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Abstract

Single cell RNA-sequencing (scRNA-seq) allows the measurement of transcriptomes from 

individual cells providing new insights into complex biological systems. scRNA-seq has enabled 

the identification of rare cell types, new cell states and intercellular communication networks that 

may be masked by traditional bulk transcriptional profiling. Researchers are increasingly using 

scRNA-seq to comprehensively characterize complex organs in health and disease. The diversity 

of immune cell types, some present at low frequency, in a transplanted organ undergoing rejection 

makes scRNA-seq ideally suited to characterize transplant pathologies because it can quantify 

subtle transcriptional differences between rare cell types. In this review we discuss single cell 

sequencing methods and their application in transplantation to date, current challenges and future 

directions. We believe that the remarkably rapid pace of technological development in this field 

makes it likely that single cell technologies such as scRNA-seq will have an impact in clinical 

transplantation within a decade.

Single cell RNA sequencing (scRNA-seq) technologies have developed rapidly since the the 

initial publication in 2009.1 Multicellular organisms are composed of individual cells 

capable of varied transcriptional output finely balanced to benefit the organism in health or 

to respond to injurious stimuli. scRNA-seq has provided a new means to comprehensively 

catalog the transcriptional landscape of each cell in a complex organism or tissue. The 

protocol itself follows several steps: Isolation of single cells, cell lysis, mRNA capture, 

reverse transcription, amplification, library generation and next-generation sequencing. 

Early ‘plate-based’ methods used manual handling to separate single cells into individual 

wells of a 96-well plate. A key innovation was the inclusion of a unique cellular barcode – a 

molecular tag composed of a random sequence of nucleotides - in the primers used to 

capture mRNA – used to assign the cell that the read (or mRNA) came from. Once a library 

unique to each cell was generated samples are multiplexed and next generation sequencing 

performed. More recent droplet based methods leverage microfluidic technologies to 

dramatically increase throughput. In this case, an individual cell is captured within a 2 
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nanoliter droplet that also contains lysis buffer and mRNA capture oligos with the unique 

barcode for that cell. These advances now allow researchers to generate 10 – 100,000 single 

cell transcriptomes in 1–3 days. Here we discuss the benefits and limitations of scRNA-seq 

to study complex diseases such as transplant rejection. We provide a review of published 

scRNA-seq studies from all commonly transplanted human solid organs. Much of the 

current published data comes from explanted or post mortem tissue samples with the largest 

datasets coming from kidney. Studies using biopsy tissue from functioning solid organs are 

limited.

The role of molecular genetics in transplantation

Bulk transcriptome analysis has historically been used by many groups in transplantation to 

investigate the patterns of gene expression occurring in dysfunctioning organs or in protocol 

biopsies.2–5 By comparing panels of genes differentially expressed in certain allograft 

pathologies, such as antibody mediated rejection (AMR), one can define classifier genes 

(gene sets agnostically defined by machine learning that can predict or ‘classify’ an outcome 

of interest) for each allograft pathology that form the basis for diagnostics. The Molecular 

Microscope uses this bulk transcriptome analysis approach and is being developed to aid in 

diagnosis of allograft biopsy pathology.6 Data from the hundreds of biopsies examined using 

this technology has been used to better understand complex allograft pathologies including 

AMR. This represents an important advance and a welcome addition to the clinicians tool 

box for the diagnosis of rejection in transplantation. AMR is the most common primary 

cause of late kidney allograft failure.7 This form of rejection is a relatively recent sub 

classification of rejection and intra-observer accuracy amongst nephropathologists is poor 

for key histologic lesions such as acute glomerulitis.8 Data suggests that the Molecular 

Microscope better predicts poor outcome known to be associated with the AMR diagnosis 

when compared to local histopathologic diagnosis and a positive AMR score on the 

Molecular Microscope has a PPV and NPV of 50% and 94%, respectively.9

Similar approaches using panels of genes sequenced from peripheral blood samples have 

been used to predict or diagnose rejection in kidney transplant recipients. Using microarrays 

the Salomon group identified 200 probe sets by multiple 3-way classifier tools that 

discriminated for acute rejection.10 Sarwal et al determined the expression of a predefined 

set of 43 genes by quantitative real-time PCR using the large cohort from the Assessment of 

Acute Rejection in Renal Transplantation (AART) study. A 17 gene panel set (now called 

kSORT) was able to predict acute rejection 3 months prior to detection by biopsy.11 

Nanostring is another new technology that directly measures the number single RNA 

molecules in a sample using a light based capture and reporter probe system. All of these 

methods measure an averaged gene expression across the sample in question. Therefore cell 

to cell variation in gene expression is lost.

Microarray datasets from biopsy tissue have been leveraged to infer disease mechanism.
12–14 For example in AMR, top differentially expressed genes, or pathogenesis based 

transcripts, associated with the presence of donor specific antibodies (DSA) were assigned a 

cell of origin. The assigned origin of these transcripts were endothelial and NK cells, and a 

histologic diagnosis of AMR was associated with high expression of these transcripts.15 
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Another approach to understanding the cellular context of AMR is to examine the 

microarray expression of endothelial associated genes identified from the literature in study 

biopsies. High endothelial gene expression in biopsies associated with DSA was predictive 

of AMR.16

Some caution is necessary in imputing cell specific gene expression derived from a bulk 

transcriptional analysis. Our recent work showed that many transcripts that had been 

assigned to endothelial cells were in fact expressed by other cell types.17 This a priori 

approach to assigning cell origin for important disease related genes may be flawed as cell 

origin defined by in vitro methods may not be relevant in the diseased human allograft. The 

ideal approach to determining the source of important rejection associated genes would be to 

sequence the transcriptome of each individual cell in the sample. scRNA-seq allows for this 

– it identifies cell types in an unbiased manner without the need for predefined cell markers 

or assumptions. Computational approaches are used to visualize dynamic cellular processes 

such as disease progression, alterations in cell state and cellular differentiation.

Single cell methods and analysis

Massively parallel scRNA-seq is typically accomplished with droplet-based microfluidic 

methods such as DropSeq,18 InDrops19 or the commercial 10X Chromium system. The pros 

and cons of each system have been reviewed.20 A comparison of droplet based microfluidic 

scRNA-seq methods is summarized in Table 1. After cell encapsulation, mRNA is bound by 

oligo-dT, reverse transcribed and amplified. A unique oligonucleotide barcode is associated 

with each cell, and incorporated into each amplified transcript. Resulting cDNA libraries are 

sequenced using next generation sequencing. An alternative to scRNA-seq is single nucleus 

RNA-seq (snRNA-seq). This involves dissociating tissues such that intact nuclei are 

liberated into solution. Processing single nuclei using droplet-based methods results in the 

capture of unprocessed mRNA molecules that still contain introns. How this method 

compares to scRNA-seq is discussed below. The volume of raw sequence data resulting from 

a single experiment of modest size is considerable – approximately 20 gigabytes. As a 

consequence, some familiarity with coding and informatics is necessary for the proper 

interpretation of scRNA-seq data. Fortunately, an increasing variety of programs are 

simplifying this process which lowers the bar of entry for laboratories without coding 

experience.

Although beyond the scope of this review, a variety of machine learning techniques allow for 

analysis and data visualization (Figure 1). Pseudotemporal ordering of cells is a method 

based on the hypothesis that a single cell experiment is a time-course experiment with each 

cell representing one point in time along a continuum.21 This allows for the examination of 

continuous biological processes such as disease progression. Branch point analysis stems 

from this hypothesis and can reveal important genes that determine cell fate or trajectory. 

Ligand-receptor analysis is another tool that is useful when applied to a rejecting allograft 

tissue sample given the complex immune interactions occurring between donor cells and 

immune cells during the alloimmune response. For example, the Jackson Laboratory 

demonstrated important ligand-receptor pairs in their dataset.22 Endothelial cell interactions 

with other cell types featured prominently in their analysis, and they demonstrate pericyte-
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endothelial cell interaction through PDGFB and PDGRFRB expression in endothelial cells 

and pericytes, respectively. Other intercellular communication networks included VEGFA 
and FLT1/KDR expression in podocytes and glomerular endothelial cells, and SLIT2 and 

ROBO4 expression in intercalated cells and endothelial cells, respectively. There are a 

myriad statistical and graphing packages available to present single cell data. Most groups in 

this field use the R programming language to run these packages but there are many more 

languages that can be used such as Python and Matlab.

Organ specific single cell studies

Single cell RNA-seq is now a foundational technique in a world-wide consortium that aims 

to generate a comprehensive human cell atlas (http://www.humancellatlas.org) describing 

every cell type in the human body in molecular terms. This map of all human cells will serve 

as a basis for understanding human health and disease. Groups have focused on defining the 

cellular and transcriptional heterogeneity of different organs in health, disease and during 

development. There are currently few scRNA-seq studies of normal or diseased human 

organs. Three groups have published single cell data from normal human kidney tissue. 

Young et al sequenced the transcriptomes from 42,747 cells from normal adult human 

nephrectomy samples.23 The 10X Chromium single cell 3’ kit (version 2 chemistry) was 

used in this study and aimed to capture 5000 cells/chip position. Proximal tubule cells made 

up 77% of the cells which is consistent with other studies.22,24 A subset of 4796 immune 

cells included 2 NK cell clusters, 2 NKT cell clusters, 3 mononuclear phagocyte clusters, B 

cells, CD8 T cells, helper T cells, mast cells, neutrophils, dendritic cells (DC) and 6 other 

unnamed clusters. This dataset demonstrates the immune cell heterogeneity in the normal 

human kidney and these immune cells represent 11% of all cells from the normal tissue 

samples. We have additionally reported 5524 adult human kidney nucleus transcriptomes, 

identifying 17 distinct cell types including podocytes, mesangium, proximal tubule cells 

(S1–S3), loop of Henle cells (descending and ascending), distal tubule cells, connecting 

segment cells, principal cells, and intercalated cells (type A and type B) and macrophages.25

Given the important role of immune cells in the alloimmune response, knowledge of the 

immune cell composition in normal kidney is a prerequisite to understanding the 

alloimmune response during rejection. Another important cell type central to antibody 

mediated rejection is the endothelial cell. The Jackson Laboratory group sequenced 22,469 

individual transcriptomes from normal human kidney, revealing 27 different cell types.22 In 

their report 65% of the immune cells were lymphocytes (B cells, T cells and NKT cells) and 

they assumed these cells were from the peripheral circulation. They also found two CD68 

positive clusters of myeloid cells differentiated by the expression of CD52. They assumed 

that CD52+ cells were from the peripheral circulation and that only CD52 negative cells can 

be tissue resident.26 CD68 positive CD52 negative cells in their dataset subclustered into 

classical and non classical monocytes in addition to interstitial macrophages and DCs. A 

cluster of 20 mast cells was also identified. The same study also identified 3 clusters of 

endothelial cells representing descending vasa recta capillary endothelium, ascending vasa 

recta capillary endothelium and afferent/efferent arteriolar endothelial cells. In contrast, the 

Young et al paper describes 4 endothelial cell clusters, glomerular, descending vasa recta and 

2 ascending vasa recta clusters. The variation in the number of immune and endothelial cell 
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subtypes found between these studies is likely due to biological and computational factors. 

For example, clustering analysis of the Young et al dataset was done after removal of all 

immune cells and proximal tubular cells which can affect cell clustering by increasing the 

number of cell subtypes defined using the same machine learning parameters. The Young et 

al dataset also included a greater number of total cells and source samples.

Single cell studies from other commonly transplanted solid organs is more limited. Reyfman 

et al sequenced 48,937 transcriptomes using droplet based microfluidics from 12 human 

lung specimens 6 of which were donor lung.27 They corrected for batch effects using 

canonical correlation analysis to compare the single cell landscape in normal human lung 

with diseased lung (interstitial lung disease). Thirteen cell clusters were identified including 

all the major immune cell types, T cells, NK cells, monocytes/macrophages, B cells, plasma 

cells, dendritic cells and mast cells. See et al studied cardiac myocytes from healthy adult 

human heart using the Fluidigm C1 single cell Auto Prep System.28 Single nuclei were 

studied in this case as source tissue was snap frozen from samples taken historically. The 

authors do not report the number of nuclei studied in this report. However, one can assume 

the number was low as the Fluidigm system can only capture a maximum of 800 cells or 

nuclei per chip. Finally, scRNA-seq has been studied in liver donor samples. MacParland et 

al studied 8444 cells from the caudate lobes of 5 livers procured and subsequently 

transplanted.29 They identified 20 discrete cell populations of hepatocytes, endothelial cells, 

cholangiocytes, hepatic stellate cells, B cells, conventional and non conventional T cells, 

NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Their analysis 

included cells with up to 50% mitochondrial gene expression per cell which is higher than 

the standard 20% cut off used by other groups. This suggests significant technical artifact 

and limits the number of other genes sequenced and available to define cell clusters, 

reducing sensitivity to identify new cell types or subtypes.

Tissue dissociation: A major challenge in scRNA-seq

A major challenge to the study of solid organs using scRNA-seq is tissue dissociation. The 

most common methods for dissociating cells include a combination of mechanical and warm 

enzymatic digestion to create a single cell suspension. There are three major limitations with 

this approach. Proteolytic digestion at 37 C induces transcriptional stress responses that 

confound analysis.30 It also causes dissociation bias – because some cells are easily released 

from the tissue and resistant to cell death (for example, leukocytes), whereas others are 

fragile or difficult to release, and may be entirely absent from the analysis (for example, 

podocytes). Finally, single cell dissociation is incompatible with archival, frozen tissue.

We have determined that snRNA-seq solves many of these limitations. In head to head 

comparison of adult mouse kidney, we compared scRNA-seq data generated using DropSeq 

with snRNA-seq data generated from nuclei using sNuc-DropSeq, DroNc-seq and 10X 

Chromium.31 The scRNA-seq dataset identified 12 cell types but glomerular cell types were 

absent and one cluster expressed artifactual dissociation-induced stress response genes. By 

contrast, snRNA-seq from all three platforms captured a diversity of kidney cell types 

including 20-fold more podocytes as well as mesangial cells and endothelial cells that were 

not represented in the single cell dataset. No stress response genes were detected since the 
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entire nucleus dissociation protocol is carried out on ice. Even though the nucleus contains 

much less mRNA than the whole cell, gene detection sensitivity was equivalent between cell 

and nucleus platforms. We could also generate snRNA-seq from snap frozen kidney which 

allows investigators to perform snRNA-seq of biobanked tissue. Our analysis revealed that 

single nucleus RNA-seq of adult kidney offers reduced dissociation bias, can be successfully 

performed on frozen samples including inflamed and fibrotic tissue, eliminates dissociation-

induced transcriptional stress responses and has comparable gene detection compared to 

scRNA-seq. These results will allow for the banking of allograft specimens for future 

snRNA-seq analysis.

scRNA-seq in transplantation.

Currently there is limited published scRNA-seq data in the solid organ transplant field. We 

published the first report of scRNA-seq of a kidney transplant undergoing mixed rejection.17 

This study sequenced cells from a single 16G core taken at the time of diagnostic biopsy. 

The InDrops method was used and the libraries generated were sequenced to a depth of 

~50,000 mapped reads per cell. A total of 4487 cells passed quality filters and on average 

1481 transcripts from 827 different genes were detected per cell. Unsupervised clustering 

analysis using t-stochastic nearest neighbor embedding (tSNE) identified 16 cell clusters. 

These included 3 tubular cell types, 3 leukocyte populations, 4 lymphocyte cells types, 3 

stromal cell types, endothelial cell types and cycling cells (Figure 2). Readers can query this 

dataset and others directly at http://humphreyslab.com/SingleCell/. All the major immune 

cell groups were represented in this dataset as well as most donor kidney cell types. 

Glomerular cell types were not identified.

Our analysis allowed several interesting conclusions to be made. Firstly, two different 

monocyte clusters were identified by differential gene expression between clustered cell 

types (FCN1-positive cells versus CD16-positive) and were confirmed by 

immunohistochemistry staining of mixed rejection tissue samples. Staining was sparse or 

absent in normal kidney and intermediate in AMR biopsy tissue. Secondly, a subclustering 

analysis defined 3 separate endothelial cell types: resting, angiogenic and activated. Gene 

expression from the resting subcluster correlates with external scRNA-seq datasets of 

normal human endothelium in brain and pancreas. This paper also confirms the importance 

of the endothelium in AMR. Most of the top genes found in association with AMR from 

microarray studies are expressed uniquely in the endothelium. However, genes described as 

endothelial associated in previous microarray studies were mostly expressed in non 

endothelial cells in this single cell dataset. The genes expressed in microarray studies were 

assumed to come from endothelial cells based on gene expression studies of human 

endothelial cells in vitro.32,33 This highlights a major limitation of the microarray based 

approach to the investigating of allograft pathologies. It must be noted that the studies by 

Wu et al are based on a single human kidney transplant biopsy. These findings are still to be 

confirmed in other biopsies and by other groups.

There are limited studies of disease in non renal solid organ transplants. In lung 

transplantation Ferguson et al used the 10X Genomics single cell method to study an 

explanted lung allograft with chronic lung allograft dysfuntion.34 This report was in abstract 
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form and no details regarding the scRNA-seq data were presented. Habal and colleagues 

performed a limited single cell study of cardiac chronic allograft vasculopathy.35 They 

digested coronary artery from an explanted cardiac allograft and isolated 81 T cells using 

color flow sorting for T cell markers. As tissue preservation and dissociation methods 

improve we are likely to see more scRNA-seq studies across all solid organ transplantation.

We foresee numerous applications of scRNA-seq to transplantation research. The ability to 

demonstrate receptor-ligand expression between different cell types within a sample has 

been demonstrated as discussed above. Such an analysis in rejecting allograft tissue could 

lead to increases in our understanding of the complex interactions between immune cells and 

donor cells in transplant rejection. Wu et al demonstrate stromal cell (pericytes, fibroblasts 

and myofibroblasts) expression of the chemokine CXCL12 which promotes lymphocyte and 

monocyte chemotaxis through its cognate receptor CXCR4, expressed in T cells, monocytes 

and mast cells in their rejecting biopsy sample.17 Collecting duct epithelial cells expressed 

KITLG (stem cell factor) the product of which binds to the receptor encoded by KIT, which 

was expressed in mast cells. This is further evidence for the complex interactions occurring 

in the rejecting allograft.

Biomarker discovery is another area facilitated by scRNA-seq studies in transplantation. 

Recent advances have seen the introduction of tests designed to diagnose allograft rejection 

with better sensitivity and specificity than the current gold standards, histology, DSA 

screening, proteinuria and creatinine. A number of non invasive molecular biomarkers have 

been proposed with varying negative (NPV) and positive predictive values (PPV), important 

parameters to consider in the assessment of biomarker suitability. Panels of various urine 

and blood mRNAs, miRNAs and proteins have been considered as biomarkers in 

transplantation. A number of such tests are used in clinical practice. AlloMap is a peripheral 

blood test that uses a panel of 11 genes to predict T cell mediated rejection in heart 

transplantation.36 The kSORT test panel of 17 genes from peripheral blood is used to predict 

acute rejection in kidney transplant patients.11

Allosure is a peripheral blood test for predicting rejection in kidney transplant patients.37 

The Allosure test measures the percentage of circulating donor derived cell free DNA to 

predict allograft pathology. More in depth analyses of this subject can be found in a review 

by Dharnidharka.38 Limitations of current biomarker tests, such as the Allosure test, are 

their non specificity for rejection or subtype of rejection. The Allosure test simply reflects 

dead donor cells. However, Allosure is a noninvasive diagnostic test used by many as an 

alternative or adjunct to biopsy for the diagnosis of rejection. Single cell RNA-seq has the 

potential to stimulate the development of many new biomarkers. Single cell RNA-seq can 

identify markers of cell states specific to allograft pathologies such as AMR or T cell 

mediated rejection. Single cell RNA-seq approaches also have the potential to uncover novel 

targets for therapy something that is needed for AMR, a major cause of allograft failure that 

has no good efficacious treatments. However, scRNA-seq methods are in their infancy and 

the costs are still very high. How this technology might be harnessed to use as a practical 

tool in clinical transplantation is not yet known.
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We predict that the roles played by donor and recipient immune cells in the alloimmune 

response will be a productive avenue of investigation using scRNA-seq in the years to come. 

Prior to scRNA-seq, to identify cell origin from a mixture of cells originating from more 

than one individual a priori knowledge of each cell source was required. For example, 

fluorescence in situ hybridization analysis of Y chromosome positive cells could be used to 

identify cells from a male recipient who received a female donor organ. But this does not 

measure mRNA levels at the same time in those cells. By contrast, scRNA-seq can measure 

the natural genetic variation present in mRNA transcripts – called expressed single 

nucleotide variants – that exist between two non identical individuals. With knowledge of 

these differences by exome sequencing of host and donor, these variations in mRNA 

sequence can be used to assign a host vs. donor origin for each cell type in a scRNA-seq 

library.39 This powerful approach will allow investigators to ask new questions concerning 

rare but devastating conditions such as graft-vs-host disease in solid organ transplantation, 

where persistence of donor-derived leukocytes is already known to play a role in pathology. 

But whether persisting donor-derived cells play roles in other diseases like rejection is 

unknown. Whether donor-derived dendritic cells persist long term in a kidney allograft, and 

if they do, whether they modulate the immune response in rejection are the kinds of 

questions that scRNA-seq may be able to address.

Conclusions

Single cell RNA sequencing is a powerful technology that will revolutionize our 

understanding of cell biology. It is an unbiased approach that allows for the discovery of 

novel cell types, cell states and dynamics. The ability to examine individual cells from 

clinically relevant human tissue samples will hopefully lead to a breakthrough in the study 

of difficult to treat transplant pathologies. To date progress has been limited to a priori 

approaches to the study of human disease and molecular genetics approaches were 

previously limited by averaging effects. Now rare but potentially significant cell types can be 

studied and important genes networks uncovered allowing for the identification of new 

therapeutic targets. The field of transplantation is poised to benefit substantially from the 

application of this transformative technology to transplantation research.

References

1. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat 
Methods. 2009;6(5):377–382. [PubMed: 19349980] 

2. Famulski KS, Broderick G, Einecke G, et al. Transcriptome analysis reveals heterogeneity in the 
injury response of kidney transplants. Am J Transplant. 2007;7(11):2483–2495. [PubMed: 
17908279] 

3. O’Connell PJ, Zhang W, Menon MC, et al. Biopsy transcriptome expression profiling to identify 
kidney transplants at risk of chronic injury: a multicentre, prospective study. Lancet. 
2016;388(10048):983–993. [PubMed: 27452608] 

4. Flechner SM, Kurian SM, Head SR, et al. Kidney transplant rejection and tissue injury by gene 
profiling of biopsies and peripheral blood lymphocytes. Am J Transplant. 2004;4(9):1475–1489. 
[PubMed: 15307835] 

5. Menon MC, Keung KL, Murphy B, et al. The Use of Genomics and Pathway Analysis in Our 
Understanding and Prediction of Clinical Renal Transplant Injury. Transplantation. 2016;100(7):
1405–1414. [PubMed: 26447506] 

Malone and Humphreys Page 8

Transplantation. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Halloran PF, Reeve J, Akalin E, et al. Real time central assessment of kidney transplant indication 
biopsies by microarrays: The INTERCOMEX Study. Am J Transplant. 2017;17(11)2851–2862. 
[PubMed: 28449409] 

7. Sellarés J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: 
the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12(2):
388–399. [PubMed: 22081892] 

8. Furness PN, Taub N, Assmann KJ, et al. International variation in histologic grading is large, and 
persistent feedback does not improve reproducibility. Am J Surg Pathol. 2003;27(6):805–810. 
[PubMed: 12766585] 

9. Halloran PF, Pereira AB, Chang J, et al. Microarray diagnosis of antibody-mediated rejection in 
kidney transplant biopsies: an international prospective study (INTERCOM). Am J Transplant. 
2013;13(11):2865–2874. [PubMed: 24119109] 

10. Kurian SM, Williams AN, Gelbart T, et al. Molecular classifiers for acute kidney transplant 
rejection in peripheral blood by whole genome gene expression profiling. Am J Transplant. 
2014;14(5):1164–1172. [PubMed: 24725967] 

11. Roedder S, Sigdel T, Salomonis N, et al. The kSORT assay to detect renal transplant patients at 
high risk for acute rejection: results of the multicenter AART study. PLoS Med. 
2014;11(11):e1001759. [PubMed: 25386950] 

12. Halloran PF, Reeve J, Aliabadi AZ, et al. Exploring the cardiac response to injury in heart 
transplant biopsies. JCI Insight. 2018;3(20).

13. Lande JD, Patil J, Li N, et al. Novel insights into lung transplant rejection by microarray analysis. 
Proc Am Thorac Soc. 2007;4(1):44–51. [PubMed: 17202291] 

14. Parkes MD, Halloran PF, Hidalgo LG. Evidence for CD16a-Mediated NK Cell Stimulation in 
Antibody-Mediated Kidney Transplant Rejection. Transplantation. 2017;101(4):e102–e111. 
[PubMed: 27906829] 

15. Hidalgo LG, Sis B, Sellares J, et al. NK cell transcripts and NK cells in kidney biopsies from 
patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated 
rejection. Am J Transplant. 2010;10(8):1812–1822. [PubMed: 20659089] 

16. Sis B, Jhangri GS, Bunnag S, et al. Endothelial gene expression in kidney transplants with 
alloantibody indicates antibody-mediated damage despite lack of C4d staining. Am J Transplant. 
2009;9(10):2312–2323. [PubMed: 19681822] 

17. Wu H, Malone AF, Donnelly EL, et al. Single-Cell Transcriptomics of a Human Kidney Allograft 
Biopsy Specimen Defines a Diverse Inflammatory Response. J Am Soc Nephrol. 2018;29(8):
2069–2080. [PubMed: 29980650] 

18. Macosko EZ, Basu A, Satija R, et al. Highly Parallel Genome-wide Expression Profiling of 
Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202–1214. [PubMed: 26000488] 

19. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied 
to embryonic stem cells. Cell. 2015;161(5):1187–1201. [PubMed: 26000487] 

20. Malone AF, Wu H, Humphreys BD. Bringing Renal Biopsy Interpretation Into the Molecular Age 
With Single-Cell RNA Sequencing. Semin Nephrol. 2018;38(1):31–39. [PubMed: 29291760] 

21. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are 
revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–386. 
[PubMed: 24658644] 

22. Sivakamasundari V, Bolisetty M, Sivajothi S, et al. Comprehensive Cell Type Specific 
Transcriptomics of the Human Kidney. BioRxiv. 2017 10.1101/238063.

23. Young MD, Mitchell TJ, Vieira Braga FA, et al. Single-cell transcriptomes from human kidneys 
reveal the cellular identity of renal tumors. Science. 2018;361(6402):594–599. [PubMed: 
30093597] 

24. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential 
cellular targets of kidney disease. Science. 2018;360(6390):758–763. [PubMed: 29622724] 

25. Wu H, Uchimura K, Donnelly EL, et al. Comparative Analysis and Refinement of Human PSC-
Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. Cell Stem Cell. 
2018;23(6):869–881. [PubMed: 30449713] 

Malone and Humphreys Page 9

Transplantation. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Buggins AG, Mufti GJ, Salisbury J, et al. Peripheral blood but not tissue dendritic cells express 
CD52 and are depleted by treatment with alemtuzumab. Blood. 2002;100(5):1715–1720. 
[PubMed: 12176892] 

27. Reyfman PA, Walter JM, Joshi N. Single-Cell Transcriptomic Analysis of Human Lung Reveals 
Complex Multicellular Changes During Pulmonary Fibrosis. BioRxiv. 2018 10.1101/296608.

28. See K, Tan WLW, Lim EH, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-
regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun. 2017;8(1):225. 
[PubMed: 28790305] 

29. MacParland SA, Liu JC, Ma XZ, et al. Single cell RNA sequencing of human liver reveals distinct 
intrahepatic macrophage populations. Nat Commun. 2018;9(1):4383. [PubMed: 30348985] 

30. Adam M, Potter AS, Potter SS. Psychrophilic proteases dramatically reduce single cell RNA-seq 
artifacts: A molecular atlas of kidney development. Development. 2017;144(19):3625–3632. doi: 
10.1242/dev.151142. [PubMed: 28851704] 

31. Wu H, Kirita Y, Donnelly EL, et al. Advantages of single-nucleus over single-cell RNA-sequencing 
of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol In 
Press. 2019;30(1):23–32. doi: 10.1681/ASN.2018090912.

32. Ho M, Yang E, Matcuk G, et al. Identification of endothelial cell genes by combined database 
mining and microarray analysis. Physiol Genomics. 2003;13(3):249–262. [PubMed: 12644598] 

33. Sengoelge G, Luo W, Fine D, et al. A SAGE-based comparison between glomerular and aortic 
endothelial cells. Am J Physiol Renal Physiol. 2005;288(6):F1290–1300. [PubMed: 15657302] 

34. Ferguson A, Iasella C, Chen W, et al. Gene Expression Profiling of Lung Transplant Patients Using 
Next-Generation Sequencing to Identify Biomarkers for Chronic Lung Allograft Dysfunction 
[Abstract A4732]. Am J Respir Crit Care. 2018;197:A4732.

35. Habal M, Myung A, Yan H, et al. Single-Cell Analysis of Graft Infiltrating T-Cells in Cardiac 
Allograft Vasculopathy [Abstract]. Am J Transplant. 2017;17(suppl 3).

36. Deng MC, Eisen HJ, Mehra MR, et al. Noninvasive discrimination of rejection in cardiac allograft 
recipients using gene expression profiling. Am J Transplant. 2006;6(1):150–160. [PubMed: 
16433769] 

37. Bloom RD, Bromberg JS, Poggio ED, et al. Cell-Free DNA and Active Rejection in Kidney 
Allografts. J Am Soc Nephrol. 2017;28(7):2221–2232. [PubMed: 28280140] 

38. Dharnidharka VR, Malone A. Biomarkers to detect rejection after kidney transplantation. Pediatr 
Nephrol. 2018;33(7):1113–1122. [PubMed: 28631040] 

39. Kang HM, Subramaniam M, Targ S, et al. Multiplexed droplet single-cell RNA-sequencing using 
natural genetic variation. Nat Biotechnol. 2018;36(1):89–94. [PubMed: 29227470] 

40. Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different 
conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–420. [PubMed: 29608179] 

41. Krzywinski MI, Schein JE, Birol I, et al. Circos: An information aesthetic for comparative 
genomics. Genome Res. 2009;19(9):1639–1645. [PubMed: 19541911] 

Malone and Humphreys Page 10

Transplantation. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. An example of single cell RNA-seq data analysis tools.
Unsupervised clustering of data and visualization using t-stochastic nearest neighbor 

embedding (tSNE) or heatmaps. Single gene expression using the Seurat FeaturePlot and 

VlnPlot functions.40 Pseudotime ordering using the Monocle.21 Ligand-receptor interactions 

visualized using Circos plot.41
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Figure 2. tSNE of 4487 cells from a human kidney transplant biopsy with mixed rejection.
Analysis of 4487 cells from a human kidney transplant with mixed rejection using tSNE 

revealed 16 cell clusters. These included 3 tubular cell types, 3 leukocyte populations, 4 

lymphocyte cells types, 3 stromal cell types, endothelial cell types and cycling cells.
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Table 1.

A comparison of current high throughput droplet based single cell RNA-seq methods

DropSeq InDrops 10X Chromium

Year developed 2015 2015 2016

Commercial platform No 1CellBio 10X Genomics

Full length sequence No No No

3’ or 5’ sequence 3’ 3’ both

Capture efficiency 12.8% 90% 65%

Sensitivity
(molecule detection limit)

1e+1 1e+0.5 1e+2.5

Accuracy (Pearson R) >0.9 >0.9 >0.9

Cell capacity per run 10,000 10,000 80,000
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