loadings were moderate to strong (range=0.50-0.84, Mean=.7). Despite 

considerable covariance (correlations all >.7) among the latent variables, a three factor 

model fit considerably better than a competing unidimensional account (where all items are 

taken to measure a single latent variable; ΔX2= 29,414, (Δdf=3), p < .001). Next, we fit a 

MIMIC model where the three latent factors were simultaneously regressed on the 16 

predictors. Results here are based on a random subsample (N=1000) of the full cohort. 

Model fit was good (X2(1,440) = 4,348.61, p < .001; RMSEA = .045 [.044 - .046]; CFI = .

884; SRMR = .038), and the joint covariates predicted a large amount of variance (stress; 

52.3%, Anxiety, 41.9%, Depression, 40.7%). With MLE, 4 predictors are nominally 

significant for stress, 7 for anxiety and 6 for depression (in the N=1,000 subsample).

Next, we refit the model using Lasso RegSEM. As can be seen in the Figure 10, the optimal 

BIC solution was observed with a lambda penalty of 0.15. Of the total 48 structural 

parameters, this penalty regularized twenty-seven paths to zero, yielding a more 

parsimonious model representation. Table 2 shows the fully standardized parameter 

estimates for the ML solution as well as the regularized model. Consistent across all three 

factor, the personality items 4 (‘easily upset, anxious’) and 9 (Calm, emotionally stable) had 

strong associations (r=~3 with the three mental health outcomes). However, both MLE and 

Lasso estimates demonstrate that a considerable number of other predictors contribute 

unique variance in explaining individual differences in mental health, including education 

and the ‘reserved, quiet’ personality dimensions.

Of note in Table 2 is that the largest Wald test Z values do not consistently correspond to 

what is selected as non-zero in the Lasso model. One thing to keep in mind when 

interpreting the Lasso parameter estimates is that these are biased towards zero due to the 

shrinkage (Tibshirani, 1996). One solution to this is to refit the model without any penalty in 

a second stage using only the chosen subset. This procedure is referred to as the relaxed 

lasso (Meinshausen, 2007) and has been shown to perform favorably when compared to best 

subset selection, forward stepwise selection, and the lasso without the second stage (Hastie, 

Tibshirani, & Tibshirani, 2017; Serang,Jacobucci, Brimhall, & Grimm, 2017). Because we 

did not follow this two-stage approach, it is recommended to only interpret the regularized 

coefficients as zero or non-zero.

Discussion

Here we propose regularized SEM as a powerful and underutilized method for researchers 

who want to examine a (relatively) large number of predictors, or have a relatively modest 

sample size in SEMs of moderate complexity. We described regularization as applied to both 

regression and structural equation modeling, and evaluated its use in high dimensional 

MIMIC models. We show how Lasso penalties incurred less error in conditions with small 

sample sizes, and demonstrated higher power in detecting regression paths of varying 

magnitude. Across these results we identified how sample size and the correlation among 

regressors influences the accuracy and inference of parameter estimates in an extremely 
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complex model. This was applied to modeling visual short term memory as a function of 

white matter microstructure in a large existing dataset. Starting with a complex model of 48 

distinct white matter tracts, the regularized model yielded six distinct tracts with non-zero 

parameter estimates as determinants of visual short term memory. Finally, our last example 

identified a broad set of variables that explain individual differences in stress, anxiety and 

depression.

Our simulation study showed that regularized SEM may be a viable option for researchers 

looking to identify a relatively low-dimensional set of predictors in fields with broad sets of 

candidate variables, such as cognitive neuroscience and behavior genetics. Notably, this 

technique goes beyond traditional mass univariate methods of multiple comparison 

corrections in neuroimaging such as false discovery rate or Gaussian random field theory 

(for an accessible introduction, see Brett et al., 2003), which are generally still implemented 

to correct (mass) univariate tests, rather than joint simultaneous prediction across voxels/

regions of interest. It may be possible to combine the above approach with joint methods 

such as principal component regression to estimate the joint prediction of multiple 

components across many voxels even in cases with modest sample sizes (e.g., Wager et al., 

2011).

Limitations and challenges

Although we have illustrated several benefits of regularization in regression and SEM for 

small sample sizes, we did not include any conditions with N < 100. This was mostly due to 

the complexity of our model, as we were unable to achieve stable estimates at a sample size 

of 120 or below. In regularized regression it is possible to test models with p > n, however, to 

our knowledge, this has not been done using traditional SEM estimation methods such as 

MLE. A possible solution is the use of Bayesian SEM, where strongly informative priors or 

hierarchal models with sparsity inducing priors can achieve stable estimation even in such 

extreme cases (see Jacobucci & Grimm, in press). Given the use of Bayesian estimation in 

cases of small numbers of observations (McNeish, 2016), we expect to see more research in 

this realm in the future, as pairing Bayesian SEM and regularization has seen a wider array 

of application than with frequentist SEM (see Feng, Wu, & Song, 2017; Brandt, Cambria, & 

Kelava, 2018; Lu, Chow, & Loken, 2016). Other avenues for future work include the 

investigation of bias in the use of regularization in factor score regression approaches 

(Devlieger & Rosseel, 2017), which may help overcome the current n > p boundary. 

Additionally, by first creating factor scores, thus fixing the factor loadings, bias induced by 

high degrees of collinearity may be reduced.

Frequentist software for regularized SEM currently requires complete cases. As it is rare for 

psychological data to have no missingness, this currently represents a considerable weakness 

of regularized SEM. One strategy for modeling data with missing values is the use of 

multiple imputation. The main issue with multiple imputation and regularization is 

combining the results. In traditional multiple imputation for SEM, the parameter estimates 

can be aggregated across the 10-20 datasets by averaging the parameter estimates and 

correcting the standard errors for the lack of randomness in the process. However, 

regularization is most often used to perform variable selection, thus necessitating a way to 
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aggregate a set of 0-1 decisions across imputed datasets. Although some research has 

addressed this in regression (Liu, Wang, Feng, & Wall, 2016), this is not been generalized to 

SEM.

Without p-values or confidence intervals accompanying each parameter estimate, researchers 

may feel less certain regarding inference when using regularization. Although Lockhart, 

Taylor, Tibshirani, and Tibshirani (2014) have derived sampling distributions to calculate p-

values that take into account the adaptive nature of the Lasso regression model, this has not 

been done with Lasso in SEM. Because of this, inference can be more challenging in 

regularized SEM models, particularly given the inherent bias in estimation. One method 

proposed for overcoming this is the relaxed Lasso (Meinshausen, 2007), which has been 

shown to produce unbiased parameter estimates with the Lasso applied to mediation models 

(Serang, Jacobucci, Brimhall, & Grimm, 2017). Despite this, it may be difficult to change 

one’s mindset in characterizing non-zero paths as important. For this, we recommend a 

conceptualization that relates to an alternative sample. Although we may incur bias through 

the use of regularization, our more important aim is that of generalization, which is achieved 

by reducing variance and preferring models of a complexity that is afforded by the observed 

data. This particularly holds in exploratory studies, where we are less concerned with within 

sample inference, and care more about using our model to inform future research.

In our simulation we found a tradeoff between MLE and RegSEM Lasso with respect to 

Type I and Type II errors – the RegSEM Lasso keeps more variables in the model (more 

Type I errors and less Type II), where MLE is more restrictive with respect to which 

variables are thought to be significant (Less Type I and more Type II). Our perspective is 

that in exploratory studies, we generally should prefer a liberal stance, that is, more 

emphasis should be given to the inclusion of potentially important variables, and less 

concern to possibly including variables that do not have either predictive or inferential value. 

In an ideal setting, researchers would apply regularized SEM to data from a pilot or initial 

study in the hopes of being maximally efficient in what variables are included in a future, 

possibly larger study. Our simulation study supports the idea that applying MLE when the 

sample is small and the number of variables is large will result in the exclusion of potentially 

relevant variables. Note however, that our conclusions rely not only on the choice of 

regularization but also on our specific heuristic for choosing the penalty. If researchers can 

afford to be more inclusive (i.e. can tolerate more Type I errors) or more exclusive (can 

tolerate more Type II errors) in variable selection, choosing different penalties may align 

better with their goals (see also Lakens et al., 2018).

Related approaches

Regularized SEM is only one of the new methods developed for structural equation 

modeling in larger datasets. Particularly in the area of variable selection, Structural Equation 

Model Trees (SEM trees; Brandmaier, von Oertzen, McArdle, & Lindenberger, 2013) and 

Forests (Brandmaier, Prindle, McArdle, & Lindenberger, 2016) are one alternative method. 

SEM trees directly use the observed covariates to partition observations, and in the process, 

only a subset of covariates are used to create a tree model, allowing researchers to uncover 

non-linearities and interactions in SEM. Additional methods include the use of heuristic 
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search algorithms (e.g. Marcoulides & Ing, 2012), various methods for identifying group 

differences (Frick, Strobl, & Zeileis, 2015; Kim & von Oertzen, 2017; Tutz & Schauberger, 

2015), and the use of graphical models for identifying latent variables (e.g Epskamp, 

Rhemtulla, & Borsboom, 2016). With increasing amounts of data sharing, facilitated by 

various new tools for data storage and sharing such as the Open Science Framework (https://

osf.io/) and https://openfmri.org/ we can envision the utility of testing models much larger 

than our template simulation model. One of the biggest challenges is current software 

implementation. In this regard we expect Bayesian estimation to be particularly fruitful, 

especially in the creation of new sampling methods such as in the Stan software package 

(Carpenter et al., 2016). Easier to use interfaces for specifying models (see Merkle & 

Rosseel, 2015) are sure to facilitate wider use among psychological researchers. As 

discussed earlier, regularization can be accomplished through both frequentist and Bayesian 

estimation (see Jacobucci & Grimm, in press), with varying strengths and weakness to each 

approach.

Summary

We encourage researchers to think of regularization as an approach to allow the 

incorporation of confirmatory and exploratory modeling. Researchers have more flexibility 

to make both their uncertainty and knowledge concrete. This is particularly suitable if 

researchers hope to use a principled approach to go beyond the limitations of their theory to 

identify potentially fruitful avenues for future study. In both our simulation and empirical 

examples, we did an exploratory search for important predictors in relation to a confirmatory 

latent variable model. This is only one example in the fusion of these types of modeling and 

we look forward to see new areas for application. It is our hope that our exposition sheds 

light on a new family of statistical methods that have a high amount of utility for use in 

psychological datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
OLS and Ridge regression (penalty of 5 for ridge1 and 50 for ridge2) parameter estimates. 

Asterisks denote the simulated parameter estimates. Error bars depict the standard deviation 

of the estimated parameters across 1000 repetitions.
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Figure 2. 
Simple MIMIC model (multiple indicators X, multiple causes C).
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Figure 3. 
Template simulation model. The model is a MIMIC model including a single latent factor 

“f”, six indicators (Y1 to Y6) with factor loadings between .5 and 1 and unique error 

variances, as well as hundred potential predictors. The predictors are either uninformative 

(Cn1 to Cn70), have a small effect (Cs1 to Cs10), a moderate effect (Cm1 to Cm10) or a 

strong effect (Cl1 to Cl10).
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Figure 4. 
Root mean square error across a range of sample size (left panels) and predictor 

collinearities (right panels) for MLE (red) and RegSEM lasso (blue).). The individual panels 

refer to the factor loadings, the uniformative predictors(noise), to the informative predictors 

of different effect sizes (small, medium, strong), and the residual error variances (variances). 

Error bars represent monte carlo standard errors.
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Figure 5. 
Relative bias across a range of sample size (left panels) and predictors collinearities (right 

panels) for MLE (red) and RegSEM lasso (blue). Error bars represent monte carlo standard 

errors.
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Figure 6. 
Type I and Type II erorrs for predictors of small (top) medium (middle) and large (bottom) 

size, tested across a range of sample size (left panels) and predictor collinearities (right 

panels) for MLE (red) and RegSEM lasso (blue). Error bars represent monte carlo standard 

errors.

Jacobucci et al. Page 28

Adv Methods Pract Psychol Sci. Author manuscript; available in PMC 2019 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. 
Visual short term memory task. Participants view between 1 and 4 targets for 250 

milliseconds, followed by a 900 ms blank screen. Finally they receive a cue for one of the 

previous targets, and are asked to respond, using a color wheel, which hue most closely 

matched that of the target.
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Figure 8. 
Schwarz Weights (cf. Wagenmakers & Farrell, 2004) across a range of penalty values 

(lambda), suggesting a penalty of .18 is optimal._Higher weights correspond lower BIC 

values, meaning a better fitting model.
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Figure 9. 
In the final model six non-zero tracts for this penalty are shown as individual colors (top left 

and top right panels) whereas the tracts regularized to 0 are shown in grey.
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Figure 10. 
MIMIC model of stress, anxiety and depression. Non-significant predictors are shown as 

dashed lines, with significant paths (α<0.05) shown as positive/negative (green/red) and 

strong/weak (thick vs thin lines, reflecting Z-scores>3 and <3). Variances were omitted from 

this figure.
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Figure 11. 
Parameter trajectory plot from the DASS data. The lowest BIC was at a penalty of 0.15.
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Table 2
Fully standardized regression parameters from both the ML and Lasso models.

Regression Parameter ML Standardized Estimate Wald Test Z Value Lasso Estimate

TIPI1 -> stresslv -0.018 -0.55 -0.003

TIPI2 -> stresslv 0.062 2.14 0.029

TIPI3 -> stresslv -0.043 -1.54 -0.007

TIPI4 -> stresslv 0.394 10.65 0.134

TIPI5 -> stresslv -0.044 -1.42 -0.002

TIPI6 -> stresslv 0.041 1.37 0

TIPI7 -> stresslv -0.032 -1.28 0

TIPI8 -> stresslv -0.009 -0.31 0

TIPI9 -> stresslv -0.307 -8.3 -0.103

TIPI10 -> stresslv 0.004 0.14 0

education -> stresslv -0.099 -3.3 0

gender -> stresslv 0.047 1.88 0

age -> stresslv -0.035 -1.52 -0.012

hand -> stresslv -0.002 -0.08 0

voted -> stresslv 0.005 0.19 0

familysize -> stresslv 0.012 0.46 0

TIPI1 -> anxietylv -0.007 -0.2 0

TIPI2 -> anxietylv 0.029 0.97 0

TIPI3 -> anxietylv -0.041 -1.24 0

TIPI4 -> anxietylv 0.293 7.51 0.069

TIPI5 -> anxietylv -0.078 -2.29 -0.016

TIPI6 -> anxietylv 0.098 3.06 0.003

TIPI7 -> anxietylv -0.027 -0.87 0

TIPI8 -> anxietylv 0.013 0.42 0.014

TIPI9 -> anxietylv -0.228 -5.7 -0.05

TIPI10 -> anxietylv 0.026 0.84 0

education -> anxietylv -0.125 -3.68 0

gender -> anxietylv 0.014 0.5 0.017

age -> anxietylv -0.089 -2.02 -0.013

hand -> anxietylv 0.015 0.54 0

voted -> anxietylv 0.057 1.97 0

familysize -> anxietylv 0.064 2.21 -0.006

TIPI1 -> depressionlv -0.14 -4.12 -0.04

TIPI2 -> depressionlv 0.042 1.5 0

TIPI3 -> depressionlv -0.041 -1.32 0

TIPI4 -> depressionlv 0.224 6.22 0.046

TIPI5 -> depressionlv -0.044 -1.33 0

TIPI6 -> depressionlv 0.113 3.53 0.027

TIPI7 -> depressionlv 0.012 0.43 0
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Regression Parameter ML Standardized Estimate Wald Test Z Value Lasso Estimate

TIPI8 -> depressionlv 0.089 2.87 0.043

TIPI9 -> depressionlv -0.306 -8.5 -0.118

TIPI10 -> depressionlv 0.042 1.45 0

education -> depressionlv -0.071 -2.37 0

gender -> depressionlv -0.022 -0.85 0

age -> depressionlv 0.01 0.43 -0.009

hand -> depressionlv -0.005 -0.17 0

voted -> depressionlv 0.02 0.74 0

familysize -> depressionlv 0.031 1 0

Adv Methods Pract Psychol Sci. Author manuscript; available in PMC 2019 September 01.


	Abstract
	Introduction
	Regularization Overview
	Regression
	Extensions


	Regularization Rationale
	Bias-Variance Tradeoff
	Rationale to Induce Bias

	Regularization in Structural Equation Modeling
	Study 1: Simulation
	Methods
	Results
	Parameter Estimates
	Type I and Type II Errors
	Summary


	Study 2: White matter determinants visual short term memory
	Sample
	Visual Short Term Memory
	White matter
	MIMIC-model
	Model estimation and results
	Results

	Study 3: Modeling the determinants of depression, anxiety and stress
	Sample
	Results

	Discussion
	Limitations and challenges
	Related approaches
	Summary

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Table 2

