Skip to main content
. 2019 Aug 5;43(4):274–280. doi: 10.3906/biy-1904-59

Table 2.

Comparison of the model developed in this work with the existing classifiers. FN: Number of features used to build the classification model, ML: machine learning method, SE: sensitivity, SP: specificity, Acc: accuracy, SVM: support vector machine, NB: naïve Bayes, MLP: multilayered perceptron, RF: random forest, DT: decision tree.

Method FN ML SE SP Acc
Triplet-SVM (Xue et al., 2005) 32 SVM 93.30
MiPred (Jiang et al., 2007) 34 RF, SVM 98.21 95.09 96.68
MicroPred (Batuwita et al., 2009) 21 RF, SVM 90.02 97.28
izMiR (Saçar Demirci et al., 2017) ~900 SVM, NB, DT 91.98 91.98 91.25
3D model 36 RF, NB, DT 98.87 98.87 98.58