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Introduction

Renal fibrosis is a major outcome of chronic kidney 
diseases (CKDs), which affect nearly 10% of the popu-
lation and contribute to the increased number of 
deaths and the surcharge of the national health sys-
tems worldwide.1 CKD can originate from different 
causes, such as diabetes, hypertension, immune, or 
toxic stimuli; however, it involves common pathological 
mechanisms like chronic inflammation and develop-
ment of renal fibrosis that lead to the impairment of 
renal function.2

Fibrosis initially appears as a normal response to 
injury, where activated fibroblasts produce high 
amounts of extracellular matrix (ECM) in the context of 
a wound-healing process, in order to assist in the 
repair of the damaged tissue. In case of a repetitive 

injury, chronic wound healing leads to an excessive 
accumulation of ECM which fails to be resolved by the 
remodeling mechanisms and leads to organ dysfunc-
tion.3 As it is commonly acknowledged that fibrosis 
plays a major role in the pathology of CKD and the 
progression to end-stage renal disease, many efforts 
were made during the last years to identify novel medi-
ators and targets for therapy of renal fibrosis. Great 
attention was paid to major growth factors or cytokines 
that were early shown to mediate both inflammation 

849386 JHCXXX10.1369/0022155419849386Prakoura et al.Therapeutic Targets for CKD
review-article2019

Received for publication February 7, 2019; accepted April 15, 2019.

Corresponding Author:
Christos Chatziantoniou, Institut National de la Santé Et de la Recherche 
Médicale (INSERM) UMRS 1155, Tenon Hospital, 4 rue de la Chine, 
75020 Paris, France. 
E-mail: christos.chatziantoniou@upmc.fr

Novel Targets for Therapy of Renal Fibrosis

Niki Prakoura, Juliette Hadchouel, and Christos Chatziantoniou
Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France (NP, JH, CC),  
and Sorbonne Université, Paris, France (JH, CC)

Summary
Renal fibrosis is an important component of chronic kidney disease, an incurable pathology with increasing prevalence 
worldwide. With a lack of available therapeutic options, end-stage renal disease is currently treated with renal replacement 
therapy through dialysis or transplantation. In recent years, many efforts have been made to identify novel targets for 
therapy of renal diseases, with special focus on the characterization of unknown mediators and pathways participating 
in renal fibrosis development. Using experimental models of renal disease and patient biopsies, we identified four novel 
mediators of renal fibrosis with potential to constitute future therapeutic targets against kidney disease: discoidin domain 
receptor 1, periostin, connexin 43, and cannabinoid receptor 1. The four candidates were highly upregulated in different 
models of renal disease and were localized at the sites of injury. Subsequent studies showed that they are centrally involved 
in the underlying mechanisms of renal fibrosis progression. Interestingly, inhibition of either of these proteins by different 
strategies, including gene deletion, antisense administration, or specific blockers, delayed the progression of renal disease 
and preserved renal structure and function, even when the inhibition started after initiation of the disease. This review will 
summarize the current findings on these candidates emphasizing on their potential to constitute future targets of therapy: 
(J Histochem Cytochem 67: 701–715, 2019)
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and fibrosis during progression of renal disease in ani-
mal models, including angiotensin II (Ang-II), trans-
forming growth factor-β (TGF-β), platelet-derived 
growth factors (PDGFs), connective tissue growth fac-
tor (CTGF), endothelin-1 (ET-1), macrophage che-
moattractant protein-1 (MCP-1), and tumor necrosis 
factor-α (TNF-α).4,5 Despite the fact that drugs target-
ing some of these mediators were approved for tests in 
clinical trials and inhibitors of the renin-angiotensin 
system are currently used in subgroups of CKD 
patients, no major improvement has been made in tar-
geting specifically renal fibrosis.

Our group has recently identified novel mediators of 
CKD, focusing on their potency to promote the devel-
opment of renal fibrosis, namely discoidin domain 
receptor 1 (DDR1), periostin, connexin 43 (Cx43), and 
cannabinoid receptor 1 (CB1). This review will sum-
marize the latest advances on the roles of these pro-
teins, with a focus on renal diseases, and emphasize 
their potential as novel promising therapeutic targets 
to fight renal fibrosis.

DDR1

DDR1 is a transmembrane collagen receptor with tyro-
sine kinase activity and a predominant expression in 
epithelial cells. DDR1 is also known with multiple alter-
native names, most of which reflect the function or the 
localization of the protein, such as cell adhesion kinase 
(CAK), epithelial discoidin domain-containing receptor 
1 (EDDR1), neuroepithelial tyrosine kinase (NEP), 
mammary carcinoma kinase 10 (MCK10), and CD167 
antigen-like family member A (CD167a). DDR1 is com-
posed of three distinct domains: an extracellular dis-
coidin homology domain with specific binding capacity 
to collagen, a transmembrane region essential for 
receptor dimerization, and an intracellular domain that 
is phosphorylated upon receptor activation.6,7 DDR1 
activation promotes mitogen-activated protein kinase 
(MAPK), PI3 kinase/Akt, or matrix metalloproteinase 
(MMP) signaling in different epithelial, vascular smooth 
muscle or cancer cells, thus regulating vital cell func-
tions like migration, proliferation, and survival.7 De 
novo expression and activation of DDR1 have been 
reported in a number of different human diseases, 
including cancer, atherosclerosis, and fibrosis. DDR1 
overexpression was correlated with increased tumori-
genesis and poor prognosis and was shown to induce 
epithelial-to-mesenchymal transition in cancer cells.8,9 
In the low-density lipoprotein receptor knock-out (KO) 
model of atherosclerosis (Lldr-/-), DDR1 deficiency 
was associated with a reduction in macrophage infil-
tration and the development of atherosclerotic 
lesions.10 Moreover, in the bleomycin-induced lung 

injury model, DDR1 was de novo expressed by injured 
epithelial cells and promoted proinflammatory p38 
MAPK signaling and pulmonary fibrosis.11

DDR1 in Renal Fibrosis

We were among the first to investigate the potency of 
DDR1 deficiency or inhibition to ameliorate the pro-
gression of renal disease. In a model of hypertensive 
nephropathy induced by chronic Ang-II administration, 
DDR1 was upregulated in vascular smooth muscle 
cells and mesangial cells of diseased kidneys. DDR1 
null mice were protected against perivascular inflam-
mation, arteriosclerosis, glomerulosclerosis and inter-
stitial fibrosis, exhibiting a markedly decreased 
accumulation of types I and IV collagens.12 The pres-
ervation of renal structure was accompanied by an 
improvement of renal function, evidenced by the 
decreased albuminuria in DDR1-/- mice.12 In this study, 
DDR1 was proposed to be an amplifier of the initial 
damage, activated by collagen binding and promoting 
deleterious proinflammatory and profibrotic pathways, 
including MAPK pathways, cytokine synthesis and fur-
ther production of collagens.

In a subsequent study, we found that DDR1 was 
highly expressed by tubular cells and infiltrating mac-
rophages in the unilateral ureteral obstruction (UUO) 
model.13 DDR1-deficient mice showed decreased 
expression of several proinflammatory cytokines, as 
well as TGF-β1 and Col3, accompanied by attenuated 
inflammation and interstitial fibrosis.13 Apart from pro-
moting collagen production and fibrosis in this model, 
DDR1 was also directly associated with macrophages 
activation and migration to the damaged tissue.

Finally, we showed that DDR1 expression is 
increased in the glomeruli of patients with lupus 
nephritis and goodpasture syndrome.14 In a mouse 
model of severe glomerulonephritis leading to rapid 
deterioration of renal structure and function, DDR1 
was de novo expressed in damaged podocytes.14 We 
investigated the role of DDR1 in this context using both 
KO mice and antisense oligonucleotides specifically 
targeting DDR1.14,15 Both strategies protected mice 
from severe proteinuria and uremia, glomerular cres-
cent formation and fibrin deposition, inflammation, and 
interstitial fibrosis. Interestingly, the administration of 
antisense oligonucleotides targeting DDR1 was effec-
tive in the protection against glomerulonephritis even 
when it started after the onset of the disease, either at 
an early or intermediate phase.15

Other investigators examined the role of DDR1 in 
Alport syndrome and the remnant kidney model. In 
mice lacking the Col4α3 gene, a model of Alport syn-
drome, DDR1-deficiency resulted in a decreased renal 
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expression of proinflammatory and profibrotic cyto-
kines, leading to attenuated inflammation and fibrosis, 
preserved renal function and increased survival.16 A 
recent study in the remnant kidney model showed that 
mutation in either the collagen binding site or the 
kinase domain of DDR1 inhibited collagen production 
by mesangial cells, demonstrating that both domains 
are indispensable for the receptor-mediated collagen 
deposition.17

DDR1 as a Target of Therapy

DDR1, as a membrane receptor, can be easily 
accessed by potential drugs. DDR1 could be targeted 
either by blocking its interaction with collagen extra-
cellularly or by inhibiting its tyrosine kinase activity 
intracellularly, preventing the receptor activation. 
Known tyrosine kinase inhibitors, which are widely 
used in cancer (dasatinib, imatinib, nilotinib), were 
also demonstrated to block DDR1 autophosphoryla-
tion induced by collagen. These inhibitors are not spe-
cific for DDR1, which increases the possibility for 
off-target effects. However, a recent publication 
showed that inhibition of DDR1 and its newly identi-
fied substrate breakpoint cluster region (BCR) protein 
by nilotinib reduces the metastatic potential of patient-
derived colorectal cancer cell lines in mice.18 
Interestingly, novel selective tyrosine kinase inhibitors 
targeting DDR1 have been recently developed. They 
can efficiently inhibit the receptor activation and the 
propagation of cancer cells overexpressing DDR1.6 
Pharmacological inhibition of DDR1 with an orally 
available small molecule inhibitor (7rh) could reduce 
the tumor progression in orthotopic pancreatic xeno-
grafts and KRAS-driven lung adenocarcinomas in 
mice.19,20 Strikingly, a novel selective DDR1 inhibitor 
manufactured by Roche-Chugai ameliorated the pro-
gression of experimental glomerulonephritis in both 
preventive and therapeutic regime, demonstrating 
better results than imatinib, a non-selective tyrosine 
kinase inhibitor widely used in cancer.21 These inhibi-
tors, together with other selective compounds that 
may be identified, could be tested in animal models of 
renal disease for their efficacy to slow down or even 
block the development and/or progression of renal 
fibrosis and CKD. Furthermore, a genetic variant near 
the DDR1 gene was recently identified in a genome-
wide association analysis as one of the 16 loci that 
predispose to diabetic nephropathy.22 It remains to be 
elucidated whether this variant causes a change in 
DDR1 expression or function associated with the pro-
gression of the disease. If that is the case, DDR1 
could be also considered as a potential target for the 
therapy of diabetic nephropathy.

Periostin

Periostin, also known as POSTN, PN or osteoblast-
specific factor 2 (OSF-2), is a 90 kDa secreted matri-
cellular protein, highly expressed in bone and dental 
tissues.23 Although the expression of periostin is high 
in development, it is absent from most adult tissues. 
However, it is de novo induced in injury and remodeling 
conditions.24 The protein structure of periostin is com-
posed of a N-terminal and a C-terminal region sepa-
rated by a tandem repeat of four fasciclin-I domains, 
showing homology to the homonymous insect domain, 
which mediates neuronal adhesion. Periostin interacts 
via its different domains with ECM molecules like col-
lagen 1, fibronectin, BMP-1, tenascin-C, or different 
cell-surface integrin receptors. It can thus mediate sig-
nals to both extracellular and intracellular environments 
and control processes like cell adhesion, migration, 
proliferation, and differentiation.25–28

Periostin was shown to promote inflammatory and 
fibrotic processes during progression of chronic or 
acute diseases affecting a plethora of different organs, 
including myocardial infarction,29,30 cardiac hypertro-
phy,31,32 asthma,33,34 pulmonary fibrosis,35,36 skin scle-
rosis,37 hepatic fibrosis,38,39 muscular dystrophy,40,41 
and cancer.42,43 Strikingly, inhibition of periostin in ani-
mal models of these diseases was able to prevent the 
progression of the pathology.

Periostin in Renal Fibrosis

Over the last decades, an increasing number of stud-
ies has implicated periostin in the progression of ani-
mal and human renal diseases. Periostin is 
overexpressed in biopsies from patients with various 
CKD etiologies, including focal segmental glomerulo-
sclerosis,44 IgA nephropathy,45,46 diabetes,46 lupus 
nephritis,47 polycystic kidney disease (PKD),48 and 
transplant rejection.49 In these studies, periostin was 
localized in areas of glomerular and interstitial fibrosis 
and its expression levels were positively correlated 
with disease progression. Interestingly, several studies 
reported an elevated urinary level of periostin in CKD 
patients, which reflected a more advanced pathologi-
cal stage and was associated with an aggravated renal 
outcome.45,46,50

We were among the first to identify periostin as a 
novel potential therapeutic target in animal models of 
renal disease. First, in a model of L-NAME-induced 
hypertensive nephropathy, periostin emerged as one 
of the most highly upregulated genes. It was localized 
in fibrotic regions, around sclerotic vessels and injured 
tubules. Moreover, its expression level was inversely 
correlated with the drop in renal function.51 Finally, 
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periostin level was also highly correlated with the pro-
gression or regression of the disease when the ani-
mals were treated with losartan, an Ang-II receptor 
blocker.51

In subsequent studies, our group demonstrated that 
periostin is a central mediator of different aspects of 
renal disease. We showed that mice lacking periostin 
were protected against renal inflammation and fibrosis 
accompanied by preservation of renal structure in the 
models of UUO and nephrotoxic serum (NTS)-induced 
glomerulonephritis.52,53 Strikingly, in both preventive 
and curative pharmacogenetic approaches in the 
L-NAME and NTS models, respectively, the administra-
tion of antisense oligonucleotides against periostin was 
capable to block the progression of the disease.52,53

Periostin was also found to play an important role in 
models of PKD and lupus nephritis. Periostin was 
overexpressed in cyst-lining epithelial cells of PKD 
patients and a genetic mouse model of PKD. It accu-
mulated in the matrix around cysts, where it was asso-
ciated with their proliferation. Mice lacking periostin 
were protected against PKD progression, displaying 
decreased number and size of cysts, reduced fibrosis 
and preserved renal function.54 Conversely, mice con-
ditionally overexpressing periostin in collecting duct 
cells demonstrated accelerated cyst formation, inter-
stitial fibrosis and decline of renal function.55 In mice 
with lupus nephritis, periostin was produced by mesan-
gial cells of the glomerulus, where it stimulated their 
proliferation and excess production of ECM.56 A recent 
study in a chronic renal failure model induced by 
5/6-nephrectomy demonstrated that inhibition of peri-
ostin with shRNA improved renal and cardiac dysfunc-
tion and attenuated organ fibrosis through negative 
regulation of the PPARα pathway.57

In most animal models of renal disease, periostin 
was shown to mediate both renal inflammation and 
fibrosis. This is in accordance with the potency of both 
pro-fibrotic and pro-inflammatory factors to upregulate 
periostin in vitro or in vivo in different pathological con-
texts. For example, TGF-β1, Ang-II, and PDGF-B were 
shown to induce the expression of periostin in cardiac 
fibroblasts,58 vascular smooth muscle cells,59 renal 
tubular52 or mesangial cells.56 On the other hand, 
interleukins IL-4 and IL-13 have been associated with 
induction of periostin in alveolar epithelial cells and 
fibroblasts.60 NF-κB and other pro-inflammatory tran-
scription factors induced periostin expression in glo-
merulonephritis,53 while most recently, the IL-13/STAT6 
pathway was associated with induction of periostin in 
PKD.61 Since inflammation precedes or progresses 
along with fibrosis in many cases of CKD, periostin 
may be a potent inhibitor of renal diseases, as it is 
implicated in both processes.

Periostin as a Target of Therapy

Periostin presents several advantages as a target of 
therapy against CKD: (1) it is silent in adult tissues, 
while it is induced at the sites of injury in a variety of 
renal diseases and (2) it is secreted, which makes it 
easily accessible to potential drugs. Interestingly, inhi-
bition of periostin with different techniques was effi-
cient in arresting or preventing the progression of renal 
disease in animal models. Genetic deletion of perios-
tin delayed the progression of UUO,52 NTS,53 and PKD 
pathologies,54 while administration of antisense oligo-
nucleotides targeting periostin was efficient in arrest-
ing the progression of severe glomerulonephritis, even 
after the initiation of the disease.53 Most recently, neu-
tralization of periostin by systemic administration of a 
blocking anti-periostin polyclonal antibody or a perios-
tin-binding DNA aptamer in UUO and diabetic 
nephropathy in mice, respectively, attenuated the pro-
gression of renal fibrosis.62,63 The next step toward a 
periostin-based therapy would be the creation and 
validation of periostin-targeting drugs with increased 
stability applicable in humans, which is the subject of 
further investigation.

Cx43

Cx43, also known as gap junction alpha-1 protein 
(GJA1), is a member of a large family of 20 proteins 
called connexins which form gap junctions, special-
ized structures allowing direct communication between 
adjacent cells via exchange of small molecules like 
ions (Na+, Ca2+) or second messengers (cAMP, ATP, 
IP3, etc.).64,65 Gap junctions are composed of two 
intercellular hemichannels, the connexons, each of 
which constitutes a homo- or heterohexamer of indi-
vidual connexins. Apart from intercellular communica-
tion, single connexons can allow the interaction of 
cells with ECM.66

Cx43 can affect cell signaling events, mediating 
changes in gene expression, cytoskeletal rearrange-
ments, vesicle release, and cellular stress.67 Cx43 is 
abundant in the heart and is required for normal heart 
development and function, since Cx43 deletion is 
lethal.68 In vessels, Cx43 plays an important role in the 
regulation of the myogenic tone, proliferation, and 
migration of vascular smooth muscle cells.69 A partial 
decrease in vascular Cx43 expression protected from 
progression of atherosclerosis possibly though anti-
inflammatory effects.70 Cx43 is highly expressed in 
brain astrocytes, while there is controversy on whether 
it exerts a neuroprotective or a deleterious role.71 Cx43 
is also upregulated in several cancers including liver, 
prostate, and breast tumors. Again, it could exert both 
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pro- and anti-metastatic functions, indicating a con-
text-dependent role in carcinogenesis.72,73

Cx43 in Renal Fibrosis

In the kidney, Cx43 localizes in the renal vasculature, 
mesangial cells and collecting ducts under normal 
conditions.74 Soon after its first detection in the kidney, 
Cx43 was found upregulated in patient biopsies with 
different inflammatory renal diseases, where it was 
highly expressed by infiltrating cells, damaged tubular 
epithelial cells, and at interstitial sites of injury.75

In a first attempt to study the role of Cx43 in CKD, 
we used a mouse model overexpressing renin, which 
causes a stable increase in blood pressure leading to 
hypertensive nephropathy and a progressive deterio-
ration of renal function.76 Cx43 was highly induced in 
peritubular and glomerular capillaries in this model, 
while Cx43 heterozygous mice (Cx43+/-) were pro-
tected in terms of albuminuria, inflammatory infiltra-
tion, and interstitial fibrosis.77 The protection from renal 
disease was primarily linked to a reduced interaction 
between endothelial and inflammatory cells.

Overexpression of Cx43 in podocytes during pro-
gression of experimental glomerular renal disease 
was first observed in rat models of puromycin amino-
nucleoside nephrosis (PAN) and type-2 diabetes.78,79 
Subsequently, we demonstrated that Cx43 was de 
novo expressed by suffering podocytes in the model of 
NTS-induced glomerulonephritis in mice, through 
binding of c-Jun and STAT1 on Cx43 promoter.80 
Interestingly, Cx43+/- mice showed preserved renal 
function and structure with decreased podocyte apop-
tosis, inflammatory cell infiltration, and renal fibrosis. 
Mechanistically, TGF-β1 treatment of cultured podo-
cytes induced expression of Cx43. Blockade of either 
Cx43 or purinergic receptors mediating ATP signaling 
partially reversed the TGF-β1-induced expression of 
mesenchymal and migratory markers. The crosstalk 
between Cx43 and ATP signaling could thus promote 
deleterious podocyte depolarization.80 Other in vitro 
studies demonstrated that blockade of Cx43 gap junc-
tions or siRNA treatment against Cx43 restored cell 
viability and inhibited podocyte apoptosis and reactive 
oxygen species (ROS) production after PAN- or aldo-
sterone-induced podocyte damage.81,82

In contrast to the increased podocyte expression of 
Cx43 in animal models of glomerulonephritis, there is 
controversial evidence regarding the expression and 
function of Cx43 in mesangial cells. Both in vivo in the 
anti-Thy 1.1 rat model83 and, in vitro, in high glucose- 
or aldosterone-treated mesangial cells, Cx43 was 
downregulated. Its overexpression reversed the cyto-
skeletal rearrangements and proliferation induced by 

high glucose84 and aldosterone,85 respectively. On the 
other hand, increased levels of extracellular ATP 
induced by Cx43 could control mesangial matrix 
expansion through a TGF-β1-purinergic receptor 
pathway.86

TGF-β1 was also shown to induce expression of 
Cx43 accompanied by ATP release and increased lev-
els of IL-6 and fibronectin in cultured tubular epithelial 
cells.87 In the mouse UUO model, Cx43 was strongly 
upregulated in tubules, while partial inhibition of Cx43 
expression using heterozygous Cx43+/- mice or anti-
sense oligonucleotides blunted the inflammatory 
response and interstitial fibrosis. Blockade of Cx43 
gap junctions was able to reverse TGF-β1-induced col-
lagen production and mitogen-activated protein kinase 
signaling in cultured tubular cells.77

Cx43 as a Target of Therapy

Reduced expression of Cx43 was sufficient to protect 
against hypertensive nephropathy, obstructive 
nephropathy, and glomerulonephritis;77,80 this probably 
due to the role played by Cx43 in the progression of 
both inflammatory and fibrotic processes in animal 
models of CKD. Therapeutic strategies to prevent 
Cx43 function include the use of either antisense oli-
gonucleotides or Cx43 blocking peptides. Interestingly, 
exogenous dermal application of a gel containing 
Cx43 antisense oligonucleotides was efficient for the 
treatment of skin wounds and foot ulcers in clinical tri-
als.88 In our studies, administration of antisense oligo-
nucleotides against Cx43 after the establishment of 
proteinuria or renal damage efficiently inhibited the 
progression of the disease,77,80 indicating that Cx43-
based treatments may constitute a potent therapeutic 
approach against renal pathologies.

Connexin blocking peptides are already available 
and have been used in pre-clinical models of diseases. 
They function by either inhibiting the hemichannel 
opening or the gap junction formation. GAP19 and 
GAP26 efficiently prevented the progression of muscu-
lar dystrophy,89 myocardial infarction,90 and spinal cord 
injury91 in animal models. Topical application of another 
selective Cx43 gap junction blocker, GAP27, improved 
corneal wound healing in a rat model, associated with 
increased granulocyte infiltration.92 The authors con-
cluded that GAP27 may facilitate epithelial wound heal-
ing in an early phase, but prolonged usage may provoke 
an unwanted stromal inflammatory response. On the 
other hand, more recent publications demonstrated 
that blocking Cx43 hemichannel opening and ATP 
release protects from inflammatory disease progres-
sion. The Cx43 mimetic peptide P5 efficiently attenu-
ated the hemichannel activity in vitro and ameliorated 
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the inflammatory response in in vivo models of septic 
microbial infection and hepatic ischemia/reperfusion 
injury.93 Moreover, an interesting study in a rat model of 
retinal and choroidal photodamage demonstrated that 
intravitreal administration of nanoparticles gradually 
releasing a Cx43 mimetic peptide was more efficient in 
maintaining retinal structure and function and reducing 
inflammation than a single dose of the native peptide in 
solution.94 We have demonstrated that in vitro blockade 
of gap junction function of Cx43 with the GAP26 pep-
tide hampered pro-inflammatory and pro-fibrotic cell 
responses in renal cells.77,80 It remains to be elucidated 
whether the existing Cx43 blockers can confer protec-
tion against the progression of renal disease in vivo in 
animal models.

CB1

The cannabinoid system is mainly composed of two 
membrane G protein-coupled receptors, cannabinoid 
receptor 1 (CB1 or CB1R, encoded by the CNR1 
gene) and cannabinoid receptor 2 (CB2, encoded by 
the CNR2 gene). Their endogenous lipid ligands are 
called endocannabinoids. The cannabinoid pathway 
was first identified in the central nervous system and 
has major physiological roles in the regulation of pain, 
appetite, behavior, memory, and metabolism. CB1 
expression is high in the brain, while it is less abun-
dant in other organs like lung, liver, and kidney.95

Deregulation of CB1 expression has been impli-
cated in a plethora of diseases, including neuroinflam-
mation and brain injury, cancer, liver fibrosis, 
gastrointestinal, and cardiovascular diseases.96 In 
some disorders, such as neuropathic pain, brain injury, 
and hypertension, upregulation of CB1 is thought to 
alleviate the symptoms and inhibit the progression of 
the disease. In other cases, alterations in the recep-
tor’s expression are maladaptive. For example, CB1 
upregulation in liver fibrosis promotes hepatocyte lipo-
genesis and fibrogenesis, while CB1 downregulation 
in colorectal cancer leads to enhanced colorectal 
tumor proliferation.96 Thus, the regulation of cannabi-
noid receptor expression using specific agonists or 
antagonists is of therapeutic interest.

CB1 in Renal Fibrosis

In normal kidney, CB1 is found in the vasculature97 
where it can stimulate the vasodilatation of efferent 
arterioles.98 Accumulating evidence indicates a poten-
tial role for CB1 in various renal pathologies. CB1 
mediates high glucose- or toxicity-induced endoplas-
mic reticulum stress and apoptosis in podocytes, 
mesangial cells and tubular epithelial cells.99-101 

Moreover, CB1 agonism in renal tubular cells was 
recently shown to induce mitochondrial fission, associ-
ated with increased ROS and reduced ATP production 
and a decline in mitochondrial biogenesis.102 Several 
studies demonstrated the implication of CB1 in dia-
betic nephropathy or obesity-induced CKD. In Zucker 
rats and db/db mice, two models of diabetic nephropa-
thy, CB1 blockade decreased albuminuria, tubulointer-
stitial lesions, mesangial expansion, and fibronectin 
expression.103–106 In a model of streptozotocin-induced 
type 1 diabetic nephropathy, podocyte-specific dele-
tion of CB1 protected against tubular dysfunction and 
fibrosis in addition to preventing podocyte injury and 
loss.107 Another study on the same model demon-
strated that miR-29a negatively regulated CB1 expres-
sion and protected against renal hypertrophy, 
inflammation, and fibrosis.108 Moreover, CB1 deletion 
in renal proximal tubular cells attenuated inflammation, 
fibrosis, renal dysfunction, and lipid accumulation in 
obesity-induced CKD, by inducing activation of the 
liver kinase B1/AMP-activated protein kinase pathway, 
resulting in enhanced fatty acid β-oxidation.109

Recently, our group showed that CB1 was among 
the 10 most upregulated genes in the UUO model, and 
that both its genetic and pharmacological inhibition 
markedly reduced inflammation and fibrosis.110 CB1 
was highly upregulated in renal myofibroblasts in this 
model, where it mediated TGF-β1-induced collagen 
expression. Interestingly, we also found increased CB1 
expression in kidney biopsies from patients with dia-
betic nephropathy, IgA nephropathy and acute intersti-
tial nephritis. CB1 was upregulated in tubular cells, 
interstitial cells, podocytes, and mesangial cells in 
these patients, and its expression correlated with renal 
function.110

CB1 as a Target of Therapy

CB1 has recently emerged as a potential target of 
therapy in renal diseases. Since CB1 is involved in the 
regulation of appetite and metabolism, it was early 
proposed as a prominent target in diabetes and obe-
sity-induced metabolic syndrome.103–107,109 However, 
one of the first blockers of CB1 tested in human meta-
bolic syndrome, rimonabant, was withdrawn from the 
market due to side-effects on central nervous sys-
tem.111 On the other side, CB1 antagonists that do not 
cross the blood–brain barrier were shown to efficiently 
delay the progression of diabetic nephropathy and 
albuminuria.111–113

Increased CB1 expression was reported in most cell 
types during non-metabolic renal disease in animals 
and humans, while gene deletion or pharmacological 
blockade of CB1 inhibited accumulation of renal fibrosis 
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and disease progression.110 Although more animal 
models are necessary to establish the role of CB1 in 
non-metabolic renal disease, the potential testing of 
already available CB1 antagonists seems an interesting 
possibility for targeting renal fibrosis. A recent study 
demonstrated that CB1 antagonism can attenuate car-
diac hypertrophy and fibrosis secondary to CKD.114 
Given the efficiency of CB1 antagonists in animal mod-
els of diabetes and metabolic syndrome103–106 and the 
improvement of metabolic profiles of patients,115 favor-
able outcomes on cardiovascular complications could 
also be achieved.

In conclusion, renal fibrosis represents a major 
axis of CKD development, which has reached pan-
demic proportions and is a considerable cause of 
death. Despite the significant progress made in our 
understanding of the complex mechanisms driving 
renal diseases, current therapeutic interventions are 
insufficient, the only options being dialysis or trans-
plantation in advanced stages. We identified DDR1, 
periostin, Cx43 and CB1 as novel mediators of renal 
diseases. All these proteins are expressed at low lev-
els in normal kidney, highly activated after renal dam-
age, where they localize primarily at the sites of injury. 
Moreover, their expression level is well correlated 
with the progression of the disease. Most importantly, 
inhibition of these proteins by gene deletion, or 
administration of antisense oligonucleotides or spe-
cific blockers efficiently protects from the develop-
ment of renal fibrosis and preserves renal function in 

animal models, even when the treatment starts after 
the initiation of the disease. A summary of the role of 
these proteins during progression of renal disease is 
depicted in Fig. 1 and Table 1. Thus, novel therapies 
based on targeting either of these new candidates 
may constitute efficient future therapeutic treatments 
against renal fibrosis and CKD. When it comes to 
therapy, any potential adverse effects of targeting 
these proteins should also be considered. For DDR1 
and periostin, no undesirable results of targeted 
treatments in animal models have been described to 
date, which is also supported by the fact that the KO 
mice of both proteins are viable and develop similarly 
to their wild-type littermates. On the contrary, the vital 
role of Cx43 gap junctions for heart development and 
function68 might hamper the clinical applications of 
Cx43 inhibitors. In this regard, blockers targeting the 
hemichannel rather than the gap junction function of 
Cx43 may represent a good alternative, since they 
are expected to show less adverse effects. Similarly, 
CB1 antagonists that do not cross the blood–brain 
barrier should be preferred for targeted treatments 
against CB1, because of the known physiological 
functions of CB1 in central nervous system.110 In any 
case, targeted therapeutics based on these proteins 
would require development of validated drugs for use 
in humans or testing of the already available blockers 
for some of these candidates in clinical studies, which 
will hopefully lead to a more efficient or targeted treat-
ment of CKD.

Figure 1. Schematic illustration of the role of DDR1, periostin, Cx43, and CB1 during progression of renal disease. After an initial 
aggression of the kidney, different factors, cytokines, or signaling pathways upregulate the expression of DDR1, periostin, Cx43, and 
CB1. Each protein activates downstream receptors and pathways that lead to production of proinflammatory and profibrotic cytokines, 
inflammation, macrophage activation, energy depletion, apoptosis, and excess matrix production, which cumulatively contribute to renal 
fibrosis and CKD development. Abbreviations: DDR1, discoidin domain receptor 1; Cx43, connexin 43; CB1, cannabinoid receptor 1; 
CKD, chronic kidney diseases.
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Table 1. Promising Novel Candidates for Therapy of Renal Fibrosis.

Target Treatment Animal model Outcome References

DDR1 Gene deletion Angiotensin II-induced 
hypertensive nephropathy

Decrease in periglomerular and interstitial fibrosis, 
inflammation and proteinuria

Flamant et al.12

Gene deletion UUO (Obstructive 
nephropathy)

Decreased cytokine expression, reduced macrophage 
activation, inflammation and fibrosis

Guerrot et al.13

Gene deletion/antisense 
administration

NTS-induced 
glomerulonephritis

Decreased proteinuria and uremia, reduced glomerular 
crescents, fibrin deposits, inflammation and interstitial 
fibrosis

Kerroch et al.14

Antisense administration 
after initiation of the 
disease

UUO (obstructive 
nephropathy), NTS-induced 
glomerulonephritis

Preserved renal structure and function Kerroch et al.15

Gene deletion Col4a3-/- mice (Alport 
syndrome)

Increased survival, decreased inflammation and fibrosis, 
preserved renal function

Gross et al.16

Gene mutation 5/6 nephrectomy (chronic 
renal failure)

Decreased collagen production by mesangial cells Borza et al.17

Small molecule inhibitor NTS- and NEP25-induced 
glomerulonephritis

Decreased fibrotic and inflammatory gene expression, 
improved renal function and histology

Moll et al.21

Periostin Gene deletion UUO (obstructive 
nephropathy)

Decreased cytokine expression, reduced inflammation 
and fibrosis

Mael-Ainin et al.52

Antisense administration L-NAME-induced 
hypertensive nephropathy

Decreased glomerular crescents, tubular dilation, 
perivascular and interstitial fibrosis, preserved renal 
function

Mael-Ainin et al.52

Gene deletion/antisense 
administration after 
initiation of the disease

NTS-induced 
glomerulonephritis

Decreased proteinuria and uremia, reduced glomerular 
crescents, fibrin deposits, tubular dilation, inflammation 
and collagen expression

Prakoura et al.53

Gene deletion pcy/pcy mice (polycystic 
kidney disease)

Decreased cyst formation and interstitial fibrosis, 
preserved renal function

Wallace et al.54

Blocking antibody UUO (obstructive 
nephropathy)

Decreased inflammation, interstitial fibrosis, attenuated 
TGF-β signaling and apoptosis

Hwang et al.62

Periostin-binding DNA 
aptamer

Streptozotocin-induced 
diabetic nephropathy type 
1 or db/db mice (diabetic 
nephropathy type 2)

Decreased uremia, reduced fibronectin and collagen 
expression and interstitial fibrosis

Um et al.63

Adenovirus-shRNA 5/6 nephrectomy (chronic 
renal failure)

Decreased renal and cardiac fibrosis, reduced levels of 
inflammatory and apoptotic markers and improved 
renal function

Bian et al.57

Cx43 Heterozygous mice/
antisense administration 
after initiation of the 
disease

UUO (obstructive 
nephropathy), renin 
overexpression-induced 
hypertensive nephropathy

Decreased albuminuria, inflammatory cell infiltration and 
interstitial fibrosis

Abed et al.77

Heterozygous mice/
antisense administration 
after initiation of the 
disease

NTS-induced 
glomerulonephritis

Decreased podocyte apoptosis, inflammation and 
fibrosis, preserved renal function

Kavvadas et al.80

CB1 Inverse agonist 
(rimonabant)

Zucker rat (Diabetic 
nephropathy type 2)

Decreased serum creatinine, albuminuria and 
tubulointerstitial lesions

Janiak et al.103

Antagonist (JD5037) Zucker rat (diabetic 
nephropathy type 2)

Decreased serum creatinine, albuminuria and 
tubulointerstitial lesions

Jourdan et al.104

Inverse agonist 
(rimonabant)

db/db mice (diabetic 
nephropathy type 2)

Decreased serum creatinine, albuminuria and mesangial 
expansion

Nam et al.105

Antagonist (AM251) db/db mice (diabetic 
nephropathy type 2)

Decreased albuminuria and fibronectin expression Barutta et al.106

Podocyte-specific deletion Streptozotocin-induced 
diabetic nephropathy type 1

Decreased podocyte injury and apoptosis, reduced 
tubular damage and interstitial fibrosis

Jourdan et al.107

Proximal tubule-specific 
deletion

Obesity-induced CKD Decreased inflammation, fibrosis and lipid accumulation Udi et al.109

Gene deletion/ Inverse 
agonist (rimonabant)

UUO (obstructive 
nephropathy)

Decreased inflammation and fibrosis, reduced collagen 
synthesis

Lecru et al.110

Abbreviations: DDR1, discoidin domain receptor 1; UUO, unilateral ureteral obstruction; NTS, nephrotoxic serum; NEP, neuroepithelial tyrosine kinase; Cx43, connexin 43; 
CB1, cannabinoid receptor 1; CKD, chronic kidney diseases.
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